
12D SOLUTIONS PTY LTD
 ACN 101 351 991

 PO Box 351 Narrabeen NSW Australia 2101
 Australia Telephone (02) 9970 7117 Fax (02) 9970 7118

 International Telephone 61 2 9970 7117 Fax 61 2 9970 7118

email support@12d.com web page www.12d.com

12d Model Programming Language Manual

12d Model 14
January 2021

12d Model Programming Language Manual

2

12d Model 14 Programming Manual
This book is the programming manual for the software product 12d Model.

Disclaimer
12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.
No liabilities in respect of engineering details and quantities produced by 12d Model are
accepted.

Every effort has been taken to ensure that the advice given in this manual and the program 12d Model is
correct. However, no warranty is expressed or implied by 12d Solutions Pty Ltd.

Copyright
This manual is copyrighted and all rights reserved.

This manual may not, in whole or part, be copied or reproduced without the prior consent in writing from
12D Solutions Pty Ltd.

Copies of 12d Model software must not be released to any party, or used for bureau applications without
the written permission of 12d Solutions Pty Ltd.

Copyright (c) 1989-2021 by 12d Solutions Pty Ltd
Sydney, New South Wales, Australia.

ACN 101 351 991
All rights reserved.
3

12d Model Programming Language Manual
4

1 Introduction .. 11
1.1 The Mouse.. 11
1.2 Compiling and Running a 12dPL Program.. 12

2 Basic Language Structure.. 15
2.1 Names... 15
2.2 Reserved Names... 15
2.3 White Space ... 16
2.4 Comments .. 17
2.5 Variables .. 18

2.5.1 Variable Names.. 18
2.5.2 Variable Declarations .. 18
2.5.3 Variable Types ... 18
2.5.4 Constants.. 39

2.6 Assignment and Operators ... 43
2.6.1 Assignment .. 43
2.6.2 Binary Arithmetic Operators ... 43
2.6.3 Binary Arithmetic Operators for Vectors and Matrices... 43
2.6.4 Relational Operations .. 45
2.6.5 Logical Operators .. 45
2.6.6 Increment and Decrement Operators ... 45
2.6.7 Bitwise Operators .. 45
2.6.8 Assignment Operators.. 45

2.7 Statements and Blocks ... 47
2.8 Flow Control .. 48

2.8.1 Logical Expressions ... 48
2.8.2 12dPL Flow Controls... 48
2.8.3 if, else, else if ... 49
2.8.4 Conditional Expression.. 50
2.8.5 Switch .. 50
2.8.6 While Loop .. 52
2.8.7 For Loop .. 53
2.8.8 Do While Loop .. 54
2.8.9 Continue... 54
2.8.10 Break... 54
2.8.11 Goto and Labels ... 55

2.9 Precedence of Operators .. 56
2.10 Preprocessing ... 57

3 Functions ... 59
3.1 Functions .. 59
3.2 Main Function .. 60
3.3 User Defined Functions.. 61
3.4 Return Statement .. 61
3.5 Array Variables as Function Arguments.. 62
3.6 Function Prototypes ... 63
3.7 Automatic Promotions ... 64
3.8 Passing by Value or by Reference ... 65
3.9 Overloading of Function Names .. 67
3.10 Recursion.. 68
3.11 Assignments Within Function Arguments ... 69
3.12 Blocks and Scopes.. 70

4 Locks.. 73
5 12dPL Library Calls... 75

5.1 Creating a List of Prototypes.. 77
5.2 Function Argument Promotions... 77

5.2.1 Automatic Promotions ... 77
5.3 Function Return Codes... 79
5

12d Model Programming Language Manual
5.4 Command Line-Arguments ..80
5.5 Array Bound Checking ...81
5.6 Exit..82
5.7 Angles ...83

5.7.1 Pi...83
5.7.2 Types of Angles..83

5.8 Text ...85
5.8.1 Text and Operators ...85
5.8.2 General Text ...85
5.8.3 Text Conversion ...88

5.9 Textstyle Data ...94
5.10 Maths ..109
5.11 Random Numbers ...111
5.12 Vectors and Matrices ..113
5.13 Triangles ...134
5.14 System...136
5.15 Ids, Uids and Guids...145

5.15.1 Uid Arithmetic..145
5.15.2 Uid Functions ...146

5.16 Input/Output..155
5.16.1 Output Window ..155
5.16.2 Clipboard ..157
5.16.3 Files ..158
5.16.4 12d Ascii...168

5.17 Menus..174
5.18 Dynamic Arrays ..177

5.18.1 Dynamic Element Arrays ...178
5.18.2 Dynamic Text Arrays ...180
5.18.3 Dynamic Real Arrays ...183
5.18.4 Dynamic Integer Arrays ...185

5.19 Points ..187
5.20 Lines..189
5.21 Arcs...191
5.22 Spirals and Transitions..194
5.23 Parabolas ...206
5.24 Segments ...207
5.25 Curve...212
5.26 Segment Geometry ...219

5.26.1 Length and Area ...219
5.26.2 Parallel ..220
5.26.3 Tangents ...222
5.26.4 Intersections..223
5.26.5 Offset Intersections...224
5.26.6 Angle Intersect..225
5.26.7 Distance ..226
5.26.8 Locate Point..227
5.26.9 Drop Point ..228
5.26.10 Projection..229
5.26.11 Change Of Angles ..230

5.27 Colours..231
5.28 User Defined Attributes ..233
5.29 Folders ..254
5.30 12d Model Program and Folders ..256
5.31 Control bar ..260
5.32 Project ...264
5.33 Models ..274
5.34 Views ..291
5.35 Elements..310
6

5.35.1 Types of Elements ... 311
5.35.2 Parts of 12d Elements .. 313

5.36 Tin Element .. 332
5.36.1 Triangulate Data .. 333
5.36.2 Tin Functions ... 334
5.36.3 Null Triangles .. 345
5.36.4 Colour Triangles .. 348

5.37 Super String Element ... 350
5.37.1 Super String Dimensions ... 350
5.37.2 Basic Super String Functions... 359
5.37.3 Super String Height Functions... 371
5.37.4 Super String Tinability Functions.. 375
5.37.5 Super String Segment Radius Functions ... 382
5.37.6 Super String Segment Linestyle Functions.. 384
5.37.7 Super String Point Id Functions... 386
5.37.8 Super String Vertex Symbol Functions ... 389
5.37.9 Super String Pipe/Culvert Functions ... 397
5.37.10 Super String Vertex Text and Annotation Functions....................................... 414
5.37.11 Super String Segment Text and Annotation Functions 435
5.37.12 Super String Fills - Hatch/Solid/Bitmap/Pattern/ACAD Pattern Functions.... 457
5.37.13 Super String Hole Functions.. 483
5.37.14 Super String Segment Colour Functions ... 486
5.37.15 Super String Segment Geometry Functions... 488
5.37.16 Super String Extrude Functions... 492
5.37.17 Super String Interval Functions ... 496
5.37.18 Super String Vertex Attributes Functions.. 499
5.37.19 Super String Segment Attributes Functions... 510
5.37.20 Super String Uid Functions.. 521
5.37.21 Super String Vertex Image Functions.. 526
5.37.22 Super String Visibility Functions .. 531

5.38 Examples of Setting Up Super Strings... 539
5.38.1 2d Super String .. 540
5.38.2 2d Super String with Arcs.. 541
5.38.3 3d Super String .. 543
5.38.4 Polyline Super String ... 544
5.38.5 Pipe Super String ... 546
5.38.6 Culvert Super String .. 548
5.38.7 Polyline Pipe Super String... 550
5.38.8 4d Super String .. 552

5.39 Super Alignment String Element ... 554
5.40 Arc String Element... 568
5.41 Circle String Element ... 574
5.42 Text String Element ... 576
5.43 Pipeline String Element.. 592
5.44 Drainage String Element .. 595

5.44.1 Underlying Drainage String Functions .. 598
5.44.2 General Drainage String Functions.. 603
5.44.3 Drainage String Pits ... 608
5.44.4 Drainage Pit Type Information in the drainage.4d File 629
5.44.5 Drainage String Pit Attributes.. 636
5.44.6 Drainage String Pipes .. 647
5.44.7 Drainage Pipe Type Information in the drainage.4d File 661
5.44.8 Drainage String Pipe Attributes ... 662
5.44.9 Drainage String House Connections - For Sewer Module Only 673

5.45 Feature String Element... 680
5.46 Interface String Element .. 682
5.47 Grid String and Grid Tin Element.. 686
5.48 Face String Element ... 697
7

12d Model Programming Language Manual
5.49 Drafting Elements ...704
5.49.1 Dimension Functions..705
5.49.2 Leader Functions ..713
5.49.3 Table Functions ..716
5.49.4 Common Draft Functions ...722

5.50 Trimesh Element...726
5.51 Plot Frame Element ..751
5.52 Strings Replaced by Super Strings..761

5.52.1 2d Strings..762
5.52.2 3d Strings..766
5.52.3 4d Strings..770
5.52.4 Pipe Strings...786
5.52.5 Polyline Strings ..791

5.53 Alignment String Element ..796
5.54 General Element Operations ...807

5.54.1 Selecting Strings...807
5.54.2 Drawing Elements ..808
5.54.3 Open and Closing Strings...809
5.54.4 Length and Area of Strings...809
5.54.5 Position and Drop Point on Strings ..811
5.54.6 Parallel Strings..812
5.54.7 Self Intersection of String...813
5.54.8 Loop Clean Up for String ...813
5.54.9 Check Element Locks...814
5.54.10 Miscellaneous Element Functions ..814

5.55 Creating Valid Names...816
5.56 XML..819
5.57 Map File ..828
5.58 Project Setting...831
5.59 Macro Console..835
5.60 Panels and Widgets ...850

5.60.1 Cursor Controls ..854
5.60.2 Panel Functions ..855
5.60.3 Horizontal Group..859
5.60.4 Vertical Group ..862
5.60.5 Widget Controls..866
5.60.6 General Widget Commands and Messages ..874
5.60.7 Widget Information Area Menu ...875
5.60.8 Widget Tooltip and Help Calls...876
5.60.9 Panel Page ..879
5.60.10 Input Widgets ...881
5.60.11 Message Boxes ...1040
5.60.12 Log_Box and Log_Lines ..1045
5.60.13 Buttons..1055
5.60.14 GridCtrl_Box..1067
5.60.15 Tree Box Calls ..1077

5.61 General..1083
5.61.1 Quick Sort...1084
5.61.2 Name Matching ..1085
5.61.3 Null Data ..1086
5.61.4 Contour ...1088
5.61.5 Drape ..1090
5.61.6 Drainage ...1092
5.61.7 Volumes..1100
5.61.8 Interface ..1103
5.61.9 Templates ...1104
5.61.10 Applying Templates ...1105
5.61.11 Strings Edits..1108
8

5.61.12 Place Meshes.. 1112
5.61.13 Image ... 1113
5.61.14 Boundary polygon.. 1114
5.61.15 Stack trace.. 1115

5.62 Utilities ... 1117
5.62.1 3D Chainage .. 1118
5.62.2 Transformation... 1129
5.62.3 Chains .. 1133
5.62.4 Convert... 1134
5.62.5 Cuts Through Strings ... 1135
5.62.6 Factor ... 1137
5.62.7 Fence.. 1138
5.62.8 Filter... 1140
5.62.9 Head to Tail ... 1141
5.62.10 Helmert Transformation .. 1142
5.62.11 Polygon Centroid and Medial axis... 1143
5.62.12 Rotate ... 1144
5.62.13 Share Status.. 1145
5.62.14 Swap XY.. 1147
5.62.15 Translate... 1148
5.62.16 Miscellaneous .. 1149

5.63 12d Model Macro_Functions ... 1150
5.63.1 Processing Command Line Arguments in a Macro_Function......................... 1151
5.63.2 Creating and Populating the Macro_Function Panel 1152
5.63.3 Storing the Panel Information for Processing.. 1154
5.63.4 Recalcing ... 1154
5.63.5 Storing Calculated Information ... 1155
5.63.6 Macro_Function Functions .. 1156
5.63.7 Function Property Collections ... 1180

5.64 Plot Parameters... 1190
5.65 Undos ... 1197

5.65.1 Functions to Create Undos... 1198
5.65.2 Functions for a 12dPL Undo_List ... 1200

5.66 ODBC Macro Calls .. 1203
5.66.1 Connecting to an external data source ... 1203
5.66.2 Querying against a data source .. 1205
5.66.3 Navigating results with Database_Result .. 1207
5.66.4 Insert Query ... 1210
5.66.5 Update Query... 1211
5.66.6 Delete Query .. 1213
5.66.7 Manual Query .. 1214
5.66.8 Query Conditions ... 1215
5.66.9 Transactions ... 1218
5.66.10 Parameters.. 1219

5.67 12D Synergy Intergation Macro Calls ... 1222

6 Examples ... 1225
6.1 Example 1... 1228
6.2 Example 1a... 1229
6.3 Example 1b... 1230
6.4 Example 2... 1232
6.5 Example 2a... 1233
6.6 Example 3... 1234
6.7 Example 4... 1235
6.8 Example 5... 1236
6.9 Example 5a... 1237
6.10 Example 5b... 1238
6.11 Example 6... 1239
6.12 Example 7... 1246
9

12d Model Programming Language Manual
6.13 Example 8 ...1249
6.14 Example 9 ...1251
6.15 Example 10 ...1257
6.16 Example 11 ...1260
6.17 Example 12 ...1264
6.18 Example 13 ...1270
6.19 Example 14 ...1277
6.20 Example 15 ...1285

A Appendix - Set_ups.h File ..1299
A General Constants ...1300
A Model Mode..1301
(d) File Mode ..1305
(d) View Mode..1312
(d) Tin Mode...1315
(d) Template Mode ...1319
(d) Project Mode ...1320
(d) Directory Mode ...1321
(d) Function Mode ..1322
(d) Function Type ...1323
(d) Linestyle Mode..1324
(d) Symbol Mode ..1325
(d) Snap Mode ..1326
(d) Super String Use Modes..1327
(d) Select Mode...1329
(d) Target Box Flags ...1330
(d) Widgets Mode ...1331
(d) Text Alignment Modes for Draw_Box ...1332
(d) Set Ups.h ...1333

B Appendix - Ascii, Ansi and Unicode ...1344
 12d Model Programming Language Course...5
10

Chapter 1 Introduction
1 Introduction
The 12d Model Programming Language (12dPL), is a powerful programming language
designed to run from within 12d Model. It is also known as 4DML from when the product was
called 4d Model.

Its main purpose is to allow users to enhance the existing 12d Model package by writing their
own programs.

12dPL is based on a subset of the C++ language with special extensions to allow easy
manipulation of 12d Model data. A large number of intrinsic functions are supplied which cover
most aspects of civil modelling.
12dPL has been designed to fit in with the ability of 12d Model to "stack" an incomplete
operation.

This reference manual does not try to teach programming techniques. Instead this manual sets
out the syntax, restrictions and supplied functions available in 12dPL.

Examples of usage are given for many of the 12dPL supplied functions.

It is assumed that the reader has an understanding of the basic concepts of programming though
not necessarily using C++.
Note: 12dPL programs are often referred to as "macros". However 12dPL programs are fully
fledged computer programs and should not be confused with say "keyboard macros" which
simply record a users keystrokes and then replays them.
When you see the word macro in this manual, it refers to a 12dPL program and not a keyboard
macro for Word or other programmes.

See 1.1 The Mouse
See 1.2 Compiling and Running a 12dPL Program

1.1 The Mouse
The mouse is used extensively in 12d Model and also in 12d Model programs.
Most new PC mice have three buttons (left, middle and right) but on older PC's both two and
three button mice exist.
12d Model can be operated with either a two or a three button mouse but a three button mouse
is preferred.

In this manual the buttons will be denoted by

LB = the left button

MB = the middle button
RB = the right-button
Page 11The Mouse

12d Model Programming Language Manual
12d Model monitors the mouse being pushed down and when it is subsequently released as
separate events. Unless otherwise specified in the manual, clicking a button will mean pressing
the button down and releasing it again. The position of the mouse is normally taken as being when
the button is released.
In screen messages, the effect of pressing each button on the mouse is shown by enclosing the
effect for each button in square brackets ([]) in left-to-right button order. That is

[left button effect] [middle button effect] [right button effect]
Empty brackets, [], indicate that pressing the button has no effect at that time.
Continue to 1.2 Compiling and Running a 12dPL Program.

1.2 Compiling and Running a 12dPL Program
A 12d Model Programming Language program consists of one file containing a starting function
called main, and zero or more user defined functions. The complete definition and structure of
functions will be specified later in this manual.
The filename containing the program must end in .4dm.

Once typed in, the 12dPL program is compiled, from either inside or outside of 12d Model, to
produce a run-time version of the program (a compiled program).

It is the compiled version of the program that is run from within 12d Model.
To compile a 12dPL program, use either
(a) Compiling from Inside 12d Model
Inside 12d Model use the compile or compile and run options

 Utilities =>Macros =>Compile
 Utilities =>Macros =>Compile/run
or
(b) Compiling from Outside 12d Model
Outside 12d Model, the 12dPL compiler is called cc4d.exe which is in the nt.x64 folder for the
64-bit 12d.exe or nt.x86 for 32-bit 12d.exe.
To compile the program, run cc4d.exe followed by the name of the file containing the macro.
For example, to compile the program macro.4dm, type into a command window:

LB MB RB
Page 12 Compiling and Running a 12dPL Program

Chapter 1 Introduction
(a) when running a 64-bit 12d.exe on a 64-bit Microsoft Windows Operating System
 "C:\Program Files\12d\12dmodel\14.00\nt.x64\cc4d.exe" macro.4dm

(b) or when running a 32-bit 12d.exe on a 32-bit Microsoft Windows OS.
 "C:\Program Files\12d\12dmodel\14.00\nt.x86\cc4d.exe" macro.4dm

(c) or when running a 32-bit 12d.exe on a 64-bit Microsoft Windows OS.
 "C:\Program Files (x86)\12d\12dmodel\14.00\nt.x86\cc4d.exe" macro.4dm

The compiler first checks the program’s syntax and reports any errors to the console window. If
there are no errors, a run-time object is created with the same name as the original program but
ending in .4do.
If you want the errors to be logged to a file rather than going to the console window, then add

 -log log_file_name
before the program name (a common convention is to use the same file name stem and add
".4dl" for the log file):

For example
 "C:\Program Files\12d\12dmodel\14.00\nt.x64\cc4d.exe" -log macro.4dl macro.4dm

Running a Compiled 12d Model Program
To run a compiled program from within 12d Model, walk-right on the menu option
 Utilities =>Macros =>Run

and select the program from the list of available programs.

Alternatively, if the Utilities =>Macros menu has been pinned up, then clicking on the Run option
(and not walking right) brings up the Run a Macro panel.
Page 13Compiling and Running a 12dPL Program

12d Model Programming Language Manual

A program is run by entering the name of its compiled object into the Macro object panel field,
filling in the Macro arguments field if there are any command-line argument for the program, and
then selecting the button Run.

The Run a Macro panel is then removed from the screen and the program run.

Note: Programs can also be run form functions keys, menus and toolbars. See the Appendix
Function Keys, Manus, Toolbars in the 12d Model Reference manual for more details.

click on Run without
walking right to bring up
the Run a Macro panel
Page 14 Compiling and Running a 12dPL Program

Chapter 2 Basic Language Structure
2 Basic Language Structure
See 2.1 Names
See 2.2 Reserved Names
See 2.3 White Space
See 2.4 Comments
See 2.5 Variables
See 2.6 Assignment and Operators
See 2.7 Statements and Blocks
See 2.8 Flow Control
See 2.9 Precedence of Operators
See 2.10 Preprocessing

2.1 Names
A name (also known as a word) denotes an object, a function, an enumerator, a type, or a value.
A name is introduced into a program by a declaration.
All names must be declared before they can be used.

A name can be used only within a region of program text called its scope (discussed later).
A name has a type that determines its use.

2.2 Reserved Names
The following names (words) are reserved and cannot be used for user defined names:

Integer Integer64 Real Text Uid Guid

Attribute_Blob Attributes Attribute Element Model View
Point Line Segment Curve Menu Tin
Dynamic_Integer Dynamic_Real Dynamic_Text Dynamic_Element

Angle_Box Apply_Function Apply_Many_Function Arc
Attributes_Box Billboard_Box Bitmap_Fill_Box Bitmap_List_Box Button
Chainage_Box Choice_Box Colour_Box Colour_Message_Box

Connection Database_Result Date_Time_Box Delete_Query
Directory_Box Drainage_Network Draw_Box Equality_Info
Equality_Label File File_Box Function Function_Box

Function_Property_Collection Graph_Box GridCtrl_Box Horizontal_Group
HyperLink_Box Input_Box Insert_Query Integer_Box Integer_Set

Justify_Box Kerb_Return_Function Linestyle_Box List
List_Box ListCtrl_Box Log_Box Log_Line Macro_Function
Manual_Condition Manual_Query Map_File Map_File_Box Matrix3 Matrix4
Page 15Names

12d Model Programming Language Manual
Message_Box Model_Box Name_Box Named_Tick_Box
New_Select_Box New_XYZ_Box Overlay_Widget Panel Parabola
Parameter_Collection Plot_Parameter_File Plotter_Box

Polygon_Box Process_Handle Query_Condition Real_Box Real_Set
Report_Box Screen_Text SDR_Attribute Select_Box Select_Boxes
Select_Button Select_Query Selection Sheet_Panel Sheet_Size_Box

Slider_Box Source_Box Spiral String Symbol_Box
Tab_Box Target_Box Template_Box Text_Edit_Box Text_Set
Text_Style_Box Text_Units_Box Textstyle_Data Textstyle_Data_Box

Texture_Box Tick_Box Time_Zone_Box Time_Zone_Box_Box
Tin_Box Transaction Tree_Box Tree_Page Undo Undo_List
Update_Query Vector2 Vector3 Vector4 Vertical_Group

View_Box Widget Widget_Pages XML_Document
XML_Node XYZ_Box

break case char continue default
do double else float for
goto if int integer long

real return short switch void
while

auto class const delete enum
extern friend inline new operator
private protected public register signed

sizeof static struct template this
throw try typedef union unsigned
virtual volatile

All 12dPL variable types and 12dPL functions and user defined functions are also considered to
be keywords and cannot be used for user defined names.

2.3 White Space
Spaces, tabs, newlines (<enter>, <CR>), form feeds, and comments are collectively known as
white space.

White space is ignored except for the purpose of separating names or in text between double
quotes. Hence blank lines are ignored in a 12dPL program.

For example,

 goto fred ;
is the same as
 goto fred;
Page 16 White Space

Chapter 2 Basic Language Structure
2.4 Comments
12dPL supports two styles of comments -
A line oriented comment
 all characters after a double slash // and up the end of a line are ignored.

A block comment
 all characters between a starting /* and a terminating */ are ignored.

An example of comments in 12dPL is
 void main()
 {
 Real y = 1; // the rest of this line is comment
/* this comment can carry
 over many lines until
 we get to the termination characters */
 }
Page 17Comments

12d Model Programming Language Manual
2.5 Variables
Variables and constants are the basic data objects manipulated in a program.
Declarations list the names of the variables to be used, and state what type they have.
Operators specify what is to be done to variables.

Expressions combine variables and operators to produce new values.
The type of an object determines the set of values it can have and what operations can be
performed on it.

2.5.1 Variable Names
In 12dPL, variable names must start with an alphabetic character and can consist of upper and/
or lower case alphabetic characters, numbers and underscores (_) and there is no restriction on
the length of variable names.
12dPL variable names are case sensitive.

2.5.2 Variable Declarations
In 12dPL, all variables must be declared before they are used.
A declaration consists of a variable type and a list of variable names separated by commas and
ending the line with a semi-colon ";".

For example
Integer fred, joe, tom;
where Integer is the variable type and fred, joe and tom are the names of variables of type
Integer.

2.5.3 Variable Types
There are a wide variety of 12d Model variable types supported in 12dPL. For example
(a) void

This is a special type which is only used for functions which have no return value. All other
functions must return one variable take as the function return value. The user does not
define variables of this type and it is only used in function definitions.
For example:

 void Exit(Integer code)
(b) Mathematical Variable Types

Standard mathematical variables for calculations using the mathematical operations such as
addition, subtraction, multiplication and division.
These variables only exist within the 12dPL program and cease to exist when it finishes.
For example, Integer, Real, Text, Vector2, Vector3, Matrix2, Marix3, Matrix4

For more information on these variables, go to 2.5.3.1 Mathematical Variable Types
(c) Geometric Construction Variable Types

These objects are used within 12dPL macros for geometric calculations. They are only
temporary objects and only last for the duration of the program.
Page 18 Variables

Chapter 2 Basic Language Structure
For example, Point, Line, Arc, Spiral, Segment.
For more information on these variables, go to 2.5.3.2 Geometric Construction Variable
Types

(d) 12d Database Handles
These variable types act as Handles to access data stored in the 12d Model database.
This data is retrieved from and stored in the 12d Model database and so exists after the
program terminates.
For example, Element, Dynamic_Element, Tin, Model, View, Function, Undo_List

For more information on these variables, go to 2.5.3.3 12d Model Database Handles
(e) 12d Internal Variable Types

These variables help access data stored in the 12d Model database handles. This data may
be retrieved from and stored in 12d Model database via the handles, and so can exist after
the program terminates.
For example, Uid, Attributes, SDR_Attributes, Blobs, Textstyle_Data.

For more information on these variables, go to 2.5.3.4 12d Internal Variable Types
(f) 12d Interface Variable Types

Variables for building interfaces, such as menus and panels, to communicate with the macro
user.
For example, Menu, Panel, Widget, Model_Box.
For more information on these variables, go to 2.5.3.5 12d Model Interface Variable Types

(g) File Interface Variable Types
Variables for accessing files.

For example, File, Map_File, Plot_Parameter_File, XML_Document, XML_Node.
For more information on these variables, go to 2.5.3.6 File Interface Variable Types

(h) ODBC Database Interface Variable Types
Variables for accessing and manipulating ODBC databases.
For example, Connection, Select_Query, Insert_Query, Update_Query, Delete_Query,
Database_Results, Transactions, Parameter_Collection, Query_Condition,
Manual_Condition

For more information on these variables, go to 2.5.3.7 ODBC Database Variable Types
(i) Arrays and Dynamic Arrays Types

Arrays are used to allocate a number of storage units that have the same type. Arrays sore
a fixed number of items and Dynamic Arrays store a variable number of items.
For example, Real arrays, Integer, Arrays, Text Arrays, Dynamic_Text.
For more information on these variables, go to 2.5.3.8 Array Types

For a quick summary of all the 12dPL variables, go to 2.5.3.9 Summary of 12dPL Variable Types
Page 19Variables

12d Model Programming Language Manual
2.5.3.1 Mathematical Variable Types
Standard mathematical variables for calculations using the mathematical operations such as
addition, subtraction, multiplication and division.

See
 Integer
 Integer64
 Real
 Text
 Vector2
 Vector3
 Vector4
 Matrix3
 Matrix4

Integer
A 32-bit whole number. It can be positive or negative. For example -1, 0 and 1.

Integer64
A 64-bit whole number. It can be positive or negative. For example -1LL, 0 and 123456789123.

Real
A 64-bit decimal number. It can be positive or negative. For example -1.0, 0.0 and 1.0

Text
A sequence of characters. For example Dog

Vector2
An entity consisting of two Real values. If the two real values of a Vector2 are X and Y, the
values in a Vector2 are often expressed as (X,Y).

Vector3
An entity consisting of three Real values. If the three real values of a Vector3 are X, Y and Z, the
values in a Vector3 are often expressed as (X,Y,Z).

Vector4
An entity consisting of four Real values. If the four real values of a Vector3 are X, Y, Z and W, the
values in a Vector4 are often expressed as (X,Y,Z,W).

Matrix3
An entity consisting of nine Real values. The values in the Matrix3 matrix are expressed as
three rows and three columns and indexed as matrix (row, column) and
 matrix (1,1) = a matrix(1,2) = b matrix(1,3) = c
 matrix (2,1) = d matrix(2,2) = e matrix(2,3) = f

 matrix (3,1) = g matrix(3,2) = h matrix(3,3) = i
where a, b, c, d, e, f, g, h and i are the nine Real values of matrix.
where a, b, c and d are the four Real values of matrix.

Matrix4
An entity consisting of sixteen Real values. The values in the Matrix4 matrix are expressed as
four rows and four columns and indexed as matrix(row,column) and
 matrix (1,1) = a matrix(1,2) = b matrix(1,3) = c matrix(1,4) = d
Page 20 Variables

Chapter 2 Basic Language Structure
 matrix (2,1) = e matrix(2,2) = f matrix(2,3) = g matrix(2,4) = h
 matrix (3,1) = i matrix(3,2) = j matrix(3,3) = k matrix(3,4) = l
 matrix (4,1) = m matrix(4,2) = n matrix(4,3) = o matrix(4,4) = p

where a, b, c, d, e, f, g, h, i, j, k, l, m, n, o and p are the sixteen Real values of matrix.
Page 21Variables

12d Model Programming Language Manual
2.5.3.2 Geometric Construction Variable Types
Construction variables are used within 12dPL macros for geometric calculations but they are
temporary objects and only last for the duration of the program.

See
 Point
 Line
 Arc
 Spiral (Transition)
 Parabola
 Segment

Point
A Point is a three dimensional point consisting of x, y and z co-ordinates (x,y,z).
A Point is a construction entity and is not stored in 12d Model models.

Line
A Line is three dimensional line joining two Points.
A Line is a construction entity and is not stored in 12d Model models.

Arc
An Arc is a helix which projects onto a circle in the (x,y) plane.

That is, in a plan projection, an Arc is a circle. But in three dimensions, the Arc has a z value
(height) at the start of the Arc and another (possibly different) z value at the end of the Arc. The z
value varies linearly between the start and end point of the Arc. So an Arc is NOT a circle in a
plane in 3d space, except when it is in a plane parallel to the (x,y) plane.
In 12dPL an Arc is a construction entity and is not stored in 12d Model models.

Spiral (Transition)
An spiral is a mathematically defined transition which when projected on to the (x,y) plane, has a
continuously varying radius going between a between a line (infinite radius) and an arc for a full
spiral, or an arc to another arc for a partial spiral.
Note that in 12d Model, the Spiral covers the traditional clothoid spirals and also other transitions
(such as a cubic parabola) which are not spirals in the true mathematical sense.
For more information on Spirals and Transitions, go to 5.22 Spirals and Transitionsin the chapter
5 12dPL Library Calls

In 12dPL a Spiral is a construction entity and is not stored in 12d Model models.

Parabola
Parabolas are used in the vertical geometry of an Alignment or Super Alignment. The vertical
geometry is defined in the (chainage, height) plane and parabolas can be place on vertical
intersection points. So the parabola is defined in the (chainage, height) plane.
In 12dPL a Parabola is a construction entity and is not stored in 12d Model models.

Segment
A Segment is either a Point, Line, Arc, Parabola or a Spiral.
A Segment has a unique type which specifies whether it is a Point, Line, Arc, Parabola or Spiral.
A Segment is a construction entity and is not stored in 12d Model models.

See 5.24 Segments
Page 22 Variables

Chapter 2 Basic Language Structure
2.5.3.3 12d Model Database Handles
Unlike construction entities, the 12d Model database handle variables are used for data from the
12d Model project database. They could be handles for Views, Models, Elements, Functions etc.

The handles don't contain the database information but merely point to the appropriate database
records.
Hence data created with handle variables can be stored in the 12d Model database and will exist
after the 12dPL program terminates.
Since the handle merely points to the Project data, the handle can be changed so that it points to
a different record without affecting the data it originally pointed to.

The 12dPL variables Element, View, Model and Macro_Function create and use handles.

Sometimes it is appropriate to set a handle so that it doesn't point to any data. This process is
referred to as setting the handle to null.
Note that when setting a handle to null ("nulling" it), no 12d Model data is changed - the handle
simply points to nothing.

See
 Element
 Model
 View
 Macro_Function or Function
 Undo_List

Element
The variable type Element is used to refer to the standard 12d Model entities that can be stored
in a 12d Model models.
Elements act as handles to the data in the 112d Model database so that the data can be easily
referred to and manipulated within a macro.

The different types of Elements are
Arc an arc in the (x,y) plane with linear interpolated z values (i.e. a helix). See

5.40 Arc String Element
Circle a circle in the (x,y) plane with a constant z value. See 5.41 Circle String

Element

Drainage string for drainage or sewer elements. See 5.44 Drainage String Element
Feature a circle with a z-value at the centre but only null values on the

circumference. See 5.45 Feature String Element
Grid Tin See 5.47 Grid String and Grid Tin Element

Grid String See 5.47 Grid String and Grid Tin Element
Interface string with (x,y,z,cut/fill flag) at each vertex. See 5.46 Interface String

Element
Pipe string width (x,y,z) at each point and a diameter. See 5.52.4 Pipe Strings

Plot Frame element used for production of plan plots. See 5.51 Plot Frame Element
Pipeline an Alignment string with a diameter. See 5.43 Pipeline String Element
Super general string with at least (x,y,z,radius) at each vertex. See 5.37 Super

String Element
Super Alignment a string with separate horizontal geometry defined by using the intersection
Page 23Variables

12d Model Programming Language Manual
point methods and other construction methods such as fixed and floating.
See 5.39 Super Alignment String Element

SuperTin a list of Tins that acts as one Tin
Text string with text at a vertex. See 5.42 Text String Element

Tin triangulated irregular network - a triangulation See 5.36 Tin Element

Superseded Element Types
2d string with (x,y) at each vertex but constant z. See 5.52.1 2d Strings
3d string with (x,y,z) at vertex point. See 5.52.2 3d Strings
4d string with (x,y,z,text) at each vertex. See 5.52.3 4d Strings

Alignment string with separate horizontal and vertical geometry defined only by using
the intersection point methods. See 5.53 Alignment String Element

Polyline string with (x,y,z,radius) at each vertex. See 5.52.5 Polyline Strings

The Element type is given by the Get_type(Element elt,Text text) function.

Model
The variable type Model is used as a handle to refer to 12d Model models within macros. See
5.33 Models

View
The variable type View is used as a handle to refer to 12d Model views within macros. See 5.34
Views

Macro_Function or Function
The variable type Macro_Function or Function is used as a handle to refer to a 12d Model
function within macros. User defined Macro_Functions/Functions can be created from a macro.
See 5.63 12d Model Macro_Functions
Page 24 Variables

Chapter 2 Basic Language Structure
2.5.3.4 12d Internal Variable Types
These variables help access data stored in the 12d Model database handles. This data may be
retrieved from and stored in 12d Model database via the handles, and so can exist after the
program terminates.

See
 Uid
 Guid
 Attributes
 SDR_Attribute
 Blob
 Screen_text
 Textstyle_Data
 Equality_Label
 Undo

Uid
A Unique Identifier for entities in a 12d Model database. See 5.15 Ids, Uids and Guids

Guid
A Global Unique Identifier used for a 12d Model project. See 5.15 Ids, Uids and Guids.

Attributes
The variable type Attributes is used as a handle to refer to an 12d Model attribute structure
within macros.
Attributes are user defined and can be attached to Projects, Models, Elements and
Macro_Functions/Functions.See 5.28 User Defined Attributes

SDR_Attribute
SDR_Attribute are special attributes used with the 12d Survey Data Reduction process.

Blob
A binary object.

Screen_text
See 5.60.10.29 Screen_Text.

Textstyle_Data
TextStyle_Data holds information about the text such as colour, textstyle, justification, height.
See 5.9 Textstyle Data.

Equality_Label
Equality_Label holds information for labelling text as an Equality

Undo
A variable to hold information that is placed on the 12d Model Undo system.See 5.65 Undos

Undo_List
The variable type Undo_List is a handle to a list of Undo’s. See 5.65 Undos
Page 25Variables

12d Model Programming Language Manual
2.5.3.5 12d Model Interface Variable Types
The objects for building interfaces, such as menus and panels, to communicate with the macro
user.

All these items are derived from a Widget and so can be used in any argument that is of type
Widget.

See
 Widget

See
 Menu
 Panel
 Overlay_Widget

Objects for Formatting Widgets in a Panel
See

 Vertical_Group
 Horizontal_Group
 Widget_Pages

Control Objects for Placing in Horizontal/Vertical Groups and Panels
See

 Button
 Select_Button
 Angle_Box
 Attributes_Box
 Attributes_Box
 Billboard_Box
 Bitmap_Fill_Box
 Bitmap_List_Box
 Chainage_Box
 Choice_Box
 Colour_Box
 Colour_Message_Box
 Date_Time_Box
 Directory_Box
 Draw_Box
 File_Box
 Function_Box
 Graph_Box
 GridCtrl_Box
 HyperLink_Box
 Input_Box
 Integer_Box
 Justify_Box
 Linestyle_Box
 List_Box
 ListCtrl_Box
 Map_File_Box
 Message_Box
 Model_Box
 Name_Box
 Named_Tick_Box
 New_Select_Box
 New_XYZ_Box
Page 26 Variables

Chapter 2 Basic Language Structure
 Plotter_Box
 Polygon_Box
 Real_Box
 Report_Box
 Select_Box
 Select_Boxes
 Sheet_Size_Box
 Source_Box
 Symbol_Box
 Tab_Box
 Target_Box
 Template_Box
 Text_Edit_Box
 Text_Style_Box
 Texture_Box
 Tree_Box
 Tree_Page ??
 Tick_Box
 Tin_Box
 View_Box
 XYZ_Box

Widget
The objects for building interfaces, such as menus and panels, to communicate with the macro
user. All these items are derived from a Widget and so can be used in any argument that is of
type Widget. For the Widget 12dPL calls, see 5.60 Panels and Widgets

Menu
An object that holds the data for a user defined 12d Model menu.

Panel
An object that holds the data for a user defined 12d Model panel. See 5.60 Panels and Widgets.

Objects for Formatting Widgets in a Panel

Overlay_Widget

Sheet_Panel

Vertical_Group
Used for formatting a panel.

A Vertical_Group holds Widgets that will be placed horizontally in a Panel. See 5.60.2 Panel
Functions

Horizontal_Group
Used for formatting a panel.
A Horizontal_Group holds Widgets that will be placed horizontally in a Panel. See 5.60.2 Panel
Functions

Widget_Pages
A panel can have different pages. See 5.60.9 Panel Page

Control Objects for Placing in Horizontal/Vertical Groups and Panels
Page 27Variables

12d Model Programming Language Manual
Button
A button on a Panel. See 5.60.13 Buttons

Select_Button
A button on a Panel for selecting strings. See 5.60.13.3 Select_Button

Angle_Box
A box on a Panel for inputting angle information. See 5.60.10.1 Angle_Box.

Attributes_Box
See 5.60.10.2 Attributes_Box.

Billboard_Box
A box on a Panel for selecting a billboard name from the pop-up list of project billboards. See
5.60.10.42 Texture_Box.

Bitmap_Fill_Box
See 5.60.10.4 Bitmap_Fill_Box.

Bitmap_List_Box

Chainage_Box
See 5.60.10.5 Chainage_Box.

Choice_Box
See 5.60.10.6 Choice_Box.

Colour_Box
A box on a Panel for selecting a colour from the pop-up list of project colours. See 5.60.10.7
Colour_Box.

Colour_Message_Box
A box on a Panel for writing messages to. Different background colours for the display area can
also be set. See 5.60.11.1 Colour_Message_Box.

Date_Time_Box
See 5.60.10.8 Date_Time_Box.

Directory_Box
See 5.60.10.9 Directory_Box.

Draw_Box
See 5.60.10.10 Draw_Box.

File_Box
See 5.60.10.11 File_Box.

Function_Box
See 5.60.10.12 Function_Box.

Graph_Box
Page 28 Variables

Chapter 2 Basic Language Structure
See .

GridCtrl_Box
See 5.60.14 GridCtrl_Box.

HyperLink_Box
See 5.60.10.13 HyperLink_Box.

Input_Box
See 5.60.10.14 Input_Box.

Integer_Box
See 5.60.10.15 Integer_Box.

Justify_Box
See 5.60.10.16 Justify_Box.

Linestyle_Box
A box on a Panel for selecting a linestyle from the pop-up list of project linestyles. See 5.60.10.17
Linestyle_Box.

List_Box
See 5.60.10.18 List_Box.

ListCtrl_Box

Map_File_Box
See 5.60.10.19 Map_File_Box.

Message_Box
A box on a Panel for writing messages to. See 5.60.11.2 Message_Box. Also see 5.60.11.1
Colour_Message_Box

Model_Box
A box on a Panel for creating a new model, or selecting a model from the pop-up list of project
models. See 5.60.10.20 Model_Box.

Name_Box
See 5.60.10.21 Name_Box.

Named_Tick_Box
See 5.60.10.22 Named_Tick_Box.

New_Select_Box
See 5.60.10.23 New_Select_Box.

New_XYZ_Box
See 5.60.10.24 New_XYZ_Box.

Plotter_Box
See 5.60.10.25 Plotter_Box.
Page 29Variables

12d Model Programming Language Manual
Polygon_Box
See 5.60.10.26 Polygon_Box.

Real_Box
See 5.60.10.27 Real_Box.

Report_Box
See 5.60.10.28 Report_Box.

Select_Box
See 5.60.10.30 Select_Box.

Also see New_Select_Box

Select_Boxes
See 5.60.10.31 Select_Boxes.

Sheet_Size_Box
See 5.60.10.32 Sheet_Size_Box.

Source_Box
See 5.60.10.34 Source_Box.

Symbol_Box
See 5.60.10.35 Symbol_Box.

Tab_Box
See 5.60.10.31 Select_Boxes.

Target_Box
See 5.60.10.36 Target_Box.

Template_Box
See 5.60.10.37 Template_Box.

Text_Edit_Box
See 5.60.10.41 Text_Edit_Box.

Text_Style_Box
See 5.60.10.38 Text_Style_Box.

Texture_Box
See 5.60.10.42 Texture_Box.

Tree_Box
See 5.60.15 Tree Box Calls.

Tree_Page ??

Tick_Box
See 5.60.10.43 Tick_Box.
Page 30 Variables

Chapter 2 Basic Language Structure
Tin_Box
See 5.60.10.44 Tin_Box.

View_Box
A box on a Panel for selecting a view from the pop-up list of project views. See 5.60.10.45
View_Box.

XYZ_Box
Also see New_XYZ_Box
Page 31Variables

12d Model Programming Language Manual
2.5.3.6 File Interface Variable Types
Variables for accessing files.

See
 File
 Map_File
 Plot_Parameter_File
 XML_Document
 XML_Node

File
A file unit. See 5.16.3 Files.

Map_File
A file used for mapping element properties. See 5.57 Map File.

Plot_Parameter_File
A file unit. See 5.57 Map File.

XML_Document
The file contents are structured as an XML document. See 5.56 XML.

XML_Node
Page 32 Variables

Chapter 2 Basic Language Structure
2.5.3.7 ODBC Database Variable Types
The variables are used when accessing and querying a ODBC database.

See
 Connection
 Select_Query
 Insert_Query
 Update_Query
 Delete_Query
 Database_Results
 Transactions
 Parameter_Collection
 Query_Condition
 Manual_Condition

Connection
The connection to the database.

Select_Query
Used to retrieve data from the database.

Insert_Query
Used to add data to the database.

Update_Query
Used to update data in the database.

Delete_Query
Used to delete data in the database.

Database_Results
Database results.

Transactions
Database transactions.

Parameter_Collection
Query the database parameters.

Query_Condition
Query conditions

Manual_Condition
Manual condition
Page 33Variables

12d Model Programming Language Manual
2.5.3.8 Array Types
Arrays are used to allocate a number of storage units that have the same name.

In 12d Model, there are two types of arrays - fixed and dynamic.
Fixed arrays must have their lengths defined when the array is declared. This can either be at
compile time when a number is used (e.g. 10) or when a variable which has been given a specific
value before the array declaration (e.g. N).

The length of dynamic arrays can vary at any time whilst the macro is running.
See

 Fixed Arrays
 Dynamic Arrays

Fixed Arrays
A fixed array is defined by giving the size of the array (the number of storage units being set
aside) enclosed in the square brackets [and] immediately after the variable name.

The size can either be a fixed number or a variable that has been assigned a value before the
array is defined.
For example, a Real array of size 100 is defined by
Real real_array[100];

and a Real array of size N, where N is an Integer variable, is defined by
 Real real_array[N];

Note that once the array is defined, the size is fixed by the value of N at the time when the array
is defined - it does not change if N is subsequently modified.
In a macro, the individual items of an array are accessed by specifying an array subscript
enclosed in square brackets.

For example, the tenth item of real_array is accessed by real_array[10].

Warning to C++ Programmers
This is not the same as C++ where array subscripts start at zero

Dynamic Arrays
For many 12dPL operations, an array of items is required but the size of the array is not known in
advance or will vary as the macro runs.

For example, an array may be needed to hold Elements being selected by the user running the
macro. The number of Elements selected would not be known in advance and could overflow
any fixed array. Hence a fixed array is inconvenient or impossible to use.
To cover these situations, 12dPL has defined dynamic arrays that can hold an arbitrary number
of items. At any time, the number of items in a dynamic array is known but extra items can be
added at any time.
Like fixed arrays, the items in dynamic arrays are accessed by their unique position number. It is
equivalent to an array subscript for a fixed array.

But unlike fixed arrays, the items of a dynamic array can only be accessed through function calls
rather than array subscripts enclosed in square brackets.
As for an array, the dynamic array positions go from one to the number of items in the dynamic
Page 34 Variables

Chapter 2 Basic Language Structure
array.
The dynamic arrays currently supported in 12dPL are
Dynamic_Element
 a dynamic array of Elements
Dynamic_Integer
 a dynamic array of Integers.

Dynamic_Real
 a dynamic array of Reals.
Dynamic_Text
 a dynamic array of Texts.
Page 35Variables

12d Model Programming Language Manual
2.5.3.9 Summary of 12dPL Variable Types
The 12dPL variable types are:

 void - only used in functions which return no value

Mathematical Variable Types
 Integer - 32 bit integer
 Integer64 - 64 bit integer

 Real - 64 bit IEEE Real precision floating point, 14 significant figures
 Text - one or more characters
 Vector2, Vector3, Vector4 - contain two, three and four Reals respectively

 Matrix3, Matrix4 - nine and sixteen Reals respectively

Geometric Construction Variable Types
 Point - a three dimensional point
 Line - a line between two points

 Arc - a helix
 Spiral - a transition
 Parabola - a parabola

 Segment - a Point, Line, Arc, Parabola or Spiral

12d Model Database Handles
 Element - a handle for the 12d Model strings

 Tin - a handle for 12d Model tins
 Model - a handle for 12d Model models
 View - a handle for 12d Model views

 Functions, Macro_Function - a handle for 12d Model functions
 Undo_List - a list to combine Undo’s

12d Internal Variable Types
 Uid - unique identifier for entities in a 12d Model database

 Guid - unique identifier used for a 12d Model project
 Attributes - used as a handle to refer to a 12d Model attribute structure
 SDR_Attribute - special attributes used with the 12d Survey Data Reduction process

 Blob - a binary object
 Attribute_Blob - a binary object
 Screen_Text -

 Textstyle_Data - holds information about a text such as colour, textstyle, rustication
 Equality_Label - holds information for labelling text as an Equality

12d Model Interface Variable Types
 Menu -holds the data for a user defined 12d Model menu
 Panel - holds the data for a user defined 12d Model panel
 Widget -
 Vertical_Group - holds Widgets that will be placed horizontally in a Panel
 Horizontal_Group - holds Widgets that will be placed vertically in a Panel
 Widget_Pages -
 Overlay_Widget -
Page 36 Variables

Chapter 2 Basic Language Structure
 Sheet_Panel -
 Button - a button on a Panel.
 Select_Button -
 Angle_Box -
 Attributes_Box -
 Billboard_Box -
 Bitmap_Fill_Box -
 Bitmap_List_Box -
 Chainage_Box -
 Choice_Box -
 Colour_Box -
 Colour_Message_Box -
 Date_Time_Box -
 Directory_Box -
 Draw_Box -
 File_Box -
 Function_Box -
 Graph_Box -
 GridCtrl_Box -
 HyperLink_Box -
 Input_Box -
 Integer_Box -
 Justify_Box -
 Linestyle_Box -
 List_Box -
 ListCtrl_Box -
 Map_File_Box -
 Message_Box -
 Model_Box -
 Name_Box -
 Named_Tick_Box -
 New_Select_Box -
 New_XYZ_Box -
 Plotter_Box -
 Polygon_Box -
 Real_Box -
 Report_Box -
 Select_Box - see also New_Select_Box -
 Select_Boxes -
 Sheet_Size_Box -
 Source_Box -
 Symbol_Box -
 Tab_Box -
 Target_Box - // not yet implemented
 Template_Box -
 Text_Edit_Box -
 Text_Style_Box -
 Texture_Box -
 Tree_Box -
 Tree_Page -??
 Tick_Box -
 Tin_Box -
 View_Box -
 XYZ_Box - see also New_XYZ_Box

File Interface Variable Types
 File -
Page 37Variables

12d Model Programming Language Manual
 Map_File -
 Plot_Parameter_File -
 XML_Document -
 XML_Node -
ODBC Database Variable Types
 Connection - the connection to the database.
 Select_Query - used to retrieve data from the database.
 Insert_Query -used to add data to the database.
 Update_Query -used to update data in the database.
 Delete_Query - used to delete data in the database.
 Database_Results - database results.
 Transactions - database transactions.
 Parameter_Collection - query the database parameters.
 Query_Condition - query conditions
 Manual_Condition - manual condition
Array Types
 Real Array - Real[num] - a fixed array of Reals
 Integer Array - Integer[num] - a fixed array of Integers
 Text Array - Text[num]- a fixed array of Texts
 Dynamic_Element - a dynamic array of Elements
 Dynamic_Text - a dynamic array of Texts
 Dynamic_Integer - a dynamic array of Integers
 Dynamic_Real - a dynamic array of Reals
Page 38 Variables

Chapter 2 Basic Language Structure
2.5.4 Constants
There are four kinds of constants (or literals)

 Integer Constant
 Integer64 Constant
 Real Constant
 Text Constant
Page 39Variables

12d Model Programming Language Manual
2.5.4.1 Integer and 64bit Integer Constant
An integer or 64bit Integer constant consists of any number of digits.

All integer and 64bit Integer constants are assumed to be in decimal notation.
A 64bit Integer can have an optional ending of two letters L (LL)
A constant without two letters L ending greater than or equal 2 power 31 (2147483648) or
smaller than minus 2 power 31 (-2147483648) will also be interpreted as 64bit Integer

Examples of valid integer constants are
 1 76875
Examples of valid 64 integer constants are

 1 123LL
 2 -123456789123
Page 40 Variables

Chapter 2 Basic Language Structure
2.5.4.2 Real Constant
A Real constant consists of any number of digits ending in a mandatory decimal point, followed
by an optional fractional part and an optional exponent part. The exponent part consists of an e
or E, and an optionally signed integer exponent.

There can be no spaces between each part of the Real constant.
Valid floating constants are
6. 1.0 1.0e 1.0e+1 1.0e-1 .1e+2

Note that 1e1 is not a valid floating constant.
Page 41Variables

12d Model Programming Language Manual
2.5.4.3 Text Constant
A Text constant is a sequence of characters surrounded by double quotes.

Valid Text constants are
"1" "1234" !"@#$%^&"
A Text constant can also contain escape characters. For example, if you wish to have the "
character in a Text constant, you place a \ character in front of it.

 "A silly \" symbol" translates to
 A silly " symbol
The following escape characters are supported in Text variables:

 new-line NL(LF) \n
 double quote " \"
 backslash \ \\
Page 42 Variables

Chapter 2 Basic Language Structure
2.6 Assignment and Operators
See

 2.6.1 Assignment
 2.6.2 Binary Arithmetic Operators and 2.6.3 Binary Arithmetic Operators for Vectors and
Matrices
 2.6.4 Relational Operations
 2.6.5 Logical Operators
 2.6.5 Logical Operators
 2.6.6 Increment and Decrement Operators
 2.6.7 Bitwise Operators
 2.6.8 Assignment Operators

2.6.1 Assignment
Assignment

= assignment e.g. x = y

The Assignment = is NOT a mathematical equal.
The Assignment is to be interpreted as

the expression on the right hand side is evaluated and then the variable on the left is given that
value.

So if the same variable occurs on both sides of the assignment, the current value is used in
evaluating the right hand side and then the variable is given the new value. For example, the
expression

x = x + 1;

means that x is given the new value that is equal to the original value plus 1.

2.6.2 Binary Arithmetic Operators
The binary arithmetic operators are
+ addition
- subtraction

* multiplication
/ division - note that integer division truncates any fractional part
% modulus: x%y where x and y are integers, produces the integer remainder when x is

 divided by y
Note that division or modulus by Integer or Integer64 zero might crash 12D.

2.6.3 Binary Arithmetic Operators for Vectors and Matrices
The binary arithmetic operators for vectors and matrices are
+ addition

- subtraction
* multiplication of matrices

* dot product of vectors
Page 43Assignment and Operators

12d Model Programming Language Manual
^ cross product of two vectors
where the following combinations are allowed
Vector2 + Vector2 = Vector2 Vector2 - Vector2 = Vector2
Vector3 + Vector3 = Vector3 Vector3 - Vector3 = Vector3
Vector4 + Vector4 = Vector4 Vector4 - Vector4 = Vector4

Real * Vector2 = Vector2 Vector2 * Real = Vector2 Vector2 / Real= Vector2
Real * Vector3 = Vector3 Vector3 * Real = Vector3 Vector3 / Real= Vector2
Real * Vector4 = Vector4 Vector4 * Real = Vector4 Vector4 / Real= Vector4
Vector2 * Vector2 = Real * is the dot product between the two vectors
Vector3 * Vector3 = Real * is the dot product between the two vectors
Vector4 * Vector4 = Real * is the dot product between the two vectors
Vector2 ^ Vector2 = Vector3 ^ is the cross product between the two Vector2 vectors
 Note: to form this cross product, the Vector2’s are turned into
 Vector3’s by adding the third dimension with value 0.

Vector3 ^ Vector3 = Vector3 ^ is the cross product between the two Vector3 vectors
Matrix3 + Matrix3 = Matrix3 Matrix3 - Matrix3 = Matrix3 Matrix3 * Matrix3 = Matrix3
Matrix4 + Matrix4 = Matrix4 Matrix4 - Matrix4 = Matrix4 Matrix4 * Matrix4 = Matrix4
Real * Matrix3 = Matrix3 Matrix3 * Real = Matrix3 Matrix3 / Real= Matrix3
Real * Matrix4 = Matrix4 Matrix4 * Real = Matrix4 Matrix4 / Real= Matrix4

Vector3 * Matrix3 = Vector3 Note that the Vector3 is treated as a row vector.
Matrix3 * Vector3 = Vector3 Note that the Vector3 is treated as a column vector.
Vector4 * Matrix4 = Vector4 Note that the Vector4 is treated as a row vector.
Matrix4 * Vector4 = Vector4 Note that the Vector4 is treated as a column vector.

A vector of dimension 2, 3 or 4 can be cast to a vector of a higher or a lower dimension.
If casting to a dimension of one higher, the new component is set by default to 1.0.
For example a Vector2 represented by (x,y) is cast to a Vector3 (x,y,1).

When casting to a dimension of one lower, the vector is homogenized and the last component
(which has the value 1) is dropped.
For example, a Vector4 represented by (x,y,z,w) is cast to a Vector3 as (x/w,y/w,z/w).
So for example

Vector2 * Matrix3 = Vector3 requires Vector2 say (x,y) to be cast to a Vector3 so that this
 make sense and the operation is defined as (x,y,1)*Matrix3
Page 44 Assignment and Operators

Chapter 2 Basic Language Structure
2.6.4 Relational Operations
The relational operators are

< less than
<= less than or equal to
> greater than

>= greater than or equal to

2.6.5 Logical Operators
The logical operators are

== equal to
!= not equal to
|| inclusive or

&& and
! not

2.6.6 Increment and Decrement Operators
The increment and decrement operators are

++ post and pre-increment e.g. i++ which is shorthand for i = i + 1
-- post and pre-decrement e.g. i-- which is shorthand for i = i - 1

2.6.7 Bitwise Operators

The bitwise operators are
& bitwise and
| bitwise inclusive or

^ bitwise exclusive or
~ one's complement (unary)

2.6.8 Assignment Operators
assignment operator
For some operators op, the assignment operator op= is supported where for expressions expr1
and expr2:
expr1 op= expr2

means
expr1 = (expr1) op (expr2)
where the supported assignment operators for op= are
Page 45Assignment and Operators

12d Model Programming Language Manual
 += -= *= /= %=
For example
x += 2 is shorthand for x = x + 2

x *= 2 is shorthand for x = x * 2
Page 46 Assignment and Operators

Chapter 2 Basic Language Structure
2.7 Statements and Blocks
An expression such as x = 0 or i++ becomes a statement when it is followed by a semi-colon.

Curly brackets { and } (braces) are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a single statement.
There is no semi-colon after the right brace that ends a block.
Blocks can be nested but cannot overlap.
Examples of statements are

x = 0;
i++;

fred = 2 * joe + 9.0;
An example of a compound statement or block is
{

 x = 0;
 i++;
 fred = 2 * joe + 9.0;

}

For more information, see 3.12 Blocks and Scopes.
Page 47Statements and Blocks

12d Model Programming Language Manual
2.8 Flow Control
In a macro, the normal processing flow is that a statement is processed and then the following
statement is processed.
The flow control statements of a language change the order in which statements are
processed.
12dPL supports a subset of the C++ flow control statements but before they can be examined,
we need to look at logical expressions.

2.8.1 Logical Expressions
Many flow control statements include expressions that must be logically evaluated.

That is, the flow control statements use expressions that must be evaluated as being either true
or false.
For example,
a is equal to b a == b
a is not equal to b a != b
a is less than b a < b
Following C++, 12dPL extends the expressions that have a truth value to any expression that
can be evaluated arithmetically by the simple rule:

an expression is considered to be true if its value is non-zero, otherwise it is
considered to be false.

Hence the truth value of an arithmetic expression is equivalent to:

 "value of the expression" is not equal to zero
For example, the expression
a + b

is true when the sum a+b is non-zero.
Any expression that can be evaluated logically (that is, as either true or false) will be called a
logical expression.

2.8.2 12dPL Flow Controls
The flow control statements supported by 12dPL are listed below and each will be defined in the
following sections

2.8.3 if, else, else if
 2.8.4 Conditional Expression
 2.8.5 Switch
 2.8.6 While Loop
 2.8.7 For Loop
 2.8.8 Do While Loop
 2.8.9 Continue
 2.8.10 Break
 2.8.11 Goto and Labels
Page 48 Flow Control

Chapter 2 Basic Language Structure
2.8.3 if, else, else if
12dPL supports the standard C++ if, else and else if structures.

if
if (logical_expression)
 statement

is interpreted as:
 If logical_expression is true then execute the statement.

 If logical_expression is false then skip the statement.
For example
if (x == 5) {

 x = x + 1;
 y = x * y;
}

Notice that in this example the statement consists of the block
{ x = x + 1;
 y = x * y;

}
The expressions in the block are only executed if x is equal to 5.

else
if (logical_expression)
 statement1

else
 statement2

is interpreted as
If logical_expression is true then execute statement1.
If logical_expression is false then execute statement2.

else if
if (logical_expression1)

 statement1
else if (logical_expression2)
 statement2

else
 statement3

is interpreted as
If logical_expression1 is true then execute statement1.
Page 49Flow Control

12d Model Programming Language Manual
If logical_expression1 is false then
(if logical_expression2 is true then execute statement2 otherwise execute statement3)

2.8.4 Conditional Expression
12dPL supports the standard C++ conditional expression:
logical_expression ? expression : expression2

is interpreted as
 if (logical_expression) then
 expression1

 else
 expression2

For example,
y = (x >= 0) ? x : -x;

means that y is set to x if x is greater than or equal to zero, otherwise it is set to -x. Hence y is set
to the absolute value of x.

2.8.5 Switch
12dPL supports a switch statement.
The switch statement is a multi-way decision that tests a value against a set of constants and
branches accordingly.
In its general form, the switch structure is:

switch (expression) {
 case constant_expression : { statements }
 case constant_expression : { statements }

 default : { statements }
}

Each case is labelled by one of more constants.
When expression is evaluated, control passes to the case that matches the expression value.
The case labelled default is executed if the expression matches none of the cases. A default is
optional; if it isn't there and none of the cases match, no action takes place.

Once the code for one case is executed, execution falls through to the next case unless explicit
action is taken to escape using break, return or goto statements.
A break statement transfers control to the end of the switch statement (see 2.8.10 Break).

Warning
Unlike C++, in 12dPL the statements after the case constant_expression: must be enclosed in
curly brackets ({}).

Example
An example of a switch statement is:
Page 50 Flow Control

Chapter 2 Basic Language Structure
 switch (a) {
case 1 : {
 x = y;
 break;
}
case 2: {
 x = y + 1;
 z = x * y;
}
case 3: case 4: {
 x = z + 1;
 break;
}
default : {
 y = z + 2;
 break;
}

 }

Notes
1. Some people like to put the break after the closing } for the case. For example

case 1 : {
 x = y;
} break;

2. In the switch example, if control goes to case 2, it will execute the two statements after the
case 2 label and then continue onto the statements following the case 3 label.

Restrictions
1. Currently the switch statement only supports an Integer, Integer64, Real or Text expression.

All other expression types are not supported.
2. Statements after the case constant_expression: must be enclosed in curly brackets ({}).
Page 51Flow Control

12d Model Programming Language Manual
2.8.6 While Loop
12dPL supports the standard C++ while statement.

while (logical_expression)
 statement

is interpreted as:

(a) If logical_expression is true, execute statement and then test the logical_expression
again.

(b) repeat (a) until the logical_expression is false.

For example, in
x = 10.0;

product = 1.0;
while (x > 0) {
 product = product * x;

 x = x - 1;
}

the block

{ product = product * x;
 x = x - 1;

}
will be repeated until x is not greater than zero (i.e. until x is less than or to equal zero).
Page 52 Flow Control

Chapter 2 Basic Language Structure
2.8.7 For Loop
12dPL supports the standard C++ for statement.

for (expression1;logical_expression;expression2)
 statement
is interpreted as:

expression1;
while (logical_expression) {
 statement;

 expression2;
}

In long hand, this means:
(a) first execute expression1.
(b) if logical_expression is true, execute statement and expression2 and then test

logical_expression again.
(c) repeat (b) until the logical_expression is false.
For example

j = 0;

for (i = 1; i <= 10; i++)
 j = j + i;

would sum the numbers 1 through to 10.

Notes
1. Any of the three parts expression1, logical_expression and expression2 can be omitted

from the for statement but the semi-colons must remain.
2. If expression1 or expression2 is omitted, it is simply dropped from the expansion.

3. If the test, logical_expression is missing, it is taken as permanently true.
Restrictions
1. At this stage for(;;) is not allowed

2. At this stage, please avoid having more than one statement for expression2.
For example, avoid
for(expression1;logical_expression;i++,j++)

because j++ will not be evaluated correctly.
Page 53Flow Control

12d Model Programming Language Manual
2.8.8 Do While Loop
12dPL supports the standard C++ do while statement:

do
statement

while (logical_expressions);

is interpreted as:
Execute statement and then evaluate logical_expression.
If logical_expression is true, execute statement and then test logical_expression again.

This cycle continues until logical_expression is false.
For example
i = 1;

do {
 x = x + i;
 i++;

} while (i < 10);

2.8.9 Continue
The continue statement causes the next iteration of the enclosing for, while or do while loop to
begin.

In the while and do while, this means that the test part is executed immediately.
In the for, control passes to the evaluation of expression2, normally an increment step.
Important Note
The continue statement applies only to loops. A continue inside a switch inside a loop causes
the next loop iteration.

2.8.10 Break
break is used to exit from a do, for, or while loop, bypassing the normal loop condition. It is also
used to exit from a switch statement.
In a switch statement, break keeps program execution from "falling through" to the next case. A
break statement transfers control to the end of the switch statement.

A break only terminates the for, do, while or switch statement that contains it. It will not break
out of any nested loops or switch statements.
Page 54 Flow Control

Chapter 2 Basic Language Structure
2.8.11 Goto and Labels
12dPL supports the standard C++ goto and labels.

A label has the same form as a variable name and is followed by a colon. It can be attached to
any statement in a function. A label name must be unique within the function.
A goto is always followed by a label and then a semi-colon.
When a goto is executed in a macro, control is immediately transferred to the statement with the
appropriate label attached to it. There may be many gotos with the same label in the function.

An example of a label and a goto is:
for (...) {

 ...
 goto error;
 ...

}
...
error:

statements
When the goto is executed, control is transferred to the label error.
Note
A goto cannot be used to jump over any variables defined at the same nested level as the goto.
Extra curly bracket ({}) may need to be placed around the offending code to increase its level of
nesting.
Page 55Flow Control

12d Model Programming Language Manual
2.9 Precedence of Operators
12dPL has the same precedence and associativity rules as C++. For convenience, the order is
summarized in the table below.
In the table,
 operators on the same line have the same precedence;

 rows are in order of decreasing precedence.

For example, *, / and % all have the same precedence which is higher than that of binary + and -.

The "operator" () refers to function call.

Operators Associativity
() [] left to right
! ~ ++ -- + - * & right to left
* / % left to right

+ - left to right
<< >> left to right
< <= > >= left to right

== != left to right
& left to right

^ left to right
| left to right
&& left to right

|| left to right
? right to left
= += -= *= /= %= &= ^= |= right to left
Unary + and - have higher precedence than the binary forms.
Page 56 Precedence of Operators

Chapter 2 Basic Language Structure
2.10 Preprocessing
You can include other files by the command
#include "filename"
The example below shows how to include file "a.h" into "b.4dm.

// file a.h
Point Coord(Real x,Real y,Real z)
{
 Point p; Set_x(p,x) Set_y(p,y); Set_z(p,z);
 return(p);
}

// file b.4dm
#include "a.h"
void main()
 {
 Point p = Coord(10.0,20.0,2.34); // create a point
}

The above example is equivalent to the following one file:

Point Coord(Real x,Real y,Real z)
{
 Point p; Set_x(p,x); Set_y(p,y); Set_z(p,z);
 return(p);
}
void main()
{
 Point p = Coord(10.0,20.0,2.34); // create a point
}

Page 57Preprocessing

12d Model Programming Language Manual
Page 58 Preprocessing

Chapter 3 Functions
3 Functions
See 3.1 Functions
See 3.2 Main Function
See 3.3 User Defined Functions
See 3.6 Function Prototypes
See 3.7 Automatic Promotions
See 3.8 Passing by Value or by Reference
See 3.9 Overloading of Function Names
See 3.10 Recursion
See 3.11 Assignments Within Function Arguments
See 3.12 Blocks and Scopes

3.1 Functions
Functions can be used to break large computing tasks into smaller ones and allow users to build
on software that already exists.
Basically a program is just a set of definitions of variables and functions. Communication
between the functions is by function arguments, by values returned by the functions, and through
global variables (see the section 3.12 Blocks and Scopes).
The 12dPL program file must contain a starting function called main as well as zero or more user
defined functions.

User defined functions must occur in the file before they are used in the program file unless a
Function Prototype is included before the function is used. If this occurs then the user defined
function can be defined anywhere in the file. See 3.6 Function Prototypes.
The syntax for user defined functions will be described in the following sections. See 3.3 User
Defined Functions.
A large number of functions are supplied with 12dPL to make tasks easier for the program writer.
These 12dPL supplied functions are predefined and nothing special is needed to use them. The
12dPL supplied functions will all be defined later in the manual.

In 12dPL, function names must start with an alphabetic character and can consist of upper and/
or lower case alphabetic characters, numbers and underscores (_).
There is no restriction on the length of function names. Function names cannot be the same as
any of the 12dPL keywords or variable names in the program.

12dPL function names are case sensitive.
Note
All 12dPL supplied functions begin with a capital letter to help avoid clashes with any user
variable names.
Page 59Functions

12d Model Programming Language Manual
3.2 Main Function
A 12dPL program must contain a special function called main. This function is the designated
start of the program.
The main function is simply a header void main () followed by the actual program code enclosed
between a start brace { and an end brace }.
Hence the function called main is a header followed by a block of code:

 void main ()
 {
 declarations and statements
 i.e. program code
 }
When a program is run, the entry point to the program file is at the beginning of the function
called main.

Hence every program file must have one and only one function called main.
The function main is terminated when either
(a) the last line of code in the function is run
or
(b) a return statement

 return;
is executed in the function main.

The function main is usually referred to as the main function.
Page 60 Main Function

Chapter 3 Functions
3.3 User Defined Functions
As well as the main function, a program file can also contain user defined functions.
Like the main function, user defined functions consist of a header followed by the program code
enclosed in braces.
However the header for a user defined function must include a return type for the function and
the order and variable types for each of the parameters of the function.
Hence each user defined function definition has the form
 return-type function-name(argument declarations)
 {
 declarations and statements
 }
For example, a function called "user_function" which has a return type of Integer and parameters
of type Integer, Real and Element could be:
 Integer user_function (Integer fred, Real joe, Element tom)

 {
 program code
 }

3.4 Return Statement
The return statement in a function is the mechanism for returning a value from the called function
to its caller using the return-type of the function.

The general definition of the return statement is:
 return expression;

For a function with a void return-type (a void function), the expression must be empty. That is, for
a void return-type you can only have return and no expression since no value can be returned.
Thus for a void function the return statement is
 return;

Also for a void function, the function will implicitly return if it reaches the end of the function
without executing a return statement.

The function main is an example of a void function.
For a function with a non-void return-type (a non-void function), the expression after the return
must be of the same type as the return type of the function. Hence any function with a non-void
return-type must have a return statement with the correct expression type.

The calling function is free to ignore the returned value.

Restrictions
Unlike C++, in 12dPL the last statement for a function with a non-void return type must be a
return statement.
Page 61User Defined Functions

12d Model Programming Language Manual
3.5 Array Variables as Function Arguments
Arrays can be used a function arguments.
The declaration of an array variable as a function argument consists of the array variable type
followed by the array name and an empty set of square brackets ([]).
For example, the function

 Integer user_function (Integer fred, Real joe[])
 {
 program code
 }
has a Real array as the second argument.
Page 62 Array Variables as Function Arguments

Chapter 3 Functions
3.6 Function Prototypes
Since all functions and variables must be defined before they are used, then for any user defined
functions either
(a) the function must appear in the file before it is called by another function
or
(b) a prototype of the function must be declared before the function is called.

A function prototype is simply a declaration of a function which specifies:
1. the function name

2. the function return type
and
3. the order and type of all the function parameters.

A function prototype looks like the function header except that it is terminated by a semi-colon
instead of being followed by braces and the function code. Also, the variable names need not be
included in the function prototype.
For example, two prototypes for the function user_function are

 Integer user_function (Integer fred, Real joe, Element tom);
 Integer user_function (Integer, Real, Element);
Thus prototypes are simply a method for defining the return type and the arguments and the
argument types of a function so that the function can be used in a program before the code for
the function has been found in the file.

Notes
(a) The function main and any 12dPL supplied functions do not have to be defined or

prototyped by the user.
(b) A function prototype can occur more than once in a file.
(c) The main function and all the user defined functions must exist in either the one file or be

included from other files using the #include statement.
Page 63Function Prototypes

12d Model Programming Language Manual
3.7 Automatic Promotions
If needed, the following promotions are automatically made in the language:
 From To
 Integer Real
 Real Integer
 Integer64 Real
 Real Integer64
 Integer Integer64
 Integer64 Integer
 Model Dynamic_Element
 Element Dynamic_Element
 Tin Element, Dynamic_Element
 Point Segment
 Line Segment
 Arc Segment
 Vector2 Vector3
 Vector3 Vector4
 Vector3 Vector2
 Vector4 Vector3

These automatic promotions can occur
(a) when looking for functions with matching argument types
or
(b) for converting expressions in a return statement to the correct return-
type required for the function.
Hence in the following example, the variable x is automatically promoted to a Real for use by the
function silly.
 Real silly(Real x) { return(x+1); }
 void main()
 {
 Integer x = 10;
 Real y = silly(x);
 }

For number in binary operation with mixed types, the result would be the one of the higher type,
the type order from lowest to highest is: Integer << Integer64 << Real
For example 6 + 9LL is a 64 bit Integer 15LL 2.0 * 3LL is a Real 6.0

Note that calculation will be overflow but not auto promotion; for example 2048 * 2048 * 2048 will
be an Integer that equal 0 (2 power 33)
Page 64 Automatic Promotions

Chapter 3 Functions
3.8 Passing by Value or by Reference
12dPL follows C++ in that a function argument can be passed "by value" or "by reference".

Passed by Value
If a function argument is passed by value, then calling function only passes a temporary copy of
the variable to the called function. Any modification of this temporary variable inside the called
function will not affect the value of the variable in the calling function.

Hence in passed by value transfer of the argument value is only in one direction - from the
calling function into the called function.
In 12dPL, the default for non-array arguments is passed by value.

Passed by Reference
However it is also possible to pass down the actual variables from the calling function to the
called function. This is termed passed by reference.
If a function argument is passed by reference then any modification made to the passed variable
within the called function will be modifying the original argument in the calling function.

Hence in passed by reference transfer of the argument value is in two directions and any
modifications to the passed variable withing the called function will affect the variable in the
calling function.

To denote that a variable is to be passed by reference, an ampersand (&) is placed after the
type of the argument in the function definition and any function prototypes.

For example, in the function user_function1, the variables fred and tom are to be passed by
value and the variable joe is to be passed by reference. The function code is:
 Integer user_function1 (Integer fred, Real &joe, Element tom)
 {
 program code
 }
Matching prototypes for user_function1:

 Integer user_function1 (Integer fred, Real& joe, Element tom);
 Integer user_function1 (Integer fred, Real &joe, Element tom);
 Integer user_function1 (Integer fred, Real & joe, Element tom);
 Integer user_function1 (Integer, Real&, Element);
 Integer user_function1 (Integer, Real &, Element);

If a called function is to return a value to the calling function via one of its arguments, then the
argument must be passed by reference.

To clarify the difference between passed by value and passed by reference, consider the
following examples:

void bad_square(Integer x) { x = x*x;}// x is passed by value
void main()
{

 Integer x = 10;
 bad_square(x);
 // pass by value
 // x still equals 10
}
void square(Integer &x) { x = x*x;} // x is passed by reference
Page 65Passing by Value or by Reference

12d Model Programming Language Manual
 void main ()
 {
 Integer x = 10;
 square(x);
 // pass by reference

 // x now equals 100
 }

Notes
(a) Fixed arrays are always passed by reference.
(b) In Fortran and Basic, all arguments are "pass by reference"
(c) In C++ and Pascal, arguments can be passed by value or by reference
Page 66 Passing by Value or by Reference

Chapter 3 Functions
3.9 Overloading of Function Names
In 12dPL, if you have a number of functions that have the same name but with a different number
of arguments and/or different argument types, there is no need to give each function a different
name.
As long as the argument numbers or argument types differ in some way, 12dPL will determine
the correct function to call.
For example, three functions called swap have been defined but they are all different because
they have differing argument types.
 void swap(Integer &x,Integer &y) { Integer z = x; x = y; y = z;}
 void swap(Real &x,Real &y) { Real z = x; x = y; y = z;}
 void swap(Text &x,Text &y) { Text z = x; x = y; y = z;}
 void main()
 {
 Integer ix = 1 , iy = 2;
 Real rx = 1.0 , ry = 2; // automatic promotion of 2 to 2.0
 Text tx = "1" , ty = "2";
 swap(ix,iy);
 swap(rx,ry);
 swap(tx,ty);
 }
Note however that in some cases there may be more than one function that can be used. This is
especially true when promotions are required to match the function.
If more than one match is found, the compiler will issue an error and display the functions that
match. If no match is found, the compiler will display all functions which overload the specified
function name.
 void swap(Integer &x,Integer &y) { Integer z = x; x = y;}
 void swap(Real &x,Real &y) { Real z = x; x = y;}
 void swap(Text &x,Text &y) { Text z = x; x = y;}
 void main()
 {
 Integer ix = 1 , iy = 2;
 Real rx = 1 , ry = 2;
 Text tx = "1" , ty = "2";
 swap(ix,ry); // 2 matches
 // swap(Integer &,Integer &)
 // swap(Real &,Real &)
 swap(tx,ry);// no match
 }

An example of overloaded functions is redraw_views in 6.11 Example 6.

WARNING FOR C++ PROGRAMMERS
Since there is no explicit cast operator, the only way to cast is to introduce a temporary variable
and use an assignment. For example, to fix the error in the above example where two matches
occur, assign ry to an intermediate variable.
 Integer iry = ry;
 swap(ix,iry); // ok, it uses swap(Integer &,Integer &)
 Real rix = ix;
 swap(rix,ry); // ok, it uses swap(Real &,Real &)
Page 67Overloading of Function Names

12d Model Programming Language Manual
3.10 Recursion
Recursion for functions is supported.
For example,
 int fib(int n)
 {
 return n < 2 ? 1 : fib(n - 1) + fib(n - 2);
 }
Page 68 Recursion

Chapter 3 Functions
3.11 Assignments Within Function Arguments
In 12dPL, assignments are not allowed within function arguments.
For example, in the following code fragment, y = 10.0 does not assign 10.0 to y.
 Real silly(Real x) { return(x); }
 void main()
 {
 Real y;
 Real z = silly(y=10.0);
 }

To actually assign 10.0 to y, enclose the statement in round brackets (and). That is
 Real z = silly((y=10.0));

assigns 10.0 to y and z.
Assignment within a call argument is being reserved for future use by 12dPL for functions with
named arguments.
Page 69Assignments Within Function Arguments

12d Model Programming Language Manual
3.12 Blocks and Scopes
As noted earlier, a block is a code fragment contained within the characters { and } (braces).
Blocks can be nested. That is, a block may contain one or more sub-blocks. However, blocks
cannot overlap.
Hence a closing brace } is always paired with the closest previous unpaired open brace {.

In the example below, block a is also the function body of main. Blocks b and c are sub-blocks of
block a.

The scope of a name is the region of the program text within which the name's characteristics are
understood.
In 12dPL, there are three kinds of scope: local, function, and global (file).

Local A name declared in a block is local to that block and can be used in the block, and
in any blocks enclosed by the block after the point of declaration of the name.

Function Labels can be used anywhere in the function in which they are declared, Only
labels have function scope.

Global A name declared outside all functions has global (or file) scope and can be used
anywhere after its point of declaration.

In 12dPL, variables with global (file) scope must be declared in an enclosing set
of braces.
There can be more than one global section.

Hence, in the following example

 { Integer an_integer;
 Real a_real;
 Element an_element;

 }
 void main()
 { --*

void main()
{
 Integer a = 1;
 {

 Integer x = 10;
 Print(x+a); Print("\n");
 }

 {

 Real x = 10;
 Print(x+a); Print("\n");
 }
}

block a

block b

block c
Page 70 Blocks and Scopes

Chapter 3 Functions
 fred:Integer a = 1; |
 { --* |
 Integer x = 10; | |

 an_integer = 20; | block b |
 Print(x+a+an_integer);> | |
 Print("\n"); | |

 } --* |
 | block a
 { --* |

 Real x = 10; | block c |
 Print(x+a); Print("\n"); | |

 } --* |
 goto fred; |
 } --*

the variables an_integer, a_real and an_element have global scope and can be used anywhere
in the file after their definition.
The Integer variable "a" has local scope and because of the position in the block, can be used
inside blocks b and c.
The Integer variable "x" is defined in block b and has local scope. It is not usable outside that
block.

The Real variable "x" is defined in block c and has local scope. It is not usable outside that block.

WARNING
A variable name may be hidden by an explicit declaration of that same name in an enclosed
block.
Because of the potential for confusion, it is best to avoid variable names that are the same as a
variables in an outer block.
Page 71Blocks and Scopes

12d Model Programming Language Manual
Page 72 Blocks and Scopes

Chapter 4 Locks
4 Locks
Because 12d Model allows operations to be queued, it is possible that an Element may be
selected at the same time by more that one macro or 12d Model operation.
To prevent data corruptions, locks are automatically used within 12d Model.
When an Element is selected, a lock is placed on the element and later removed when the
element is released.

Any locks on an element will prevent the Element from being deleted or modified until the locks
are removed by the other operations which automatically placed the locks.
If a macro tries to delete a locked Element, a macro exception panel is placed on the screen to
alert the user that the operation is currently prevented because of a lock on the Element.

The panel gives the user the chance to
skip jump over the current macro instruction
retry retry the instruction to see if the Element is still locked

abort stop the macro.
The usual scenario is that when an Element is locked and an exception panel appears on the
screen, the user simply completes the other operations that have locked the Element and then
continue with the macro by selecting the retry button.
Page 73

12d Model Programming Language Manual
Page 74

Chapter 5 12dPL Library Calls
5 12dPL Library Calls
The 12dPL Library Calls section consists of descriptions of all the supplied 12dPL functions and
a number of examples.
For each function, the full function prototype is given
 return-type function-name (function-arguments)

followed by a description of the function.
Note that to be able to return a value for a function argument to the calling routine, the argument
must be passed by reference and hence will have an ampersand (&) in the function prototype.

For example,
 Integer test (Integer fred, Real &joe, Element tom)
specifies a function called test with return type Integer, two arguments, fred and tom, that are
passed by value and one argument, joe, that is passed by reference and hence capable of
returning a value from the function.

See

5.1 Creating a List of Prototypes
5.2 Function Argument Promotions
5.3 Function Return Codes
5.4 Command Line-Arguments
5.5 Array Bound Checking
5.6 Exit
5.7 Angles
5.8 Text
5.9 Textstyle Data
5.10 Maths
5.11 Random Numbers
5.12 Vectors and Matrices
5.13 Triangles
5.14 System
5.15 Ids, Uids and Guids
5.16 Input/Output
5.17 Menus
5.18 Dynamic Arrays
5.19 Points
5.20 Lines
5.21 Arcs
5.22 Spirals and Transitions
5.23 Parabolas
5.24 Segments
5.25 Curve
5.26 Segment Geometry
5.27 Colours
5.28 User Defined Attributes
Page 75

12d Model Programming Language Manual
5.29 Folders
5.30 12d Model Program and Folders
5.31 Control bar
5.32 Project
5.33 Models
5.34 Views
5.35 Elements
5.36 Tin Element
5.37 Super String Element
5.38 Examples of Setting Up Super Strings
5.39 Super Alignment String Element
5.40 Arc String Element
5.41 Circle String Element
5.42 Text String Element
5.43 Pipeline String Element
5.44 Drainage String Element
5.45 Feature String Element
5.46 Interface String Element
5.47 Grid String and Grid Tin Element
5.48 Face String Element
5.49 Drafting Elements
5.50 Trimesh Element
5.51 Plot Frame Element
5.52 Strings Replaced by Super Strings
5.53 Alignment String Element
5.54 General Element Operations
5.55 Creating Valid Names
5.56 XML
5.57 Map File
5.59 Macro Console
5.60 Panels and Widgets
5.61 General
5.62 Utilities
5.63 12d Model Macro_Functions
5.64 Plot Parameters
5.65 Undos
5.66 ODBC Macro Calls
5.67 12D Synergy Intergation Macro Calls
Page 76

Chapter 5 12dPL Library Calls
5.1 Creating a List of Prototypes
The 12dPL compiler is a program called cc4d that is installed in nt.x64 and nt.x32 (see (b)
Compiling from Outside 12d Model).
cc4d can also be used to generate a list of prototypes for all the supplied 12dPL Library calls as
both a text list and as an XML version.
To generate the list of prototypes use:

 cc4d -list prototype_list_file_name

For example, type in
(a) when running a 64-bit 12d.exe on a 64-bit Microsoft Windows Operating System
 "C:\Program Files\12d\12dmodel\10.00\nt.x64\cc4d" -list prototypes.4d

(b) or when running a 32-bit 12d.exe on a 32-bit Microsoft Windows OS.
 "C:\Program Files\12d\12dmodel\10.00\nt.x86\cc4d" -list prototypes.4d

(c) or when running a 32-bit 12d.exe on a 64-bit Microsoft Windows OS.
 "C:\Program Files (x86)\12d\12dmodel\10.00\nt.x86\cc4d" -list prototypes.4d

Each function prototype has a unique number called a Library Identity (Library Id). The Library Id
is an integer starting at 1 and is incremented by 1 whenever a new function call is added to the
12dPL Library. The function prototypes are written out in Library Id order so the newest function
calls will be at the bottom of the list.

5.2 Function Argument Promotions
Because 12dPL has automatic variable type promotions and function overloading, many of the
12dPL functions apply to a wider range of cases than the function definition may at first imply.
For example, because Model will promote to a Dynamic_Element, the Triangulate function
Integer Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer preserve,
 Integer bubbles,Tin &tin)

also covers the case where a Model is used in place of the Dynamic_Element de.
That is, the function definition automatically includes the case
Integer Triangulate(Model model,Text tin_name,Integer tin_colour,Integer preserve,
 Integer bubbles,Tin &tin)

5.2.1 Automatic Promotions
The 12dPL automatic promotions are
 From To
 Integer Real
 Real Integer
 Integer64 Real
 Real Integer64
 Integer Integer64
 Integer64 Integer
 Model Dynamic_Element
Page 77Creating a List of Prototypes

12d Model Programming Language Manual
 Element Dynamic_Element
 Tin Element, Dynamic_Element
 Point Segment
 Line Segment
 Arc Segment
 Vector2 Vector3
 Vector3 Vector4
 Vector3 Vector2
 Vector4 Vector3
These automatic promotions can occur
(a) when looking for functions with matching argument types
or
(b) for converting expressions in a return statement to the correct return-
type required for the function.
Hence in the following example, the variable x is automatically promoted to a Real for use by the
function silly.

 Real silly(Real x) { return(x+1); }
 void main()
 {
 Integer x = 10;
 Real y = silly(x);
 }

For number in binary operation with mixed types, the result would be the one of the higher type,
the type order from lowest to highest is: Integer << Integer64 << Real
For example 6 + 9LL is a 64 bit Integer 15LL 2.0 * 3LL is a Real 6.0

Note that calculation will be overflow but not auto promotion; for example 2048 * 2048 * 2048 will
be an Integer that equal 0 (2 power 33)
Page 78 Function Argument Promotions

Chapter 5 12dPL Library Calls
5.3 Function Return Codes
Many of the 12dPL functions have an Integer function return code that is used as an error code.
For most functions, the function return code is
 zero if there were no errors when executing the function

and
 non-zero if an error occurs.
This choice is to allow for future reporting of different types of errors for the function.

The only exceptions to this rule are the existence routines such as:
File_exists, Colour_exists, Model_exists, Element_exists, Tin_exists, View_exists,
Template_exists, Match_name and Is_null.

They return
 a non-zero value if the object exists
and

 a zero value if the object does not exist.
This is to allow the existence functions to be used as logical expressions that are true if the
object exists. For example
 if(File_exists("data.dat")) {

 ...
 }
Page 79Function Return Codes

12d Model Programming Language Manual
5.4 Command Line-Arguments
When a 12d Model program is invoked, command-line arguments (parameters) can be passed
down and accessed from within the program.
The command-line information is simply typed into the macro arguments field of the macro run
panel.
The command-line is automatically broken into space separated tokens which can be accessed
from within the program.

For example, if the macro arguments panel field contained
 three "space separated" tokens
then the three tokens

 "three", "spaced separated" and "tokens"
would be accessible inside the program.
As an example of how to use the command line argument calls:

Integer argc = Get_number_of_command_arguments();
if(argc > 0) {
 Text arg;
 Get_command_argument(1,arg);
 if(arg == "-function_recalc") {
 . . .

Get_number_of_command_arguements()
Name
Integer Get_number_of_command_arguments()

Description
Get the number of tokens in the program command-line.

The number of tokens is returned as the function return value.

For some example code, see 5.4 Command Line-Arguments.

ID = 432

Get_command_argument(Integer i,Text &argument)
Name
Integer Get_command_argument(Integer i,Text &argument)

Description
Get the i’th token from the command-line.

The token is returned by the Text argument.
The arguments start from 1.
A function return value of zero indicates the i’th argument was successfully returned.

For some example code, see 5.4 Command Line-Arguments.
ID = 433
Page 80 Command Line-Arguments

Chapter 5 12dPL Library Calls
5.5 Array Bound Checking
A programming error that is often difficult to find is when an array is called with a index that is
outside the defined range of the array indices.
For example, the Integer array i_array defined by:

Integer i_array[100]

only exists for indices 1 to 100.
That is, only i_array[1], i_array[2], ..., i_array[99], i_array[100] are valid.
Using i_array[101] or i_array[0] will cause problems.

To help overcome this problem, the 12dPL compiler has full array checking. That is, passing in
an invalid array index will result in the program terminating with an error message written to the
Output Window giving the line number where the overrun occurs, the actual size of the array and
the index that was passed into the array.

For example

line: 1234 : stack array bounds error - size=10 index=12 array_base=1
Page 81Array Bound Checking

12d Model Programming Language Manual
5.6 Exit
12dPL program functions are normally terminated by a return statement or by reaching the
closing bracket of the function with void function return type.
In the case of the main function, the program simply terminates.
For other user defined functions, control passes back to the calling function which then continues
to execute.

However, 12dPL also has special exit routines that will immediately stop the execution of the
program and write a message to the macro console panel. The exit functions are

Exit(Integer exit_code)
Name
void Exit(Integer exit_code)

Description
Immediately exit the program and write the message
 macro exited with code exit_code
to the information/error message area of the macro console panel.
ID = 417

Exit(Text msg)
Name
void Exit(Text msg)

Description
Immediately exit the program and write the message
 macro exited with message msg
to the information/error message area of the macro console panel.
ID = 418

Destroy_on_exit()
Name
void Destroy_on_exit()

Description
Destroy current macro console panel when exit the program.
ID = 815

Retain_on_exit()
Name
void Retain_on_exit()

Description
Retain current macro console panel on the screen after exit the macro.
ID = 816
Page 82 Exit

Chapter 5 12dPL Library Calls
5.7 Angles

5.7.1 Pi
The value of pi is commonly used in geometric macros so functions are provided to return the
value of pi, pi/2 and 2*pi.
The functions are

Real Pi() the value of pi
ID = 192

Real Half_pi() the value of half pi
ID = 193
Real Two_pi() the value of 2 * pi

ID = 194

5.7.2 Types of Angles
In 12dPL, the following definitions for the measurement of angles are used:
angle angles are measured in an anti-clockwise direction from the horizontal axis.
The units for angles are radians.

sweep angle used for arcs - measured in a clockwise direction from the line joining the
centre to the arc start point. The units for sweep angles are radians.
bearing bearings are measured in a clockwise direction from the vertical axis
(north). The units for bearings are radians.
degrees degrees refers to decimal degrees

dms refers to degrees, minutes and seconds.
hp_degrees refers to degrees, minutes and seconds but using the notation ddd.mmssfff
where
 ddd are the whole degrees

 . separator between degrees and minutes
 mm whole minutes
 ss whole seconds

 fff fractions of seconds (as many as needed)
In 12dPL, functions are provided to convert between the different angle types.
The return type for each of the functions is Integer and the return value is an error indicator.
If the return value is zero, the function call was successful.
If the return value is non-zero, an error occurred.
 Integer Radians_to_degrees(Real rad,Real °)

 ID = 203
Integer Degrees_to_radians(Real deg,Real &rad)
 ID = 204

Integer Radians_to_hp_degrees(Real rad,Real &hp_deg)
 ID = 205
Page 83Angles

12d Model Programming Language Manual
Integer Hp_degrees_to_radians(Real hp_deg,Real &rad)
 ID = 206
Integer Degrees_to_hp_degrees(Real deg,Real &hp_deg)

 ID = 207
Integer Hp_degrees_to_degrees(Real hp_deg,Real °)
 ID = 208

Integer Degrees_to_dms(Real deg,Integer &dd,Integer &mm,Real &ss)
 ID = 209
Integer Dms_to_degrees(Integer dd,Integer mm,Real ss,Real °)

 ID = 210
Integer Angle_to_bearing(Real angle,Real &bearing)
 ID = 211

Integer Bearing_to_angle(Real bearing,Real &angle)
ID = 212
Page 84 Angles

Chapter 5 12dPL Library Calls
5.8 Text
A Text variable text consists of zero or more characters (spaces or blanks are valid characters).
The length of a Text is the total number of characters including any leading, trailing and
embedded spaces. For example, the length of " fr ed " is seven.
Each character in the Text has a unique position or index which is defined to be the number of
characters plus one that it is from the start of the Text. For example in " fr ed ", the index or
position of "e" is five.

Hence parts of a Text (sub-Texts) can be easily referred to by giving the start and end positions of
the part. For example, the sub-Text from start position three to end position five of " fr ed " is "r e".
12dPL provides functions to construct Texts and also work with parts of a Texts (sub-Text).

5.8.1 Text and Operators
The operators + += < > >= <= == != can be used with Text variables.

The + operator for Text variables means that the variables are concatenated. For example, after
 Text new = "fred" + "joe";
the value of new is "fredjoe".

When Text is used in equalities and inequalities such as <, <=, >, >= and ==, the ASCII sorting
sequence value is used for the Text comparisons.

5.8.2 General Text
Text_length(Text text)
Name
Integer Text_length(Text text)

Description
The function return value is the length of the Text text.
ID = 381

Numchr(Text text)
Name
Integer Numchr(Text text)

Description
The function return value is the position of the last non-blank character in the Text text.
If there are no non-blank characters, the return value is zero.
ID = 478

Text_upper(Text text)
Name
Text Text_upper(Text text)

Description
Create a Text from the Text text that has all the alphabetic characters converted to upper
Page 85Text

12d Model Programming Language Manual
-case.
The function return value is the upper case Text.
ID = 383

Text_lower(Text text)
Name
Text Text_lower(Text text)

Description
Create a Text from the Text text that has all the alphabetic characters converted to lower-
case.

The function return value is the lower case Text.
ID = 384

Text_justify(Text text)
Name
Text Text_justify(Text text)

Description
Create a Text from the Text text that has all the leading and trailing spaces removed.
The function return value is the justified Text.

ID = 382

Find_text(Text text,Text tofind)
Name
Integer Find_text(Text text,Text tofind)

Description
Find the first occurrence of the Text tofind within the Text text.
If tofind exists within text, the start position of tofind is returned as the function return value.
If tofind does not exist within text, a start position of zero is returned as the function return value.
Hence a function return value of zero indicates the Text tofind does not exist within the Text
text.
ID = 380

Get_subtext(Text text,Integer start,Integer end)
Name
Text Get_subtext(Text text,Integer start,Integer end)

Description
From the Text text, create a new Text from character position start to character position end
inclusive.

The function return value is the sub-Text.
ID = 379
Page 86 Text

Chapter 5 12dPL Library Calls
Set_subtext(Text &text,Integer start,Text sub)
Name
void Set_subtext(Text &text,Integer start,Text sub)

Description
Set the Text text from character position start to be the Text sub. The existing characters of text
are overwritten by sub.
If required, Text text will be automatically extended to fit sub.

If start is greater than the length of text, text will be extended with spaces and sub inserted at
position start.
There is no function return value.

ID = 389

Insert_text(Text &text,Integer start,Text sub)
Name
void Insert_text(Text &text,Integer start,Text sub)

Description
Insert the Text sub into Text text starting at position start. The displaced characters of text are
placed after sub.

The Text text is automatically extended to fit sub and no characters of text are lost.
There is no function return value.
ID = 390

Any_escape_characters(Text text)
Name
Integer Any_escape_characters(Text text)

Description
Return one if the Text text contain any escape characters; i.e a backslash character followed by
the character n, r, or t. Return zero otherwise.
ID = 2809

Convert_escape_characters(Text text)
Name
Text Convert_escape_characters(Text text)

Description
Convert all escape characters in the Text text; i.e a backslash character followed by the
character n, r, or t; to the equivalent embedded characters i.e new line, return, tab.
The converted Text is the returned result of the function call.

ID = 2810
Page 87Text

12d Model Programming Language Manual
5.8.3 Text Conversion
From_text(Text text, Integer &value)
Name
Integer From_text(Text text, Integer &value)

Description
Convert the Text text to an Integer value. The text should only include digits.

The function return value is zero if the conversion is successful.
 ID = 30

From_text(Text text, Integer &value,Text format)
Name
Integer From_text(Text text, Integer &value,Text format)

Description
Convert the Text text to an Integer value using the Text format as a C++ format string.
The function return value is zero if the conversion is successful.
Warning

The user is responsible for ensuring that the format string is sensible.
 ID = 387

From_text(Text text, Integer64 &value)
Name
Integer From_text(Text text, Integer64 &value)

Description
Convert the Text text to a 64 bit Integer value. The text should only include digits.
The function return value is zero if the conversion is successful.

 ID = 3437

From_text(Text text, Integer64 &value,Text format)
Name
Integer From_text(Text text, Integer64 &value,Text format)

Description
Convert the Text text to a 64 bit Integer value using the Text format as a C++ format string.

The function return value is zero if the conversion is successful.
Warning
The user is responsible for ensuring that the format string is sensible.

 ID = 3438

From_text(Text text, Real &value)
Name
Page 88 Text

Chapter 5 12dPL Library Calls
Integer From_text(Text text, Real &value)

Description
Convert the Text text to a Real value.

The function return value is zero if the conversion is successful.
ID = 31

From_text(Text text, Real &value,Text format)
Name
Integer From_text(Text text, Real &value,Text format)

Description
Convert the Text text to a Real value using the Text format as a C++ format string.
The function return value is zero if the conversion is successful.

Warning
The user is responsible for ensuring that the format string is sensible.
ID = 388

From_text(Text text, Guid &value)
Name
Integer From_text(Text text, Guid &value)

Description
Convert the Text text to a Guid value.
The function return value is zero if the conversion is successful.

ID = 3440

From_text(Text text, Attribute_Blob &value)
Name
Integer From_text(Text text, Attribute_Blob &value)

Description
Convert the Text text to an Attribute_Blob value.

The function return value is zero if the conversion is successful.
ID = 3442

From_text(Text text,Text &value,Text format)
Name
Integer From_text(Text text,Text &value,Text format)

Description
Convert the Text text to a Text value using the Text format as a C++ format.
The function return value is zero if the conversion is successful.

Warning
Page 89Text

12d Model Programming Language Manual

Pa
The user is responsible for ensuring that the format string is sensible.
ID = 392

From_text(Text text,Dynamic_Text &dtext)
Name
Integer From_text(Text text,Dynamic_Text &dtext)

Description
Break the Text text into separate words (tokens) and add the individual words to the
Dynamic_Text dtext.
Free format is used to break text up individual words EXCEPT for characters between matching
double quotes ".
Hence any characters (including blanks) between matching double quotes are considered to be
one word, and one or more spaces are the separators between individual words.

For example, in
This is "an example"

there are three words - "This", "is", and "an example".

Note that there is more than one space between "This" and "is" but they are ignored and taken to
be only one space.
The function return value is the number of words returned in dtext.
ID = 377

From_text(Text text,Integer delimiter,Integer separator,Dynamic_Text &text)
Name
Integer From_text(Text text,Integer delimiter,Integer separator,Dynamic_Text &text)

Description
Break the Text text into separate words (tokens) and add the individual words to the
Dynamic_Text dtext.
The character used to break up the text into individual words is given by the Integer separator.
Any characters between matching the character given by the Integer delimiter (including any
characters equal to separator) are considered to be one word.
For example, if the delimiter is double quotes " and the separator is a semi-colon ; then

This;is;"an;example"
has three words - "this", "is", and "an;example".
Note: delimiter and separator are Integers and can be specified by the actual number of a
character or by giving the actual character between single quotes.

For example,
 separator = 32 is the number for a space
 separator = ’ ’ is the number for a space

 separator = ’a’ will be the number for the letter a
 separator = ’\t’ will be the number for a tab

The function return value is the number of words returned in dtext.
ge 90 Text

Chapter 5 12dPL Library Calls
 ID = 2105

To_text(Integer value)
Name
Text To_text(Integer value)

Description
Convert the Integer value to text.
The function return value is the converted value.

ID = 32

To_text(Integer value,Text format)
Name
Text To_text(Integer value,Text format)

Description
Convert the Integer value to text using the Text format as a C++ format string.

The function return value is the converted value.
Warning
The user is responsible for ensuring that the format string is sensible.

 ID = 385

To_text(Real value,Integer no_dec)
Name
Text To_text(Real value,Integer no_dec)

Description
Convert the Real value to text with no_dec decimal places.

If the Integer argument no_dec is missing, the number of decimal places defaults to zero.
The function return value is the converted value.
ID = 33

To_text(Real value,Text format)
Name
Text To_text(Real value,Text format)

Description
Convert the Real value to text using the Text format as a C++ format string.
The function return value is the converted value.

Warning
The user is responsible for ensuring that the format string is sensible.

ID = 386
Page 91Text

12d Model Programming Language Manual
To_text(Real value)
Name
Text To_text(Real value)

Description
Convert the Real value to text after truncated to nearest Integer.
The function return value is the converted value.

ID = 3560

To_text(Text text,Text format)
Name
Text To_text(Text text,Text format)

Description
Convert the Text text to text using the Text format as a C++ format string.

The function return value is the converted value.
Warning
The user is responsible for ensuring that the format string is sensible.

ID = 391

To_text(Guid value)
Name
Text To_text(Guid value)

Description
Convert the Guid value to text.
The function return value is the converted value.
ID = 3439

To_text(Attribute_Blob value)
Name
Text To_text(Attribute_Blob value)

Description
Convert the Attribute_Blob value to text.
The function return value is the converted value.

ID = 3441

Get_char(Text t,Integer pos,Integer &c)
Name
Integer Get_char(Text t,Integer pos,Integer &c)

Description
Page 92 Text

Chapter 5 12dPL Library Calls
Get a character from Text t. The position of the character is pos.
The character is returned in the Integer c.
The function return value of zero indicates the character returned successfully.

 ID = 829

Set_char(Text &t,Integer n,Integer c)
Name
Integer Set_char(Text &t,Integer n,Integer c)

Description
Set the nth position (where position starts at 1 for the first character) in the Text t to the character
given by integer c. Note that ’c’ can be used to specify the number corresponding to the letter c.
A function return value of zero indicates the Text character is successfully set.
ID = 830

To_text(Integer64 value)
Name
Text To_text(Integer64 value)

Description
Convert the 64 bit Integer value to text.
The function return value is the converted value.

ID = 3435

To_text(Integer64 value,Text format)
Name
Text To_text(Integer64 value,Text format)

Description
Convert the 64 bit Integer value to text using the Text format as a C++ format string.

The function return value is the converted value.
Warning
The user is responsible for ensuring that the format string is sensible.

 ID = 3436
Page 93Text

12d Model Programming Language Manual
5.9 Textstyle Data
Text is part of many 12d Model elements and there are a large number of properties for the text
such as the text colour, size, angle, whiteout etc.
Instead of having separate variables for all of these, a Textstyle_Data has been introduced to
hold all the Text variables.
One major benefit of the Textstyle_Data is that in the future, extra variables can be added to the
Textstyle_Data structure and the variables are then immediately available everywhere a
Textstyle_Data structure is used.

The current variables contained in the Textstyle_Data structure, which may or may not be used,
are:

the text itself, text style, colour, height, offset, raise, justification, angle, slant, xfactor, italic,
strikeout, underlines, weight, whiteout, border and a name.

Text strings have a height (size) which can be measured in either world units or pixels, a direction
of the text (text angle), a justification point defined by an offset distance and a rise distance and a
justification.
For text other than segment text, the justification point and the direction of the text are
defined by:
(a) the direction of the text is given as a counter clockwise angle of rotation (measured from the

x-axis) about the vertex (default 0) of the text. The units for angle is radians.

(b) the justification point is given as an offset from the vertex along the line through the vertex
with the direction of the text, and a perpendicular distance (called the raise) from that offset
point to the justification point (default 0).

The vertex and justification point only coincide if the offset and raise values are both zero.
The height (size) of the text, and the offset and raise are specified in either world units or pixels
and the units are given by an Integer where
 0 for pixel units (the default)
 1 for world units
 2 for paper units (millimetres)

For standard text, the justification point (default 1) can be one of nine positions defined in relation
to the text of the Text string:

top
3 6 9

left 2 5 8 right
1 4 7

bottom

Fred

.position of
text vertex

the position of the
text justification
point for the text

angle

offset raise angle, offset and raise
from the text vertex

is defined by the

Text

line giving the direction
of the text
Page 94 Textstyle Data

Chapter 5 12dPL Library Calls
For numbers with a decimal point, the position of the decimal point gives an addition point on the
bottom called decimal x and on the side called decimal y.
 10 decimal-point
 11 top-decimal

 12 middle-decimal
 13 bottom-decimal
 14 decimal-left

 15 decimal-centre
 16 decimal-right
So there are sixteen possible justification for numbers.

The box that encloses the text can be coloured in (filled), and given a coloured border. If the
colour to fill the box is VIEW_COLOUR, then the fill colour is what ever the view background
colour for whatever view that the text is on.
There are four different styles for the border of the text. They are given by an Integer where

 1 for rectangle (the default)
 2 for circle
 3 for capsule
 4 for bevel

Also true type fonts text can have: weight; underline; italic; strikeout; and outline.
For the list of allowable weights, go to Allowable Weights
Page 95Textstyle Data

12d Model Programming Language Manual
The following functions are used to get and set the variables of a Textstyle_Data.

Null(Textstyle_Data textdata)
Name
Integer Null(Textstyle_Data textdata)

Description

black view colour

white view colour off yellow view colour

text with no fill

text with a yellow fill
and an orange border

text with "view colour" fill
and an orange border

and no border strikeout

underlined

italic

outline
Page 96 Textstyle Data

Chapter 5 12dPL Library Calls
Set the Textstyle_Data textdata to null.
A function return value of zero indicates the textdata was successfully nulled.
ID = 1639

Null(Textstyle_Data textdata,Integer mode)
Name
Integer Null(Textstyle_Data textdata,Integer mode)

Description
Various fields of a Textstyle_Data can be turned of so they won’t display (and so can’t be set) in a
Textstyle_Data pop-up.

To turn off the Textstyle_Data fields, the Null(Textstyle_Data textdata,Integer mode) call is made with
mode giving what fields are to be turned off.
The values of mode and the Textstyle_Data field that they turn off are:
 Textstyle_Data_Textstyle = 0x00001,

 Textstyle_Data_Colour = 0x00002,
 Textstyle_Data_Type = 0x00004,
 Textstyle_Data_Size = 0x00008,

 Textstyle_Data_Offset = 0x00010,
 Textstyle_Data_Raise = 0x00020,
 Textstyle_Data_Justify_X = 0x00040,

 Textstyle_Data_Justify_Y = 0x00080,
 Textstyle_Data_Angle = 0x00100,
 Textstyle_Data_Slant = 0x00200,

 Textstyle_Data_X_Factor = 0x00400,
 Textstyle_Data_Name = 0x00800,
 Textstyle_Data_Underline = 0x01000,

 Textstyle_Data_Strikeout = 0x02000,
 Textstyle_Data_Italic = 0x04000,
 Textstyle_Data_Weight = 0x08000,

 Textstyle_Data_Whiteout = 0x10000,
 Textstyle_Data_Border = 0x20000,
 Textstyle_Data_Outline = 0x40000,

 Textstyle_Data_Border_Style = 0x80000,
 Textstyle_Data_All = 0xfffff,
Note: the fields can be turned off one at a time by calling Null(Textstyle_Data textdata,Integer mode)
a number of times, and/or more that one can be turned off at the one time by combining them
with the logical OR operator "|".

For example,
 Textstyle_Data_Offset | Textstyle_Data_Raise
will turn off both the fields Textstyle_Data_Offset and Textstyle_Data_Raise.

A function return value of zero indicates the parts of the Textstyle_Data were successfully nulled.
Page 97Textstyle Data

12d Model Programming Language Manual
ID = 1640

Set_data(Textstyle_Data textdata,Text text_data)
Name
Integer Set_data(Textstyle_Data textdata,Text text_data)

Description
Set the data of type Text for the Textstyle_Data text to text_data.

A function return value of zero indicates the data was successfully set.
ID = 2163

Get_data(Textstyle_Data textstyle,Text &text_data)
Name
Integer Get_data(Textstyle_Data textstyle,Text &text_data)

Description
Get the data of type Text from the Textstyle_Data textstyle and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 2162

Set_textstyle(Textstyle_Data textdata,Text style)
Name
Integer Set_textstyle(Textstyle_Data textdata,Text style)

Description
For the Textstyle_Data textdata, set the textstyle to style.

A function return value of zero indicates the textstyle was successfully set.
ID = 1652

Get_textstyle(Textstyle_Data textdata,Text &style)
Name
Integer Get_textstyle(Textstyle_Data textdata,Text &style)

Description
From the Textstyle_Data textdata, get the style and return it in style.
A function return value of zero indicates the style was successfully returned.
ID = 1641

Set_colour(Textstyle_Data textdata,Integer colour_num)
Name
Integer Set_colour(Textstyle_Data textdata,Integer colour_num)

Description
For the Textstyle_Data textdata, set the colour number to be colour_num.
Page 98 Textstyle Data

Chapter 5 12dPL Library Calls
A function return value of zero indicates the colour number was successfully set.
ID = 1653

Get_colour(Textstyle_Data textdata,Integer &colour_num)
Name
Integer Get_colour(Textstyle_Data textdata,Integer &colour_num)

Description
From the Textstyle_Data textdata, get the colour number and return it in colour_num.
A function return value of zero indicates the colour number was successfully returned.

ID = 1642

Set_text_type(Textstyle_Data textdata,Integer type)
Name
Integer Set_text_type(Textstyle_Data textdata,Integer type)

Description
For the Textstyle_Data textdata, set the units (pixel, world, paper) of the Textstyle_Data to be
given by the Integer type.

For the value for each type of units, see 5.9 Textstyle Data. The default units is pixel (type = 0).
A function return value of zero indicates the text units was successfully set.
ID = 1654

Get_text_type(Textstyle_Data textdata,Integer &type)
Name
Integer Get_text_type(Textstyle_Data textdata,Integer &type)

Description
For the Textstyle_Data textdata, get the units (pixel, world, paper) of the Textstyle_Data and
return the value in type.
For the values of type, see 5.9 Textstyle Data. The default units is pixel (type = 0).

If the field is not set then the function return value is 1.
A function return value of zero indicates the text units was successfully returned.
ID = 1643

Set_size(Textstyle_Data textdata,Real height)
Name
Integer Set_size(Textstyle_Data textdata,Real height)

Description
For the Textstyle_Data textdata, set the height to be height.
A function return value of zero indicates the height was successfully set.

ID = 1655
Page 99Textstyle Data

12d Model Programming Language Manual
Get_size(Textstyle_Data textdata,Real &height)
Name
Integer Get_size(Textstyle_Data textdata,Real &height)

Description
From the Textstyle_Data textdata, get the height and return it in height.
A function return value of zero indicates the height was successfully returned.
ID = 1644

Set_offset(Textstyle_Data textdata,Real offset)
Name
Integer Set_offset(Textstyle_Data textdata,Real offset)

Description
For the Textstyle_Data textdata, set the offset to be offset.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the offset was successfully set.

ID = 1656

Get_offset(Textstyle_Data textdata,Real &offset)
Name
Integer Get_offset(Textstyle_Data textdata,Real &offset)

Description
From the Textstyle_Data textdata, get the offset and return it in offset.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the offset was successfully returned.

ID = 1645

Set_raise(Textstyle_Data textdata,Real raise)
Name
Integer Set_raise(Textstyle_Data textdata,Real raise)

Description
For the Textstyle_Data textdata, set the raise to be raise.

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the raise was successfully set.
ID = 1657

Get_raise(Textstyle_Data textdata,Real &raise)
Name
Integer Get_raise(Textstyle_Data textdata,Real &raise)

Description
Page 100 Textstyle Data

Chapter 5 12dPL Library Calls
From the Textstyle_Data textdata, get the raise and return it in raise.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the raise was successfully returned.

ID = 1646

Set_justify(Textstyle_Data textdata,Integer justify)
Name
Integer Set_justify(Textstyle_Data textdata,Integer justify)

Description
For the Textstyle_Data textdata, set the justification number to be justify.
justify can have the value 1 to 9. For the meaning of the values for justify, see 5.9 Textstyle
Data.
A function return value of zero indicates the justification number was successfully set.

ID = 1658

Get_justify(Textstyle_Data textdata,Integer &justify)
Name
Integer Get_justify(Textstyle_Data textdata,Integer &justify)

Description
From the Textstyle_Data textdata, get the justification number and return it in justify.

justify can have the value 1 to 9. For the meaning of the values for justify, see 5.9 Textstyle
Data.
A function return value of zero indicates the justification number was successfully returned.
ID = 1647

Set_angle(Textstyle_Data textdata,Real angle)
Name
Integer Set_angle(Textstyle_Data textdata,Real angle)

Description
For the Textstyle_Data textdata, set the angle to be angle.
angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the angle was successfully set.
ID = 1659

Get_angle(Textstyle_Data textdata,Real &angle)
Name
Integer Get_angle(Textstyle_Data textdata,Real &angle)

Description
From the Textstyle_Data textdata, get the angle and return it in angle.
Page 101Textstyle Data

12d Model Programming Language Manual
angle is in radians and is measured in a counterclockwise direction from the positive x-axis.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the angle was successfully returned.

ID = 1648

Set_angle2(Textstyle_Data textdata,Real angle2)
Name
Integer Set_angle2(Textstyle_Data textdata,Real angle2)

Description
For the Textstyle_Data textdata, set the 3D beta angle to be angle2.

angle2 is in radians.
A function return value of zero indicates the angle was successfully set.
ID = 3564

Get_angle2(Textstyle_Data textdata,Real &angle2)
Name
Integer Get_angle2(Textstyle_Data textdata,Real &angle2)

Description
From the Textstyle_Data textdata, get the 3D beta angle and return it in angle2.

angle2 is in radians.
A function return value of zero indicates the angle was successfully returned.
ID = 3565

Set_angle3(Textstyle_Data textdata,Real angle3)
Name
Integer Set_angle3(Textstyle_Data textdata,Real angle3)

Description
For the Textstyle_Data textdata, set the 3D gamma angle to be angle3.
angle3 is in radians.

A function return value of zero indicates the angle was successfully set.
ID = 3566

Get_angle3(Textstyle_Data textdata,Real &angle3)
Name
Integer Get_angle3(Textstyle_Data textdata,Real &angle3)

Description
From the Textstyle_Data textdata, get the 3D gamma angle and return it in angle3.
angle3 is in radians.
A function return value of zero indicates the angle was successfully returned.
Page 102 Textstyle Data

Chapter 5 12dPL Library Calls
ID = 3567

Set_slant(Textstyle_Data textdata,Real slant)
Name
Integer Set_slant(Textstyle_Data textdata,Real slant)

Description
For the Textstyle_Data textdata, set the slant to be slant.
A function return value of zero indicates the slant was successfully set.
ID = 1660

Get_slant(Textstyle_Data textdata,Real &slant)
Name
Integer Get_slant(Textstyle_Data textdata,Real &slant)

Description
From the Textstyle_Data textdata, get the slant of the textstyle and return it in slant.
A function return value of zero indicates the textstyle was successfully returned.

ID = 1649

Set_x_factor(Textstyle_Data textdata,Real xfactor)
Name
Integer Set_x_factor(Textstyle_Data textdata,Real xfactor)

Description
For the Textstyle_Data textdata, set the xfactor to be xfactor.
A function return value of zero indicates the xfactor was successfully set.
ID = 1661

Get_x_factor(Textstyle_Data textdata,Real &xfactor)
Name
Integer Get_x_factor(Textstyle_Data textdata,Real &xfactor)

Description
From the Textstyle_Data textdata, get the xfactor and return it in xfactor.
A function return value of zero indicates the xfactor was successfully returned.
ID = 1650

Set_name(Textstyle_Data textdata,Text name)
Name
Integer Set_name(Textstyle_Data textdata,Text name)

Description
For the Textstyle_Data textdata, set the name to be name.
Page 103Textstyle Data

12d Model Programming Language Manual
A function return value of zero indicates the name was successfully set.
ID = 1662

Get_name(Textstyle_Data textdata,Text &name)
Name
Integer Get_name(Textstyle_Data textdata,Text &name)

Description
From the Textstyle_Data textdata, get the name of the Textstyle_Data and return it in name.
A function return value of zero indicates the name was successfully returned.
ID = 1651

Set_whiteout(Textstyle_Data textdata,Integer colour)
Name
Integer Set_whiteout(Textstyle_Data textdata,Integer colour)

Description
For the Textstyle_Data textdata, set the colour number of the colour used for the whiteout box
around the text, to be colour.
If no text whiteout is required, then set the colour number to NO_COLOUR.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the colour number was successfully set.
 ID = 2753

Get_whiteout(Textstyle_Data textdata,Integer &colour)
Name
Integer Get_whiteout(Textstyle_Data textdata,Integer &colour)

Description
For the Textstyle_Data textdata, get the colour number that is used for the whiteout box around
the text. The whiteout colour is returned as Integer colour.
NO_COLOUR is the returned as the colour number if whiteout is not being used.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully returned.
ID = 2754

Set_border(Textstyle_Data textdata,Integer colour)
Name
Integer Set_border(Textstyle_Data textdata,Integer colour)

Description
For the Textstyle_Data textdata, set the colour number of the colour used for the border of the
Page 104 Textstyle Data

Chapter 5 12dPL Library Calls
whiteout box around the text, to be colour.
If no whiteout border is required, then set the colour number to NO_COLOUR.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully set.
ID = 2763

Get_border(Textstyle_Data textdata,Integer &colour)
Name
Integer Get_border(Textstyle_Data textdata,Integer &colour)

Description
For the Textstyle_Data textdata, get the colour number that is used for the border of the whiteout
box around the text. The whiteout border colour is returned as Integer colour.
NO_COLOUR is the returned as the colour number if there is no whiteout border.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the colour number was successfully returned.
ID = 2764

Set_border_style(Textstyle_Data textdata,Integer border_style)
Name
Integer Set_border_style(Textstyle_Data textdata,Integer border_style)

Description
For the Textstyle_Data textdata, set the border style to be border_style.
border_style can have the value 1 to 4. For the meaning of the values for border_style, see 5.9
Textstyle Data.
A return value of zero indicates the function call was successful.

ID = 3138

Get_border_style(Textstyle_Data textdata,Integer &border_style)
Name
Integer Get_border_style(Textstyle_Data textdata,Integer &border_style)

Description
For the Textstyle_Data textdata, return the value border style in border_style.

border_style can have the value 1 to 4. For the meaning of the values for border_style, see 5.9
Textstyle Data.
If the field is not set then the function return value is 1.
A return value of zero indicates the function call was successful.

ID = 3139
Page 105Textstyle Data

12d Model Programming Language Manual
Set_ttf_underline(Textstyle_Data textdata,Integer underline)
Name
Integer Set_ttf_underline(Textstyle_Data textdata,Integer underline)

Description
For the Textstyle_Data textdata, set the underline state to underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates underline was successfully set.
ID = 2620

Get_ttf_underline(Textstyle_Data textdata,Integer &underline)
Name
Integer Get_ttf_underline(Textstyle_Data textdata,Integer &underline)

Description
For the Textstyle_Data textdata, get the underline state and return it in underline.
If underline = 1, then for a true type font, the text will be underlined.
If underline = 0, then text will not be underlined.

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates underlined was successfully returned.

ID = 2616

Set_ttf_strikeout(Textstyle_Data textdata,Integer strikeout)
Name
Integer Set_ttf_strikeout(Textstyle_Data textdata,Integer strikeout)

Description
For the Textstyle_Data textdata, set the strikeout state to strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates strikeout was successfully set.

ID = 2621

Get_ttf_strikeout(Textstyle_Data textdata,Integer &strikeout)
Name
Integer Get_ttf_strikeout(Textstyle_Data textdata,Integer &strikeout)

Description
For the Textstyle_Data textdata, get the strikeout state and return it in strikeout.
If strikeout = 1, then for a true type font, the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
Page 106 Textstyle Data

Chapter 5 12dPL Library Calls
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates strikeout was successfully returned.
ID = 2617

Set_ttf_italic(Textstyle_Data textdata,Integer italic)
Name
Integer Set_ttf_italic(Textstyle_Data textdata,Integer italic)

Description
For the Textstyle_Data textdata, set the italic state to italic.
If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates italic was successfully set.

ID = 2622

Get_ttf_italic(Textstyle_Data textdata,Integer &italic)
Name
Integer Get_ttf_italic(Textstyle_Data textdata,Integer &italic)

Description
For the Textstyle_Data textdata, get the italic state and return it in italic.
If italic = 1, then for a true type font, the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates italic was successfully returned.

ID = 2618

Set_ttf_outline(Textstyle_Data textdata,Integer outline)
Name
Integer Set_ttf_outline(Textstyle_Data textdata,Integer outline)

Description
For the Textstyle_Data textdata, set the outline state to outline.
For the Element elt of type Text, set the outline state to outline.
If outline = 1, then for a true type font the text will be only shown in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates outline was successfully set.
 ID = 2773

Get_ttf_outline(Textstyle_Data textdata,Integer &outline)
Name
Page 107Textstyle Data

12d Model Programming Language Manual
Integer Get_ttf_outline(Textstyle_Data textdata,Integer &outline)

Description
For the Textstyle_Data textdata, get the outline state and return it in outline.
If outline = 1, then for a true type font the text will be shown only in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates outline was successfully returned.

ID = 2774

Set_ttf_weight(Textstyle_Data textdata,Integer weight)
Name
Integer Set_ttf_weight(Textstyle_Data textdata,Integer weight)

Description
For the Textstyle_Data textdata, set the font weight to weight.
For the list of allowable weights, go to Allowable Weights
A function return value of zero indicates weight was successfully set.
ID = 2623

Get_ttf_weight(Textstyle_Data textdata,Integer &weight)
Name
Integer Get_ttf_weight(Textstyle_Data textdata,Integer &weight)

Description
For the Textstyle_Data textdata, get the font weight and return it in weight.
For the list of allowable weights, go to Allowable Weights
A function return value of zero indicates weight was successfully returned.
ID = 2619
Page 108 Textstyle Data

Chapter 5 12dPL Library Calls
5.10 Maths
Most of the standard C++ mathematical functions are supported in 12dPL.
The angles for the trigonometric functions are expressed in radians
Real Sin(Real x) sine of x

ID = 1
Real Cos(Real x) cosine of x
ID = 2

Real Tan(Real x) tangent of x
ID = 3

Real Asin(Real x) arcsine(x) in range [-pi/2,pi/2], -1<= x <= 1
ID = 5
Real Acos(Real x) arccosine(x) in range [0,pi], -1<= x <= 1

ID = 4
Real Atan(Real x) arctan(x) in range [-pi/2,pi/2]
ID = 6

Real Atan2(Real y, Real x) Arctan(y/x) in range [-pi,pi]
ID = 7
Real Sinh(Real x) hyperbolic sine of x

ID = 8
Real Cosh(Real x) hyperbolic cosine of x
ID = 9

Real Tanh(Real x) hyperbolic tangent of x
ID = 10
Real Exp(Real x) exponential function

ID = 11
Real Log(Real x) natural logarithm ln(x), x > 0
ID = 12

Real Log10(Real x) base 10 logarithm log(x), x> 0
ID = 13
Real Pow(Real x, Real y) x raised to the power y.A domain error occurs if

 x=0 and y<=0, or if x<0 and y is not an integer.
ID = 14
Real Sqrt(Real x) square root of x, x >= 0

ID = 15
Real Ceil(Real x) smallest integer not less than x, as a Real
ID = 16

Real Floor(Real x) largest integer not greater than x, as a Real
ID = 17

Real Absolute(Real x) absolute value of x
ID = 18
Page 109Maths

12d Model Programming Language Manual
Integer Absolute(Integer i) absolute value of x
ID = 330
Real Ldexp(Real x,Integer n) x*(2 to the power n)

ID = 19
Real Mod(Real x, Real y) Real remainder of x/y with the same sign as x.
 If y is zero, the result is implementation defined
ID = 20
Page 110 Maths

Chapter 5 12dPL Library Calls
5.11 Random Numbers

Set_random_number(Integer seed,Integer method)
Name
void Set_random_number(Integer seed,Integer method)

Description
Set up the random number generator with the Integer seed, seed (the current time in seconds is
a good seed).

If method is any value other than 1, the standard c library random number generator is used.
If method is 1, then a far more random seed generator than the standard c library one is used.
Once the random number generator is set with a seed, calling Get_Random_number will return a
random number.

There is no function return value.
ID = 1900

Get_random_number()
Name
Integer Get_random_number()

Description
Generate the next random number as an Integer and return it as the function return value.
Note: the random number generator is initially set using Set_random_number.
ID = 1901

Get_random_number_closed()
Name
Real Get_random_number_closed()

Description
Generate the next random number as a number between 0 and 1 inclusive, and return it as the
function return value.
Note: this function is only applicable is the random number generator is initially set using
Set_random_number with method = 1.

 ID = 1933

Get_random_number_open()
Name
Real Get_random_number_open()

Description
Generate the next random number as a number between 0 (included) and 1 (not included), and
return it as the function return value.
Note: this function is only applicable is the random number generator is initially set using
Page 111Random Numbers

12d Model Programming Language Manual
Set_random_number with method = 1.
ID = 1934
Page 112 Random Numbers

Chapter 5 12dPL Library Calls
5.12 Vectors and Matrices
Set_vector(Vector2 &vect,Real value)
Name
Integer Set_vector(Vector2 &vect,Real value)

Description
Set the two components of the two dimensional vector vect to the same Real value, value.

A function return value of zero indicates the values were successfully set.
ID = 2306

Set_vector(Vector3 &vect,Real value)
Name
Integer Set_vector(Vector3 &vect,Real value)

Description
Set the three components of the three dimensional vector vect to the same Real value, value.
A function return value of zero indicates the values were successfully set.

ID = 2307

Set_vector(Vector4 &vect,Real value)
Name
Integer Set_vector(Vector4 &vect,Real value)

Description
Set the four components of the four dimensional vector vect to the same Real value, value.

A function return value of zero indicates the values were successfully set.
 ID = 2308

Set_vector(Vector2 &vect,Real x,Real y)
Name
Integer Set_vector(Vector2 &vect,Real x,Real y)

Description
Set the first component of the two dimensional vector vect to the value x.
Set the second component of the two dimensional vector vect to the value y.
A function return value of zero indicates the values were successfully set.

ID = 2309

Set_vector(Vector3 &vect,Real x,Real y,Real z)
Name
Integer Set_vector(Vector3 &vect,Real x,Real y,Real z)

Description
Page 113Vectors and Matrices

12d Model Programming Language Manual
Set the first component of the three dimensional vector vect to the value x.
Set the second component of the three dimensional vector vect to the value y.
Set the third component of the three dimensional vector vect to the value z.

A function return value of zero indicates the values were successfully set.
 ID = 2310

Set_vector(Vector4 &vect,Real x,Real y,Real z,Real w)
Name
Integer Set_vector(Vector4 &vect,Real x,Real y,Real z,Real w)

Description
Set the first component of the four dimensional vector vect to the value x.
Set the second component of the four dimensional vector vect to the value y.
Set the third component of the four dimensional vector vect to the value z.

Set the fourth component of the four dimensional vector vect to the value w.
A function return value of zero indicates the values were successfully set.
ID = 2311

Get_vector(Vector2 &vect,Real &x,Real &y)
Name
Integer Get_vector(Vector2 &vect,Real &x,Real &y)

Description
For the two dimensional vector vect:
 return the first component of vect in x.
 return the second component of vect in y
A function return value of zero indicates the components were successfully returned.

ID = 2312

Get_vector(Vector3 &vect,Real &x,Real &y,Real &z)
Name
Integer Get_vector(Vector3 &vect,Real &x,Real &y,Real &z)

Description
For the three dimensional vector vect:
 return the first component of vect in x.

 return the second component of vect in y
 return the third component of vect in z
A function return value of zero indicates the components were successfully returned.

ID = 2313

Get_vector(Vector4 &vect,Real &x,Real &y,Real &z,Real &w)
Name
Page 114 Vectors and Matrices

Chapter 5 12dPL Library Calls
Integer Get_vector(Vector4 &vect,Real &x,Real &y,Real &z,Real &w)

Description
For the four dimensional vector vect:
 return the first component of vect in x.

 return the second component of vect in y
 return the third component of vect in z
 return the fourth component of vect in w
A function return value of zero indicates the components were successfully returned.
ID = 2314

Set_vector(Vector2 &vect,Integer index,Real value)
Name
Integer Set_vector(Vector2 &vect,Integer index,Real value)

Description
Set component number index of the two dimensional vector vect to the value value.
A function return value of zero indicates the component was successfully set.

ID = 2315

Set_vector(Vector3 &vect,Integer index,Real value)
Name
Integer Set_vector(Vector3 &vect,Integer index,Real value)

Description
Set component number index of the three dimensional vector vect to the value value.

A function return value of zero indicates the component was successfully set.
ID = 2316

Set_vector(Vector4 &vect,Integer index,Real value)
Name
Integer Set_vector(Vector4 &vect,Integer index,Real value)

Description
Set component number index of the four dimensional vector vect to the value value.
A function return value of zero indicates the component was successfully set.
ID = 2317

Get_vector(Vector2 &vect,Integer index,Real &value)
Name
Integer Get_vector(Vector2 &vect,Integer index,Real &value)

For the two dimensional vector vect return the component number index in value.
A function return value of zero indicates the component was successfully returned.

Description
Page 115Vectors and Matrices

12d Model Programming Language Manual
ID = 2318

Get_vector(Vector3 &vect,Integer index,Real &value)
Name
Integer Get_vector(Vector3 &vect,Integer index,Real &value)

Description
For the three dimensional vector vect return the component number index in value.
A function return value of zero indicates the component was successfully returned.
ID = 2319

Get_vector(Vector4 &vect,Integer index,Real &value)
Name
Integer Get_vector(Vector4 &vect,Integer index,Real &value)

Description
For the four dimensional vector vect return the component number index in value.
A function return value of zero indicates the component was successfully returned.
ID = 2320

Get_vector(Vector2 &vect,Integer index)
Name
Real Get_vector(Vector2 &vect,Integer index)

Description
For the two dimensional vector vect, return the component number index as the return value of
the function.

ID = 2321

Get_vector(Vector3 &vect,Integer index)
Name
Real Get_vector(Vector3 &vect,Integer index)

Description
For the three dimensional vector vect, return the component number index as the return value of
the function.

ID = 2322

Get_vector(Vector4 &vect,Integer index)
Name
Real Get_vector(Vector4 &vect,Integer index)

Description
For the four dimensional vector vect, return the component number index as the return value of
the function.
Page 116 Vectors and Matrices

Chapter 5 12dPL Library Calls
 ID = 2323

Get_vector_length(Vector2 &vect,Real &value)
Name
Integer Get_vector_length(Vector2 &vect,Real &value)

Description
For the two dimensional vector vect, return the length of the vector in value.
 Note: for V(x,y), length = square root of (x*x + y*y)
A function return value of zero indicates the length was successfully returned.

ID = 2324

Get_vector_length(Vector3 &vect,Real &value)
Name
Integer Get_vector_length(Vector3 &vect,Real &value)

Description
For the three dimensional vector vect, return the length of the vector in value.
 Note: for V(x,y,z), length = square root of (x*x + y*y +z*z)
A function return value of zero indicates the length was successfully returned.
ID = 2325

Get_vector_length(Vector4 &vect,Real &value)
Name
Integer Get_vector_length(Vector4 &vect,Real &value)

Description
For the four dimensional vector vect, return the length of the vector in value.
 Note: for V(x,y,z,w), length = square root of (x*x + y*y +z*z + w*w)

A function return value of zero indicates the length was successfully returned.
ID = 2326

Get_vector_length(Vector2 &vect)
Name
Real Get_vector_length(Vector2 &vect)

Description
Standard vector length and return it as return value
For the two dimensional vector vect, return the length of the vector as the return value of the
function.
 Note: for V(x,y), length = square root of (x*x + y*y)

ID = 2327
Page 117Vectors and Matrices

12d Model Programming Language Manual
Get_vector_length(Vector3 &vect)
Name
Real Get_vector_length(Vector3 &vect)

Description
For the three dimensional vector vect, return the length of the vector as the return value of the
function.
 Note: for V(x,y,z), length = square root of (x*x + y*y +z*z)
ID = 2328

Get_vector_length(Vector4 &vect)
Name
Real Get_vector_length(Vector4 &vect)

Description
For the four dimensional vector vect, return the length of the vector as the return value of the
function.
 Note: for V(x,y,z,w), length = square root of (x*x + y*y +z*z + w*w)
ID = 2329

Get_vector_length_squared(Vector2 &vect,Real &value)
Name
Integer Get_vector_length_squared(Vector2 &vect,Real &value)

Description
For the two dimensional vector vect, return the square of the length of the vector in value.
 Note: for V(x,y), length squared = x*x + y*y
A function return value of zero indicates the length squared was successfully returned.
ID = 2330

Get_vector_length_squared(Vector3 &vect,Real &value)
Name
Integer Get_vector_length_squared(Vector3 &vect,Real &value)

Description
For the three dimensional vector vect, return the square of the length of the vector in value.
 Note: for V(x,y,z), length squared = x*x + y*y + z*z

A function return value of zero indicates the length squared was successfully returned.
ID = 2331

Get_vector_length_squared(Vector4 &vect,Real &value)
Name
Integer Get_vector_length_squared(Vector4 &vect,Real &value)

Description
Page 118 Vectors and Matrices

Chapter 5 12dPL Library Calls
For the four dimensional vector vect, return the square of the length of the vector in value.
 Note: for V(x,y,z,w), length squared = x*x + y*y + z*z + w*w
A function return value of zero indicates the length squared was successfully returned.

ID = 2332

Get_vector_length_squared(Vector2 &vect)
Name
Real Get_vector_length_squared(Vector2 &vect)

Description
For the two dimensional vector vect, return the square of the length of the vector as the function
return value.
 Note: for V(x,y), length squared = x*x + y*y
ID = 2333

Get_vector_length_squared(Vector3 &vect)
Name
Real Get_vector_length_squared(Vector3 &vect)

Description
For the three dimensional vector vect, return the square of the length of the vector as the
function return value.
 Note: for V(x,y,z), length squared = x*x + y*y + z*z

ID = 2334

Get_vector_length_squared(Vector4 &vect)
Name
Real Get_vector_length_squared(Vector4 &vect)

Description
For the four dimensional vector vect, return the square of the length of the vector as the function
return value.
 Note: for V(x,y,z,w), length squared = x*x + y*y + z*z + w*w
ID = 2335

Get_vector_normalize(Vector2 &vect,Vector2 &normalised)
Name
Integer Get_vector_normalize(Vector2 &vect,Vector2 &normalised)

Description
For the two dimensional vector vect, return the normalised vector of vect in the Vector2
normalised.
 Note: for a normalised vector, length = 1 and for the vector V(x,y), the normalised vector
N(a,b) is:

N(a,b) = (x/length(V),y/length(V))
Page 119Vectors and Matrices

12d Model Programming Language Manual
A function return value of zero indicates the normalised vector was successfully returned.
ID = 2336

Get_vector_normalize(Vector3 &vect,Vector3 &normalised)
Name
Integer Get_vector_normalize(Vector3 &vect,Vector3 &normalised)

Description
For the three dimensional vector vect, return the normalised vector of vect in the Vector3
normalised.
 Note: for a normalised vector, length = 1 and for the vector V(x,y,z), the normalised vector
N(a,b,c) is:

N(a,b,c) = (x/length(V),y/length(V),z/length(V))

A function return value of zero indicates the normalised vector was successfully returned.
ID = 2337

Get_vector_normalize(Vector4 &vect,Vector4 &normalised)
Name
Integer Get_vector_normalize(Vector4 &vect,Vector4 &normalised)

Description
For the four dimensional vector vect, return the normalised vector of vect in the Vector4
normalised.
 Note: for a normalised vector, length = 1 and for the vector V(x,y,z,w), the normalised vector
N(a,b,c,d) is:

N(a,b,c,d) = (x/length(V),y/length(V),z/length(V),w/length(V))
A function return value of zero indicates the normalised vector was successfully returned.
ID = 2338

Get_vector_normalize(Vector2 &vect)
Name
Vector2 Get_vector_normalize(Vector2 &vect)

Description
For the two dimensional vector vect, return the normalised vector of vect as the function return
value.
 Note: for a normalised vector, length = 1 and for the vector V(x,y), the normalised vector
N(a,b) is:

N(a,b) = (x/length(V),y/length(V))
ID = 2339

Get_vector_normalize(Vector3 &vect)
Name
Vector3 Get_vector_normalize(Vector3 &vect)
Page 120 Vectors and Matrices

Chapter 5 12dPL Library Calls
Description
For the three dimensional vector vect, return the normalised vector as the function return value.
 Note: for a normalised vector, length = 1 and for the vector V(x,y,z), the normalised vector
N(a,b,c) is:

N(a,b,c) = (x/length(V),y/length(V),z/length(V))
ID = 2340

Get_vector_normalize(Vector4 &vect)
Name
Vector4 Get_vector_normalize(Vector4 &vect)

Description
For the four dimensional vector vect, return the normalised vector as the function return value.
 Note: for a normalised vector, length = 1 and for the vector V(x,y,z,w), the normalised vector
N(a,b,c,d) is:

N(a,b,c,d) = (x/length(V),y/length(V),z/length(V),w/length(V))
ID = 2341

Get_vector_homogenize(Vector3 &vect,Vector3 &homogenized)
Name
Integer Get_vector_homogenize(Vector3 &vect,Vector3 &homogenized)

Description
For the three dimensional vector vect, return the homogenized vector of vect in the Vector3
homogenized.
 Note: for a homogenized vector, the third component = 1 and for the vector V(x,y,z), the
homogenized vector H(a,b,c) is:

H(a,b,c) = (x/z,y/z,1)

A function return value of zero indicates the homogenized vector was successfully returned.
 ID = 2342

Get_vector_homogenize(Vector4 &vect,Vector4 &homogenized)
Name
Integer Get_vector_homogenize(Vector4 &vect,Vector4 &homogenized)

Description
For the four dimensional vector vect, return the homogenized vector of vect in the Vector4
homogenized.
 Note: for a homogenized vector, the fourth component = 1 and for the vector V(x,y,z,w), the
homogenized vector H(a,b,c,d) is:

H(a,b,c,d) = (x/z,y/w,z/w,1)

A function return value of zero indicates the homogenized vector was successfully returned.
 ID = 2343
Page 121Vectors and Matrices

12d Model Programming Language Manual
Get_vector_homogenize(Vector3 &vect)
Name
Vector3 Get_vector_homogenize(Vector3 &vect)

Description
For the three dimensional vector vect, return the homogenized vector of vect as the function
return value.

 Note: for a homogenized vector, the third component = 1 and for the vector V(x,y,z), the
homogenized vector H(a,b,c) is:

H(a,b,c) = (x/z,y/z,1)
ID = 2344

Get_vector_homogenize(Vector4 &vect)
Name
Vector4 Get_vector_homogenize(Vector4 &vect)

Description
For the four dimensional vector vect, return the homogenized vector of vect as the function
return value.
 Note: for a homogenized vector, the fourth component = 1 and for the vector V(x,y,z,w), the
homogenized vector H(a,b,c,d) is:

H(a,b,c,d) = (x/z,y/w,z/w,1)
ID = 2345

Set_matrix_zero(Matrix3 &matrix)
Name
Integer Set_matrix_zero(Matrix3 &matrix)

Description
For the three by three Matrix3 matrix, set all the values in the matrix to zero.
A function return value of zero indicates the matrix was successfully zero’d.

ID = 2346

Set_matrix_zero(Matrix4 &matrix)
Name
Integer Set_matrix_zero(Matrix4 &matrix)

Description
For the four by four Matrix4 matrix, set all the values in the matrix to zero.

A function return value of zero indicates the matrix was successfully zero’d.
ID = 2347

Set_matrix_identity(Matrix3 &matrix)
Name
Integer Set_matrix_identity(Matrix3 &matrix)
Page 122 Vectors and Matrices

Chapter 5 12dPL Library Calls
Description
For the three by three Matrix3 matrix, set matrix to the identity matrix.
That is, for the matrix (row,column) values are:

 matrix(1,1) = 1 matrix (1,2) = 0 matrix(1,3) = 0
 matrix(2,1) = 0 matrix (2,2) = 1 matrix(2,3) = 0
 matrix(3,1) = 0 matrix (3,2) = 0 matrix(3,3) = 1

A function return value of zero indicates the matrix was successfully set to the identity matrix.
ID = 2348

Set_matrix_identity(Matrix4 &matrix)
Name
Integer Set_matrix_identity(Matrix4 &matrix)

Description
For the four by four Matrix4 matrix, set matrix to the identity matrix.
That is, for the matrix (row,column) values are:

 matrix(1,1) = 1 matrix (1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0
 matrix(2,1) = 0 matrix (2,2) = 1 matrix(2,3) = 0 matrix(2,4) = 0
 matrix(3,1) = 0 matrix (3,2) = 0 matrix(3,3) = 1 matrix(3,4) = 0

 matrix(4,1) = 0 matrix (4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1
A function return value of zero indicates the matrix was successfully set to the identity matrix.
ID = 2349

Set_matrix(Matrix3 &matrix,Real value)
Name
Integer Set_matrix(Matrix3 &matrix,Real value)

Description
For the three by three Matrix4 matrix, set all the values in the rows and columns of matrix to
value.
A function return value of zero indicates the matrix was successfully set to value.

ID = 2350

Set_matrix(Matrix4 &matrix,Real value)
Name
Integer Set_matrix(Matrix4 &matrix,Real value)

Description
For the four by four Matrix4 matrix, set all the values in the rows and columns of matrix to value.

A function return value of zero indicates the matrix was successfully set to value.
ID = 2351

Set_matrix(Matrix3 &matrix,Integer row,Integer col,Real value)
Page 123Vectors and Matrices

12d Model Programming Language Manual
Name
Integer Set_matrix(Matrix3 &matrix,Integer row,Integer col,Real value)

Description
For the three by three Matrix3 matrix, set the value of matrix(row,col) to value.
A function return value of zero indicates the matrix(row,col) was successfully set to value.
ID = 2352

Set_matrix(Matrix4 &matrix,Integer row,Integer col,Real value)
Name
Integer Set_matrix(Matrix4 &matrix,Integer row,Integer col,Real value)

Description
For the four by four Matrix4 matrix, set the value of matrix(row,col) to value.
A function return value of zero indicates the matrix(row,col) was successfully set to value.

ID = 2353

 Get_matrix(Matrix3 &matrix,Integer row,Integer col,Real &value)
Name
Integer Get_matrix(Matrix3 &matrix,Integer row,Integer col,Real &value)

Description
For the three by three Matrix3 matrix, get the value of matrix(row,col) and return it in value.
A function return value of zero indicates the matrix(row,col) was successfully returned.
 ID = 2354

Get_matrix(Matrix4 &matrix,Integer row,Integer col,Real &value)
Name
Integer Get_matrix(Matrix4 &matrix,Integer row,Integer col,Real &value)

Description
For the four by four Matrix4 matrix, get the value of matrix(row,col) and return it in value.
A function return value of zero indicates the matrix(row,col) was successfully returned.

ID = 2355

Get_matrix(Matrix3 &matrix,Integer row,Integer col)
Name
Real Get_matrix(Matrix3 &matrix,Integer row,Integer col)

Description
For the three by three Matrix3 matrix, the value of matrix(row,col) is returned as the function
return value.

 ID = 2356
Page 124 Vectors and Matrices

Chapter 5 12dPL Library Calls
Get_matrix(Matrix4 &matrix,Integer row,Integer col)
Name
Real Get_matrix(Matrix4 &matrix,Integer row,Integer col)

Description
For the four by four Matrix3 matrix, the value of matrix(row,col) /.
 ID = 2357

Set_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)
Name
Integer Set_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)

Description
For the three by three Matrix3 matrix, set the values of row row to the values of the components
of the Vector3 vect. That is:
 matrix(row,1) = vect(1) matrix(row,2) = vect(2) matrix(row,3) = vect(3).
A function return value of zero indicates that the row of matrix was successfully set.

ID = 2358

 Set_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
Name
Integer Set_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)

Description
For the four by four Matrix4 matrix, set the values of row row to the values of the components of
the Vector4 vect. That is:

 matrix(row,1)=vect(1) matrix(row,2)=vect(2) matrix(row,3)=vect(3) matrix(row,4)=vect(4).
A function return value of zero indicates the row of matrix was successfully set.
ID = 2359

Get_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)
Name
Integer Get_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)

Description
For the three dimensional vector vect, set the values of vect to the values of row row of the
three by three Matrix3 matrix. That is:
 vect(1) = matrix(row,1) vect(2) = matrix(row,2) vect(3) = matrix(row,3).

A function return value of zero indicates that the components of vect were successfully set.
ID = 2360

Get_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
Name
Integer Get_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
Page 125Vectors and Matrices

12d Model Programming Language Manual
Description
For the four dimensional vector vect, set the values of vect to the values of row row of the four
by four Matrix4 matrix. That is:
 vect(1)=matrix(row,1) vect(2)=matrix(row,2) vect(3)=matrix(row,3) vect(4)=matrix(row,4).

A function return value of zero indicates that the components of vect were successfully set.
ID = 2361

Get_matrix_row(Matrix3 &matrix,Integer row)
Name
Vector3 Get_matrix_row(Matrix3 &matrix,Integer row)

Description
For the three by three Matrix3 matrix, the values of row row of matrix are returned as the
Vector3 function return value.
ID = 2362

Get_matrix_row(Matrix4 &matrix,Integer row)
Name
Vector4 Get_matrix_row(Matrix4 &matrix,Integer row)

Description
For the four by four Matrix4 matrix, the values of row row of matrix are returned as the Vector4
function return value.
ID = 2363

Get_matrix_transpose(Matrix3 &source,Matrix3 &target)
Name
Integer Get_matrix_transpose(Matrix3 &source,Matrix3 &target)

Description
For the three by three Matrix3 matrix, return the transpose of matrix as Matrix3 target.
That is, target(row,column) = matrix(column,row).

A function return value of zero indicates the matrix transpose was successfully returned.
ID = 2364

Get_matrix_transpose(Matrix4 &source,Matrix4 &target)
Name
Integer Get_matrix_transpose(Matrix4 &source,Matrix4 &target)

Description
For the four by four Matrix3 matrix, return the transpose of matrix as Matrix4 target.
That is, target(row,column) = matrix(column,row).
A function return value of zero indicates the matrix transpose was successfully returned.

ID = 2365
Page 126 Vectors and Matrices

Chapter 5 12dPL Library Calls
Get_matrix_transpose(Matrix3 &source)
Name
Matrix3 Get_matrix_transpose(Matrix3 &source)

Description
For the three by three Matrix3 source, return the transpose of matrix as the function return value.
ID = 2366

Get_matrix_transpose(Matrix4 &source)
Name
Matrix4 Get_matrix_transpose(Matrix4 &source)

Description
For the four by four Matrix4 source, return the transpose of matrix as the function return value.

ID = 2367

Get_matrix_inverse(Matrix3 &source,Matrix3 &target)
Name
Integer Get_matrix_inverse(Matrix3 &source,Matrix3 &target)

Description
For the three by three Matrix3 source, return the inverse of the matrix as Matrix3 target.
A function return value of zero indicates the matrix inverse was successfully returned.
ID = 2368

Get_matrix_inverse(Matrix4 &source,Matrix4 &target)
Name
Integer Get_matrix_inverse(Matrix4 &source,Matrix4 &target)

Description
For the four by four Matrix4 source, return the inverse of the matrix as Matrix4 target.
A function return value of zero indicates the matrix inverse was successfully returned.
ID = 2369

Get_matrix_inverse(Matrix3 &source)
Name
Matrix3 Get_matrix_inverse(Matrix3 &source)

Description
For the three by three Matrix3 source, return the inverse of the matrix as the function return
value.

ID = 2370
Page 127Vectors and Matrices

12d Model Programming Language Manual
Get_matrix_inverse(Matrix4 &source)
Name
Matrix4 Get_matrix_inverse(Matrix4 &source)

Description
For the four by four Matrix4 source, return the inverse of the matrix as the function return value.

ID = 2371

Swap_matrix_rows(Matrix3 &matrix,Integer row1,Integer row2)
Name
Integer Swap_matrix_rows(Matrix3 &matrix,Integer row1,Integer row2)

Description
For the three by three Matrix3 matrix, swap row row1 with row row2.

A function return value of zero indicates the swapped matrix was successfully returned.
ID = 2372

Swap_matrix_rows(Matrix4 &matrix,Integer row1,Integer row2)
Name
Integer Swap_matrix_cols(Matrix4 &matrix,Integer Swap_matrix_rows(Matrix4 &matrix,Integer
row1,Integer row2)

Description
For the four by four Matrix4 matrix, swap row row1 with row row2.
A function return value of zero indicates the swapped matrix was successfully returned.

 ID = 2373

Swap_matrix_cols(Matrix3 &matrix,Integer col1,Integer col2)
Name
Integer Swap_matrix_cols(Matrix3 &matrix,Integer col1,Integer col2)

Description
For the three by three Matrix3 matrix, swap column col1 with column col2.

A function return value of zero indicates the swapped matrix was successfully returned.
 ID = 2374

Swap_matrix_cols(Matrix4 &matrix,Integer col1,Integer col2)
Name
Integer Swap_matrix_cols(Matrix4 &matrix,Integer col1,Integer col2)

Description
For the four by four Matrix4 matrix, swap column col1 with column col2.
A function return value of zero indicates the swapped matrix was successfully returned.
ID = 2375
Page 128 Vectors and Matrices

Chapter 5 12dPL Library Calls
Get_translation_matrix(Vector2 &vect,Matrix3 &matrix)
Name
Integer Get_translation_matrix(Vector2 &vect,Matrix3 &matrix)

Description
From the two dimension vector vect, create the three by three matrix representing the vector as
a translation and return it as matrix.

That is, for vect(x,y), the matrix(row,column) values are:
 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = x
 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = y
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1
A function return value of zero indicates the translation matrix was successfully returned.

ID = 2376

Get_translation_matrix(Vector3 &vect,Matrix4 &matrix)
Name
Integer Get_translation_matrix(Vector3 &vect,Matrix4 &matrix)

Description
From the three dimension vector vect, create the four by four Matrix4 matrix representing the
vector as a translation and return it as matrix.

That is, for vect(x,y,z), the matrix(row,column) values are:
 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = x
 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = 0 matrix(2,4) = y
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1 matrix(3,4) = z
 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1
A function return value of zero indicates the translation matrix was successfully returned.

ID = 2377

Get_translation_matrix(Vector2 &vect)
Name
Matrix3 Get_translation_matrix(Vector2 &vect)

Description
For the two dimension vector vect, the three by three Matrix3 representing the vector as a
translation is returned as the function return value.

ID = 2378

Get_translation_matrix(Vector3 &vect)
Name
Matrix4 Get_translation_matrix(Vector3 &vect)

Description
For the three dimension vector vect, the four by four Matrix4 representing the vector as a
translation is returned as the function return value.
Page 129Vectors and Matrices

12d Model Programming Language Manual
ID = 2379

Get_rotation_matrix(Vector2 ¢re,Real angle,Matrix3 &matrix)
Name
Integer Get_rotation_matrix(Vector2 ¢re,Real angle,Matrix3 &matrix)

Description
From the Vector2 centre and Real angle, construct the three by three Matrix3 matrix given
below.

If centre is (x,y), C = cos(angle) and S = sin(angle).
 the matrix(row,column) values are:
 matrix(1,1) = C matrix(1,2) = -S matrix(1,3) = x*(1 - C) + y*S
 matrix(2,1) = S matrix(2,2) = C matrix(2,3) = y*(1 - C) - x*S
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1
angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

A function return value of zero indicates the matrix was successfully returned.
ID = 2380

Get_rotation_matrix(Vector3 &axis,Real angle,Matrix4 &matrix)
Name
Integer Get_rotation_matrix(Vector3 &axis,Real angle,Matrix4 &matrix)

Description
From the Vector3 axis and Real angle, construct the four by four Matrix4 matrix given below.
If Naxis is axis normalised and Naxis = (X,Y,Z), C = cos(angle), S = sin(angle) and T = 1 - C

 the matrix(row,column) values are:
 matrix(1,1) = T*X*X+C matrix(1,2) = T*X*Y-SZ matrix(1,3) = T*X*Z+S*Y matrix(1,4) = 0
 matrix(2,1) = T*X*Y+S*Z matrix(2,2) = T*Y*Y+C matrix(2,3) = T*Y*Z-S*X matrix(1,4) = 0

 matrix(3,1) = T*X*Z-S*Y matrix(3,2) = T*Y*Z+S*X matrix(3,3) = T*Z*Z+C matrix(1,4) = 0
 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,1) = 1
angle is in radians and is measured a rotation on the plane orthogonal to the axis, the direction
of the rotation is counterclockwise in relative to axis as the plane upward vector.

A function return value of zero indicates the matrix was successfully returned.
ID = 2381

Get_rotation_matrix(Vector2 ¢re,Real angle)
Name
Matrix3 Get_rotation_matrix(Vector2 ¢re,Real angle)

Description
From the Vector2 centre and Real angle, construct the three by three Matrix3 matrix given
below and return it as the function return value.
If centre is (X,Y), C = cos(angle) and S = sin(angle) and Matrix3 matrix.
 the matrix(row,column) values are:
Page 130 Vectors and Matrices

Chapter 5 12dPL Library Calls
 matrix(1,1) = C matrix(1,2) = -S matrix(1,3) = X*(1 - C) + Y*S
 matrix(2,1) = S matrix(2,2) = C matrix(2,3) = Y*(1 - C) - X*S
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.
 ID = 2382

Get_rotation_matrix(Vector3 &axis,Real angle)
Name
Matrix4 Get_rotation_matrix(Vector3 &axis,Real angle)

Description
From the Vector3 axis and Real angle, construct the four by four Matrix4 matrix given below
and return it as the function return value.
If Naxis is axis normalised and Naxis = (X,Y,Z), C = cos(angle), S = sin(angle), T = 1 - C and
Matrix4 matrix
 the matrix(row,column) values are:
 matrix(1,1) = T*X*X+C matrix(1,2) = T*X*Y-SZ matrix(1,3) = T*X*Z+S*Y matrix(1,4) = 0
 matrix(2,1) = T*X*Y+S*Z matrix(2,2) = T*Y*Y+C matrix(2,3) = T*Y*Z-S*X matrix(1,4) = 0

 matrix(3,1) = T*X*Z-S*Y matrix(3,2) = T*Y*Z+S*X matrix(3,3) = T*Z*Z+C matrix(1,4) = 0
 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,1) = 1
angle is in radians and is measured a rotation on the plane orthogonal to the axis, the direction
of the rotation is counterclockwise in relative to axis as the plane upward vector.

ID = 2383

Get_scaling_matrix(Vector2 &scale,Matrix3 &matrix)
Name
Integer Get_scaling_matrix(Vector2 &scale,Matrix3 &matrix)

Description
From the two dimension vector scale, create the three by three Matrix3 representing the vector
as a scaling matrix and return it as matrix.

That is, for scale(S,T), the matrix(row,column) values are:
 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0
 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1
A function return value of zero indicates the translation matrix was successfully returned.
ID = 2384

Get_scaling_matrix(Vector3 &scale,Matrix4 &matrix)
Name
Integer Get_scaling_matrix(Vector3 &scale,Matrix4 &matrix)

Description
From the three dimension vector scale, create the four by four Matrix4 representing the vector as
Page 131Vectors and Matrices

12d Model Programming Language Manual
a scaling matrix and return it as matrix.
That is, for scale(S,T,U), the matrix(row,column) values are:
 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0

 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0 matrix(2,4) = 0
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = U matrix(3,4) = 0
 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1

A function return value of zero indicates the scaling matrix was successfully returned.
ID = 2385

Get_scaling_matrix(Vector2 &scale)
Name
Matrix3 Get_scaling_matrix(Vector2 &scale)

Description
From the two dimension vector scale, create the three by three Matrix3 matrix as given below.
The matrix represents the vector as a scaling and it is return as the function return value.
That is, for scale(S,T), the returned matrix(row,column) values are:
 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0

 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

ID = 2386

Get_scaling_matrix(Vector3 &scale)
Name
Matrix4 Get_scaling_matrix(Vector3 &scale)

Description
From the three dimension vector scale, create the four by four Matrix4 matrix as given below.
The matrix represents the vector as a scaling and it is return as the function return value.

That is, for scale(S,T,U), the returned matrix(row,column) values are:
 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0
 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0 matrix(2,4) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = U matrix(3,4) = 0
 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1
ID = 2387

Get_perspective_matrix(Real d,Matrix4 &matrix)
Name
Integer Get_perspective_matrix(Real d,Matrix4 &matrix)

Description
For the distance d, create the four by four Matrix4 and return it as matrix.
That is, for Real d, the matrix(row,column) values are:
Page 132 Vectors and Matrices

Chapter 5 12dPL Library Calls
 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0
 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = 0 matrix(2,4) = 0
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1 matrix(3,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 1/d matrix(4,4) = 0
A function return value of zero indicates the matrix was successfully returned.
ID = 2388

Get_perspective_matrix(Real d)
Name
Matrix4 Get_perspective_matrix(Real d)

Description
For the distance d, create the four by four Matrix4 and return it as the function return value.

That is, for Real d, the matrix(row,column) values are:
 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0
 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = 0 matrix(2,4) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1 matrix(3,4) = 0
 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 1/d matrix(4,4) = 0
matrix is returned as the function return value.

ID = 2389
Page 133Vectors and Matrices

12d Model Programming Language Manual
5.13 Triangles
Triangle_normal(Real xarray[],Real yarray[],Real zarray[],Real Normal[])
Name
Integer Triangle_normal(Real xarray[],Real yarray[],Real zarray[],Real Normal[])

Description
Calculate the normal vector to the triangle given by the coordinates in the arrays xarray[],
yarray[], zarray[] (the arrays are of dimension 3).

The normal vector is returned in Normal[1], Normal [2] and Normal[3].
A function return value of zero indicates the function was successful.
ID = 1737

Triangle_normal(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real
y3,Real z3,Real &xn,Real &yn,Real &zn)
Name
Integer Triangle_normal(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real
&xn,Real &yn,Real &zn)

Description
Calculate the normal vector to the triangle given by the coordinates (x1,y1,z1), (x2,y2,z2) and
(x3,y3,z3).
The normal vector is returned in (xn,yx,zn).
A function return value of zero indicates the function was successful.

ID = 1738

Triangle_slope(Real xarray[],Real yarray[],Real zarray[],Real &slope)
Name
Integer Triangle_slope(Real xarray[],Real yarray[],Real zarray[],Real &slope)

Description
Calculate the slope of the triangle given by the coordinates in the arrays xarray[], yarray[],
zarray[] (the arrays are of dimension 3), and return the value as slope.

The units for slope is an angle in radians measured from the horizontal plane.
A function return value of zero indicates the function was successful.
ID = 1739

Triangle_slope(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real
y3,Real z3,Real &slope)
Name
Integer Triangle_slope(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real
&slope)

Description
Calculate the slope of the triangle given by the coordinates (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3),
and return the value as slope.
Page 134 Triangles

Chapter 5 12dPL Library Calls
The units for slope is an angle in radians measured from the horizontal plane.
A function return value of zero indicates the function was successful.
ID = 1740

Triangle_aspect(Real xarray[],Real yarray[],Real zarray[],Real &aspect)
Name
Integer Triangle_aspect(Real xarray[],Real yarray[],Real zarray[],Real &aspect)

Description
Calculate the aspect of the triangle given by the coordinates in the arrays xarray[], yarray[],
zarray[] (the arrays are of dimension 3), and return the value as aspect.
The units for aspect is a bearing in radians. That is, aspect is given as a clockwise angle
measured from the positive y-axis (North).
A function return value of zero indicates the function was successful.
ID = 1741

Triangle_aspect(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real
y3,Real z3,Real &aspect)
Name
Integer Triangle_aspect(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real
&aspect)

Description
Calculate the aspect of the triangle given by the coordinates (x1,y1,z1), (x2,y2,z2) and
(x3,y3,z3), and return the value as aspect.
The units for aspect is a bearing in radians. That is, aspect is given as a clockwise angle
measured from the positive y-axis (North).
A function return value of zero indicates the function was successful.
ID = 1742
Page 135Triangles

12d Model Programming Language Manual
5.14 System
System(Text msg)
Name
Integer System(Text msg)

Description
Make a system call.

The message passed to the system call is given by Text msg.
For example,
 system ("ls *.tmp>fred")

A function return value of zero indicates success.
Note
The types of system calls that can be made is operating system dependant.

ID = 21

Date(Text &date)
Name
Integer Date(Text &date)

Description
Get the current date.
The date is returned in Text date with the format
 DDD MMM dd yyyy

where DDD is three characters for the day, MMM is three characters for the month
dd is two numbers for the day of the month and yyyy is four numbers for the year, and each is
separated by one space.
For example,

 Sun Mar 17 1996
A function return value of zero indicates the date was returned successfully.
ID = 658

Date(Integer &d,Integer &m,Integer &y)
Name
Integer Date(Integer &d,Integer &m,Integer &y)

Description
Get the current date as the day of the month, month & year.
The day of the month value is returned in Integer d.

The month value is returned in Integer m.
The year value is returned in Integer y (fours digits).
A function return value of zero indicates the date was returned successfully.

ID = 659
Page 136 System

Chapter 5 12dPL Library Calls
Time(Integer &time)
Name
Integer Time(Integer &time)

Description
Get the current time as seconds since January 1 1970.
The time value is returned in Integer time.

A function return value of zero indicates the time was returned successfully.
ID = 660

Time(Real &time)
Name
Integer Time(Real &time)

Description
Get the current time as the number of seconds since January 1st 1601 down to precision of 10-7
(100 nanoseconds) and return it as time.
A function return value of zero indicates the time was returned successfully.

ID = 661

Time(Text &time)
Name
Integer Time(Text &time)

Description
Get the current time.

The time is returned in Text time with the format (known as the ctime format)
 DDD MMM dd hh:mm:ss yyyy where
where DDD is three characters for the day, MMM is three characters for the month

dd two digits for the day of the month, hh two digits for the hour, mm two digits for the hour (in
twenty four hour format), ss two digits for seconds and yyyy is four digits for the year.
For example,
 Sun Mar 17 23:19:24 1996

A function return value of zero indicates the time was returned successfully.
ID = 662

Time(Integer &h,Integer &m,Real &sec)
Name
Integer Time(Integer &h,Integer &m,Real &sec)

Description
Get the current time in hours, minutes & seconds.
The hours value is returned in Integer h.
Page 137System

12d Model Programming Language Manual
The minutes value is returned in Integer m.
The seconds value is returned in Real s.
A function return value of zero indicates the time was returned successfully.

ID = 663

Convert_time(Integer t1,Text &t2)
Name
Integer Convert_time(Integer t1,Text &t2)

Description
Convert the time in seconds since 00:00:00 am January, 1 1970 Coordinated Universal Time
(UTC), to the standard ctime format given in an earlier Time function.

The time in seconds is given by Integer t1 and the Text t2 returns the time in ctime format.
ID = 671

Convert_time(Text &t1,Integer t2)
Name
Integer Convert_time(Text &t1,Integer t2)

Description
Convert the time in ctime format to the time in seconds since 00:00:00 am January, 1 1970
Coordinated Universal Time (UTC).
The time in ctime format is given by Text t1 and the time in seconds is returned as Integer t2.

Note
Not yet implemented.
ID = 672

Convert_time(Integer t1,Text format,Text &t2)
Name
Integer Convert_time(Integer t1,Text format,Text &t2)

Description
Convert the time in seconds since 00:00:00 am January, 1 1970 Coordinated Universal Time
(UTC), to the Text format (as defined in the section on Title Blocks in the 12d Model Reference
Manual).
The time in seconds is given by Integer t1 and the Text t2 returns the time in the specified format.

ID = 683

Get_macro_name()
Name
Text Get_macro_name()

Description
Get the name of the macro file.

The function return value is the macro file name.
Page 138 System

Chapter 5 12dPL Library Calls
ID = 1093

Recalc_chain_running()
Name
Integer Recalc_chain_running()

Description
Check if the macro is running through a chain.

The function returns 1 if the macro is running through the a chain; and 0 otherwise.
ID = 3811

Create_macro(Text macro_name,Integer run_now)
Name
Integer Create_macro(Text macro_name,Integer run_now)

Description
Start the macro from the file named macro_name; if run_now is not zero then also execute the
macro.
A return value of zero indicates the function call was successful.

ID = 1627

Get_user_name(Text &name)
Name
Integer Get_user_name(Text &name)

Description
Get user’s name, the name currently logged onto the system.

The name is returned in Text name.
A function return value of zero indicates the name was returned successfully.
ID = 814

Get_host_id()
Name
Text Get_host_id()

Description
For the current 12d Model session, get the 12d dongle number of the 12d dongle being used to
provide the 12d Model license for the session.
The dongle number, which is alphanumeric, is returned as Text as the function return value.

ID = 2678

Get_module_license(Text module_name)
Name
Integer Get_module_license(Text module_name)
Page 139System

12d Model Programming Language Manual
Description
Get the status of each module license.
If the module_name is:

 points_limit
 tins_limit
 remaining_days
 warned
the function returns number of available units.
If the module_name is:

 ok lite
 drainage digitizer
 hec_ras hec_rasII
 dranald water_supply
 landxml sharing
 12d_field_setout 12d_field_pickup
 12d_field_tunnel
 drainage_dynamic
 track solids_modelling
 gold_survey gold
 gis tuflow_1d_wbm_dongle
 tuflow_tcf tuflow_10k
 tuflow_100k tuflow_open
 tuflow_open_gpu
 tuflow_road tuflow_road_gpu
 point_cloud tmr_point_cloud
 pipeline
 sewer survey
 tin_analysis volumes
 volumesII trarr
 vehicle_path sight_distance
 cartographic dxf
 genio keays
 geocomp dgn
 arcview alignment
 educational demonstration
 loan rental
 subscription temporary
 maintenance training

The function returns 1 if the module is licensed, 0 if it is not licensed.

ID = 1094

Getenv(Text env)
Name
Text Getenv(Text env)

Description
Get the value of the environment variable named env and return it as Text as the function return
value.

ID = 1087
Page 140 System

Chapter 5 12dPL Library Calls
Find_system_file(Text new_file_name,Text old_file_name,Text env)
Name
Text Find_system_file(Text new_file_name,Text old_file_name,Text env)

Description
Returns the path to the setup file new_file_name as the function return value.

If old_file_name is not blank, it also looks for the old file names for the set ups files that were
used in the Unix version of 12d Model.
So if you want to support the legacy file names then you pass in new_file_name and
old_file_name. If you are only looking for the post Unix names for the set up files, pass
old_file_name = "".

env is the name of the environment variable that can also point to the set up file.
The search order is
1. If not blank, search for the file given by the environment variable env
2. If new_file_name is not blank, next search for a file with the name new_file_name in the nor-

mal Set Ups files search order.
3. Finally if the no file has yet been found, if old_file_name is not blank, search for old_file_name

in the normal Set Ups files search order.
If no file is found then the function return value is a blank Text (i.e. "").

For example,
 Find_system_file("colours.4d", "colour_map.def", "COLOURS_4D")
will find the colours set up file which may be pointed to by the environment variable
COLOURS_4D (if non zero), or may have the name "colours.4d", or finally may have the name
"colour_map.def".

ID = 1088

Get_4dmodel_version(Integer &major,Integer &minor,Text &patch)
Name
void Get_4dmodel_version(Integer &major,Integer &minor,Text &patch)

Description
Get information about the 12d Model build.

The function return value is a special patch version description for pre-release versions and it is
written after the 12d Model version information. It is blank for release versions.
major - is the major number for 12d Model. The is, the number before the ".".
 For example 14 for 12d Model 14.00
minor - is the minor number for 12d Model. That is, the number after the ".".
 For example 00 for 12d Model 14.00

patch - special patch description for pre-release versions. It is written after the 12d Model
version information. It is blank for release versions.
For example "Alpha 274 SLF,SLX,Image Dump - Not For Production"

A function return value of zero indicates the function was successful.

ID = 1089

Is_practise_version()
Page 141System

12d Model Programming Language Manual
Name
Integer Is_practise_version()

Description
Check if the current 12d Model is a practise version.
A non-zero function return value indicates that 12d Model is a practise version.
A zero function return value indicates that 12d Model is not a practise version.

Warning this is the opposite of most 12dPL function return values

ID = 1090

Create_process(Text program_name,Text command_line,Text start_directory,
Integer flags,Integer wait,Integer inherit)
Name
Integer Create_process(Text program_name,Text command_line,Text start_directory,Integer flags,Integer
wait,Integer inherit)

Description
This function basically calls the Microsoft CreateProcess function as defined in
 http://msdn.microsoft.com/en-us/library/ms682425%28v=vs.85%29.aspx.

The 12d function gives access to the Microsoft CreateProcess arguments that are in bold (and
also do not have a // in front of them):

 BOOL WINAPI CreateProcess(
 __in_opt LPCTSTR lpApplicationName,
 __inout_opt LPTSTR lpCommandLine,
// __in_opt LPSECURITY_ATTRIBUTES lpProcessAttributes,
// __in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,
 __in BOOL bInheritHandles,
 __in DWORD dwCreationFlags,
// __in_opt LPVOID lpEnvironment,
 __in_opt LPCTSTR lpCurrentDirectory,
// __in LPSTARTUPINFO lpStartupInfo,
// __out LPPROCESS_INFORMATION lpProcessInformation
);
where program_name is passed as lpApplicationName, command_line is passed as
dwCreationFlags lpCommandLine, start_directory is passed as lpCurrentDirectory, flags is
passed as dwCreationFlags and inherit is passed as bInheritHandles.

If wait = 1, the macro will wait until the process finishes before continuing.
If wait = 0, the macro won’t wait until the process finishes before continuing.
A function return value of zero indicates the function was successful.
Note: Create_process can not be called from the 12d Model Practise version.

ID = 1620

Create_process(Text program_name,Text command_line,Text
start_directory,Integer flags,Integer inherit,Unknown &handle)
Name
Page 142 System

Chapter 5 12dPL Library Calls
Integer Create_process(Text program_name,Text command_line,Text start_directory,Integer flags,Integer
inherit,Unknown &handle)

Description
This function calls the Microsoft CreateProcess function as defined in

 http://msdn.microsoft.com/en-us/library/ms682425%28v=vs.85%29.aspx.

The 12d function gives access to the Microsoft CreateProcess arguments that are in bold (and
also not have a // in front of them):

 BOOL WINAPI CreateProcess(
 __in_opt LPCTSTR lpApplicationName,
 __inout_opt LPTSTR lpCommandLine,
// __in_opt LPSECURITY_ATTRIBUTES lpProcessAttributes,
// __in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,
 __in BOOL bInheritHandles,
 __in DWORD dwCreationFlags,
// __in_opt LPVOID lpEnvironment,
 __in_opt LPCTSTR lpCurrentDirectory,
// __in LPSTARTUPINFO lpStartupInfo,
// __out LPPROCESS_INFORMATION lpProcessInformation
);

where program_name is passed as lpApplicationName, command_line is passed as
dwCreationFlags lpCommandLine, start_directory is passed as lpCurrentDirectory, flags is
passed as dwCreationFlags and inherit is passed as bInheritHandles.
The handle to the created process is returned in Unknown handle.
The macro can check if the process is still running by calling Process_exists.

A function return value of zero indicates the function was successful.

Note: The difference between this function and Create_process(Text program_name,Text
command_line,Text start_directory,Integer flags,Integer wait,Integer inherit) is that a handle to the
process is created and returned as handle and this can be checked to see if the process is still
running. So there is no wait flag but there is more flexibility since the macro can check with
Process_exists and decide when, and when not to wait.
Note: Create_process can not be called from 12d Model Practise version.

ID = 2635

Process_exists(Unknown handle)
Name
Integer Process_exists(Unknown handle)

Description
Check to see if the process given by handle exists. That is, check that the process created by
Create_process(Text program_name,Text command_line,Text start_directory,Integer flags,Integer
inherit,Unknown &handle) is still running.

A non-zero function return value indicates that the process handle is still running (i.e. the process
exists).
A zero function return value indicates that the process does not exist.

Warning this is the opposite of most 12dPL function return values
ID = 2636
Page 143System

12d Model Programming Language Manual
Shell_execute(Widget widget,Text operation,Text file,Text parameters,
Text directory,Integer showcmd)
Name
Integer Shell_execute(Widget widget,Text operation,Text file,Text parameters,Text directory,Integer
showcmd)

Description
This function calls the Microsoft ShellExecute function as defined in

 http://msdn.microsoft.com/en-us/library/bb762153%28v=vs.85%29.aspx
This Microsoft call executes an operation on a file.
The 12d function gives access to the Microsoft ShellExecute arguments that are in bold (and also
not have a // in front of them):

 HINSTANCE ShellExecute(
 __in_opt HWND hwnd,
 __in_opt LPCTSTR lpOperation,
 __in LPCTSTR lpFile,
 __in_opt LPCTSTR lpParameters,
 __in_opt LPCTSTR lpDirectory,
 __in INT nShowCmd);
where operation is passed as lpOperation, file is passed as lp, parameters is passed as
lpParameters, directory is passed as lpDirectory and showcmd is passed as ShowCmd.

widget is passed as hwnd, and in most standard case, it is the current macro panel.
The handle to the created process is returned in Unknown handle.
The macro can check if the process is still running by calling Process_exists.

A function return value of zero indicates the function was successful.
Note: Create_process can not be called from 12d Model Practise version.
 ID = 1623

Get_display_resolution(Integer &width,Integer &height)
Name
Integer Get_display_resolution(Integer &width,Integer &height)

Description
Get display resolution of current work area as number pixels Integer width height
A return value of zero indicates the function call was successful.

ID = 3180

Is_12d_exe_64bit()
Name
Integer Is_12d_exe_64bit()

Description
A return value of one if the current session of 12D is running from 64bit exe; return zero
otherwise.

ID = 3840
Page 144 System

Chapter 5 12dPL Library Calls
5.15 Ids, Uids and Guids
Elements and Models created within 12d Model are given a unique identifier called a Uid.
When a new element or model is created, it is given the next available Uid. Uid’s are never
reused so when an element or model is deleted, its Uid is not available for any other element or
model.
A Uid is made up of two parts:

(a) a Global Unique Identifier (Guid)
and a

(b) 12d Model generated Id.

Guid’s
A Global Unique Identifier (Guid) is a unique number which encodes space and time (see Guid
in Wikipedia). Whenever a 12d Model project is created, a Guid is generated at the time of
creation and this Guid is permanently stored as part of the 12d Model project. The Guid takes
128 bits of storage. If a 12d Model copy is made of a project, then the new project is given a new
unique Guid.

Id’s
When a 12d Model project is created, the project Id counter, which is a 64-bit Integer, is set to
zero and every time a new element is created, the Id counter is incremented and the new
element given the current Id value.

The Id counter only ever increases and if an element in a project is deleted, its Id is never reused.

Uid
For a 12d Model Element, the Uid consists of both the Guid of its parent project and its unique Id
within that project.

To make things easier, if an element is created in a project, then for the Uid of that element, the
Print and To_text calls for the Uid just print out the local Id of the Uid.

Note - the call Is_Global checks to see if the Uid is a local Uid (that is, from the project that the
macro is running in), or a Global Uid (that is, from a shared project). See Is_global(Uid uid).

For documentation on Uid Arithmetic, go to the section 5.15.1 Uid Arithmetic
For documentation on Uid calls, go to the section 5.15.2 Uid Functions

5.15.1 Uid Arithmetic
Because a Uid’s consist of a Guid and an Integer Id, a Uid Arithmetic has been included in the
12dPL where for an Uid uid,

uid + n
is defined to be that n is added to the Id part of the Uid where n is a positive or negative integer
(whole number). This works for either a local or a global Uid.
Page 145Ids, Uids and Guids

12d Model Programming Language Manual
The increment and decrement operators also work for local and global Uids. That is,
uid++
++uid

uid--
--uid

are all defined for both local and global uids.

If two Uids are both local Uids, then they can be subtracted and the value is the subtraction of the
two Ids of the Uids.
That is, if the Uids uid1 and uid2 are both local Uids, then

Integer diff = uid1 - uid2
is defined and is the difference between the Id of uid1 and the Id of uid2.
If either uid1 or uid1 are global Uids then the difference of them is not defined.

Note - the call Is_Global checks to see if the Uid is a local Uid (that is, from the project that the
macro is running in), or a Global Uid (that is, from a shared project). See Is_global(Uid uid).

5.15.2 Uid Functions
Get_next_uid()
Name
Uid Get_next_uid()

Description
Get the next available Uid and return it as the function return value.
This is often used in Undo’s.

ID = 1920

Get_next_id()
Name
Integer Get_next_id()

Description
Get the next available Id and return it as the function return value.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Uid Get_next_uid() instead.
ID = 1892

Get_last_uid()
Name
Uid Get_last_uid()

Description
Get the last used Uid (that is the one from the last created Element) and return it as the function
return value.
Page 146 Ids, Uids and Guids

Chapter 5 12dPL Library Calls
ID = 2072

Get_last_id()
Name
Integer Get_last_id()

Description
Get the last used Id (that is the one from the last created Element) and return it as the function
return value.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_last_uid instead (see Get_last_uid().
ID = 2071

void Print(Uid uid)
Name
void Print(Uid uid)

Description
Prints a text conversion of the UID uid to the Output Window.
Three is no function return value.

ID = 2052

Convert_uid(Uid uid,Text &txt)
Name
Integer Convert_uid(Uid uid,Text &txt)

Description
Convert the UID uid to a Text. The Text is returned in txt.
A function return value of zero indicates the Uid was successfully converted to text.
ID = 2053

Convert_uid(Uid uid,Integer &id)
Name
Integer Convert_uid(Uid uid,Integer &id)

Description
Convert the UID uid to an Integer The Integer is returned in id.
Note - this in only possible if the uid can be expressed as an Integer,
A function return value of zero indicates the Uid was successfully converted. to an Integer.

ID = 2054

Convert_uid(Text txt,Uid &uid)
Name
Integer Convert_uid(Text txt,Uid &uid)
Page 147Ids, Uids and Guids

12d Model Programming Language Manual
Description
Convert the Text txt to an UID. The Uid is returned in uid.
Note - this in only possible if txt is in the correct form of an Uid.

A function return value of zero indicates the Text was successfully converted to a Uid.
 ID = 2055

Convert_uid(Integer id,Uid &uid)
Name
Integer Convert_uid(Integer id,Uid &uid)

Description
Convert the Integer id to an UID. The Uid is returned in uid.
Note - this in only possible if the Integer id can be expressed as an Uid.
A function return value of zero indicates the Integer was successfully converted to a Uid.

ID = 2056

To_text(Uid uid)
Name
Text To_text(Uid uid)

Description
Convert the UID uid to a Text.
The Text is returned as the function return value.
ID = 2057

From_text(Text txt,Uid &uid)
Name
Integer From_text(Text txt,Uid &uid)

Description
Convert the Text txt to a Uid and the Uid is returned in uid.
A function return value of zero indicates the txt was successfully converted to a Uid.

ID = 2063

Null(Uid &uid)
Name
void Null(Uid &uid)

Description
Set the UID uid to be a null Uid.

There is no function return value.
 ID = 2058
Page 148 Ids, Uids and Guids

Chapter 5 12dPL Library Calls
Is_null(Uid uid)
Name
Integer Is_null(Uid uid) \

Description
Check to see if the UID uid is a null Uid.

A non-zero function return value indicates that uid is null.
A zero function return value indicates that uid is not null.
Warning this is the opposite of most 12dPL function return values

 ID = 2059

Is_contour(Uid uid)
Name
Integer Is_contour(Uid uid)

Description
Check to see if the UID uid is the Uid of a string created by a 12d Model Contour option.
Note - such strings are ignored in 12d Model number counts for Base size.
A non-zero function return value indicates that the uid is of a string created by a 12d Model
Contour option.

A zero function return value indicates that the uid is not the uid of a string created by a 12d Model
Contour option.
Warning this is the opposite of most 12dPL function return values
ID = 2064

Is_plot(Uid uid)
Name
Integer Is_plot(Uid uid)

Description
Check to see if the UID uid is the Uid of a string created by a 12d Model Plot option.
Note - such strings are ignored in 12d Model number counts for Base size.

A non-zero function return value indicates that the uid is of a string created by a 12d Model Plot
option.
A zero function return value indicates that the uid is not the uid of a string created by a 12d Model
Plot option.
Warning this is the opposite of most 12dPL function return values

 ID = 2065

Is_function(Uid uid)
Name
Integer Is_function(Uid uid)

Description
Check to see if the UID 12d Model is the Uid of a 12d Model Function/Macro_Function.
Page 149Ids, Uids and Guids

12d Model Programming Language Manual
A non-zero function return value indicates that the uid is of a 12d Model Function/
Macro_Function
A zero function return value indicates that the uid is not the uid of a 12d Model Function/
Macro_Function.
Warning this is the opposite of most 12dPL function return values

 ID = 2066

Function_exists(Integer id)
Name
Integer Function_exists(Integer id)

Description
Check to see if id is the Id of a 12d Function.

1 for yes
A non-zero function return value indicates that id is the Id of a 12d Model Function/
Macro_Function
A zero function return value indicates that id is not the Id of a 12d Model Function/
Macro_Function.

Warning this is the opposite of most 12dPL function return values
Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Integer Is_function(Uid uid) instead.

ID = 1187

Is_valid(Uid uid)
Name
Integer Is_valid(Uid uid)

Description
Check to see if the UID uid is a valid Uid.

A non-zero function return value indicates that uid is a valid Uid.
Warning this is the opposite of most 12dPL function return values
ID = 2060

Is_unknown(Uid uid)
Name
Integer Is_unknown(Uid uid)

Description
Check to see if the UID uid is a valid Uid.
A non-zero function return value indicates that uid is not a valid Uid.

Warning this is the opposite of most 12dPL function return values
 ID = 2061

Is_global(Uid uid)
Page 150 Ids, Uids and Guids

Chapter 5 12dPL Library Calls
Name
Integer Is_global(Uid uid)

Description
Check to see if the UID uid is of a shared element. That is, the element has not been created in
this project but has been shared in from another project.
A non-zero function return value indicates that uid is of a shared element.
Warning this is the opposite of most 12dPL function return values

ID = 2062

Convert_guid(Guid guid,Text &txt)
Name
Integer Convert_guid(Guid guid,Text &txt)

Description
Convert the GUID guid to a Text. The Text is returned in txt.
A function return value of zero indicates the Guid was successfully converted to text.
ID = 3213

Convert_guid(Text txt,Guid &guid)
Name
Integer Convert_guid(Text txt,Guid &guid)

Description
Convert the Text txt to a GUID. The Guid is returned in guid.
Note - this in only possible if txt is in the correct form of a Guid.

A function return value of zero indicates the Text was successfully converted to a Guid.
 ID = 3214

void Print(Guid guid)
Name
void Print(Guid guid)

Description
Prints a text conversion of the GUID guid to the Output Window.
Three is no function return value.
ID = 3562

Null(Guid &guid)
Name
void Null(Guid &guid)

Description
Set the GUID guid to be a null Guid.

There is no function return value.
Page 151Ids, Uids and Guids

12d Model Programming Language Manual
 ID = 3771

Is_valid(Guid guid)
Name
Integer Is_valid(Guid guid)

Description
Check to see if the GUID guid is valid.

A non-zero function return value indicates that guid is a valid Guid.
Warning this is the opposite of most 12dPL function return values
ID = 3772

Is_same(Guid guid1,Guid guid2)
Name
Integer Is_same(Guid guid1,Guid guid2)

Description
Check to see if the GUID guid1 is the same as the GUID guid2.
A non-zero function return value indicates that the two GUID are the same.

ID = 3773

GUID_Gen(Integer format,Integer classic,Integer comment,Text &guid)
Name
Integer GUID_Gen(Integer format,Integer classic,Integer comment,Text &guid)

Description
Generate a new GUID and assign the text representation to Text guid.
If Integer classic is not zero, then the GUID generation might be less secure, e.g. it can be
traced back to the ethernet address of the user computer.
Valid format is Integer from 0 to 7

Format 0 example guid
EEE5D2B7-DCCE-11D3-B4C4-D237E35336F0
Format 1 example guid

// {EEE5D2B4-DCCE-11D3-B4C4-D237E35336F0} ... only there if comment is not zero
 IMPLEMENT_OLECREATE(<<class>>, <<external_name>>,
 0xeee5d2b4, 0xdcce, 0x11d3, 0xb4, 0xc4, 0xd2, 0x37, 0xe3, 0x53, 0x36, 0xf0);

Format 2 example guid
// {EEE5D2B5-DCCE-11D3-B4C4-D237E35336F0} ... only there if comment is not zero
 DEFINE_GUID(<<name>>,

 0xeee5d2b5, 0xdcce, 0x11d3, 0xb4, 0xc4, 0xd2, 0x37, 0xe3, 0x53, 0x36, 0xf0);
Format 3 example guid
// {EEE5D2B6-DCCE-11D3-B4C4-D237E35336F0} ... only there if comment is not zero

 static const GUID <<name>> =
Page 152 Ids, Uids and Guids

Chapter 5 12dPL Library Calls
 { 0xeee5d2b6, 0xdcce, 0x11d3, { 0xb4, 0xc4, 0xd2, 0x37, 0xe3, 0x53, 0x36, 0xf0 } };
Format 4 example guid
{EEE5D2B7-DCCE-11D3-B4C4-D237E35336F0}

Format 5 example guid
EEE5D2B7-DCCE-11D3-B4C4-D237E35336F0
Format 6 example guid

__declspec(uuid("EEE5D2B4-DCCE-11D3-B4C4-D237E35336F0"))
Format 7 the guid contains six 32 Bit integers from the components of the GUID structure in base
64

A function return value of zero indicates the guid text was successfully generated.
 ID = 2305

GUID_Gen(Guid guid,Integer format,Integer comment,Text &guid_text)
Name
Integer GUID_Gen(Guid guid,Integer format,Integer comment,Text &guid)

Description
Form the text representation to Text guid_text of a given Guid guid.
Valid format is Integer from 0 to 7

Format 0 example guid
EEE5D2B7-DCCE-11D3-B4C4-D237E35336F0
Format 1 example guid

// {EEE5D2B4-DCCE-11D3-B4C4-D237E35336F0} ... only there if comment is not zero
 IMPLEMENT_OLECREATE(<<class>>, <<external_name>>,
 0xeee5d2b4, 0xdcce, 0x11d3, 0xb4, 0xc4, 0xd2, 0x37, 0xe3, 0x53, 0x36, 0xf0);

Format 2 example guid
// {EEE5D2B5-DCCE-11D3-B4C4-D237E35336F0} ... only there if comment is not zero
 DEFINE_GUID(<<name>>,

 0xeee5d2b5, 0xdcce, 0x11d3, 0xb4, 0xc4, 0xd2, 0x37, 0xe3, 0x53, 0x36, 0xf0);
Format 3 example guid
// {EEE5D2B6-DCCE-11D3-B4C4-D237E35336F0} ... only there if comment is not zero

 static const GUID <<name>> =
 { 0xeee5d2b6, 0xdcce, 0x11d3, { 0xb4, 0xc4, 0xd2, 0x37, 0xe3, 0x53, 0x36, 0xf0 } };
Format 4 example guid

{EEE5D2B7-DCCE-11D3-B4C4-D237E35336F0}
Format 5 example guid
EEE5D2B7-DCCE-11D3-B4C4-D237E35336F0

Format 6 example guid
__declspec(uuid("EEE5D2B4-DCCE-11D3-B4C4-D237E35336F0"))

Format 7 the guid contains six 32 Bit integers from the components of the GUID structure in base
64
Page 153Ids, Uids and Guids

12d Model Programming Language Manual

A function return value of zero indicates the guid text was successfully set.
ID = 3832
Page 154 Ids, Uids and Guids

Chapter 5 12dPL Library Calls
5.16 Input/Output

5.16.1 Output Window
Information can be written out to the 12d Model Output Window.

Print(Text msg)
Name
void Print(Text msg)

Description
Print the Text msg to the Output Window.
ID = 24

Print(Integer value)
Name
void Print(Integer value)

Description
Print the Integer value out in text to the Output Window.
ID = 22

Print(Integer64 value)
Name
void Print(Integer64 value)

Description
Print the 64 bit Integer value out in text to the Output Window.
ID = 3561

Print(Real value)
Name
void Print(Real value)

Description
Print the Real value with six (6) decimal places out in text to the Output Window. For more (or
less) decimal places, use To_text call to create the text to be printed with the call Print(Text
msg); for example Print(To_text(r,12)) will print Real r with 12 decimal places to the Output
Window.
ID = 23

Print(Attribute_Blob value)
Name
void Print(Attribute_Blob value)

Description
Page 155Input/Output

12d Model Programming Language Manual
Convert Attribute_Blob value to text and print out the text to the Output Window.
ID = 3563

Print()
Name
void Print()

Description
Print the text "\n" (a new line) to the Output Window.
ID = 25

Clear_console()
Name
 void Clear_console()

Description
Clear the Output Window of any previous information.
Warning: This function work on the Output Window, not the Macro Console.
ID = 1295

Show_console(Integer show)
Name
Integer Show_console(Integer show)

Description
If show = 0, the Output Window is hidden.
If show = 1, the Output Window is shown.
Warning: This function works on the Output Window, not the Macro Console.
A function return value of zero indicates the function was successful.

Note: the Output Window can also be turned on/off with the 12d Model toggle option
Window =>Output Window.

ID = 1728

Is_console_visible()
Name
Integer Is_console_visible()

Description
The function return value indicates if the Output Window is visible or hidden.

If the Integer return value is 0 then the Output Window is hidden.
If the Integer return value is 1 then the Output Window is visible (not hidden).
Warning: This function works on the Output Window, not the Macro Console.

ID = 1729
Page 156 Input/Output

Chapter 5 12dPL Library Calls
Is_console_floating()
Name
Integer Is_console_floating()

Description
The function return value indicates if the Output Window is floating or not floating.
If the Integer return value is 1 then the Output Window is floating.

If the Integer return value is 0 then the Output Window is either not floating or not visible.
Warning: This function works on the Output Window, not the Macro Console.

ID = 1731

5.16.2 Clipboard
Data can be written to, and read from the Clipboard.

Console_to_clipboard()
Name
Integer Console_to_clipboard()

Description
Copy the highlighted contents of the Output Window to the clip board.

Warning: This function works on the Output Window, not the Macro Console.
A function return value of zero indicates the copy was successful.
ID = 1736

Set_clipboard_text(Text txt)
Name
Integer Set_clipboard_text(Text txt)

Description
Write the Text txt to the clip board.
A function return value of zero indicates the write was successful.

ID = 1521

Get_clipboard_text(Text &txt)
Name
Integer Get_clipboard_text(Text &txt)

Description
Get the text in the clipboard and return in Text txt.
A function return value of zero indicates the read was successful.
ID = 1522
Page 157Input/Output

12d Model Programming Language Manual
5.16.3 Files
Disk files are used extensively in computing for reasons such as passing data between
programs, writing out permanent records and reading in bulk input data.

12dPL provides a wide range of functions to allow the user to easily read and write files within
macros.
For reading in text data, 12dPL provides the File_read_line function which reads one line of text.
The powerful 12dPL Text functions are then be used on the line of text line to "pull the line apart"
and extract the relevant information.
Similarly, the File_write_line function outputs one text line and the powerful Text functions are
used to build up the line of text before it is written out.

For binary files, there are functions to read and write out Real, Integer and Text variables and
Real and Integer arrays.

File_exists(Text file_name)
Name
Integer File_exists(Text file_name)

Description
Checks to see if a file of name file_name exists.
A non-zero function return value indicates the file exists.

A zero function return value indicates the file does not exist.
Warning - this is the opposite to most 12dPL function return values

ID = 202

File_open(Text file_name,Text mode,Text ccs_text,File &file)
Name
Integer File_open(Text file_name,Text mode,Text ccs_text,File &file)

Description
Opens a file of name file_name with open type mode. The file unit is returned as File file.

The file can be opened as a Unicode file with a specified encoding or as an ANSI file by using a
non-blank value for the ccs_text parameter.
The available modes are
r open for reading. If the file does not exist then it fails.
r+ open for update, that is for reading and writing. The file must exist.
rb read binary
w opens a file for writing. If the files exists, its current contents are destroyed.
w+ opens a file for reading and writing. If the files exists, its current contents are

 destroyed
wb write binary
a open for writing at the end of file (before the end of file marker).

 If the file does not exist then it is created.
a+ opens for reading and writing to the end of the file (before the end of file marker).

 If the file does not exist then it is created.

When a file is open for append (i.e. a or a+), it is impossible to overwrite information that is
already in the file. Any writes are automatically added to the end of the file.
ccs_text specifies the coded character set to use and can have the values:

ccs_text = "ccs = UTF-8"
Page 158 Input/Output

Chapter 5 12dPL Library Calls
ccs_text = "ccs = UTF-16LE"
ccs_text = "ccs = UNICODE"

or ccs_text = "" (leave it blank) if ANSI encoding is required.

For example
File_open("test file", "w","ccs=UNICODE",file_handle);

Note: BOM detection only applies to files that are opened in Unicode mode (that is, by passing a
non blank ccs parameter).

If the file already exists and is opened for reading or appending, the Byte Order Mark (BOM), if it
present in the file, determines the encoding. The BOM encoding takes precedence over the
encoding that is specified by the ccs flag. The ccs encoding is only used when no BOM is
present or the file is a new file.
The following table summarises the use of Byte Order Marks (BOM’s) for the various ccs flags
given to File_open and what happens when there is a BOM in an existing file.

Files opened for writing in Unicode mode (non-blank ccs) automatically have a BOM written to
them.

When a file that begins with a Byte Order Mark (BOM) is opened, the file pointer is positioned
after the BOM (that is, at the start of the file's actual content).

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the file was opened successfully.
ID = 2076

File_open(Text file_name,Text mode,File &file)
Name
Integer File_open(Text file_name,Text mode,File &file)

Description
Note: this option now only creates UNICODE files. To open a ANSI file, use File_open(Text
file_name,Text mode,Text ccs_text,File &file) with ccs_text = "" instead.
Opens a file of name file_name with open type mode. The file unit is returned as File file.

The available modes are
r open for reading
r+ open for update, reading and writing
rb read binary
w truncate or create for writing
w+ truncate or create for update
wb write binary

 Encodings Used When Opening a File Based on non blank ccs Flag and BOM

ccs flag No BOM (or new file) BOM: UTF-8 BOM: UTF-16
UNICODE UTF-16LE UTF-8 UTF-16LE
UTF-8 UTF-8 UTF-8 UTF-16LE
UTF-16LE UTF-16LE UTF-8 UTF-16LE
Page 159Input/Output

12d Model Programming Language Manual
a append open for writing at the end of file or create for writing
a+ open for update at end of file or create for update
When a file is open for append (i.e. a or a+), it is impossible to overwrite information that is
already in the file.
A function return value of zero indicates the file was opened successfully.

ID = 335

File_read_line(File file,Text &text_in)
Name
Integer File_read_line(File file,Text &text_in)

Description
Read a line of text from the File file. The text is read into the Text text_in.

A function return value of -1 indicates the end of the file.
A function return value of zero indicates the text was successfully read in.
ID = 337

File_write_line(File file,Text text_out)
Name
Integer File_write_line(File file,Text text_out)

Description
Write a line of text to the File file. The text to write out is Text text_out.
A function return value of zero indicates the text was successfully written out.
ID = 338

File_tell(File file,Integer &pos)
Name
Integer File_tell(File file,Integer &pos)

Description
Get the current position in the File file.
A function return value of zero indicates the file position was successfully found.
ID = 341

File_seek(File file,Integer pos)
Name
Integer File_seek(File file,Integer pos)

Description
Go to the position pos in the File file.
Position pos has normally been found by a previous File_tell call.

If the file open type was a or a+, then a File_seek cannot be used to position for a write in any
part of the file that existed when the file was opened.
Page 160 Input/Output

Chapter 5 12dPL Library Calls
If you have to File_seek to the beginning of the file, use File_tell to get the initial position and
File_seek to it rather than to position 0.
So for a Unicode file, if you have to File_seek to the beginning of the file but after the BOM you
need to first have used a File_tell to get and record the position of the initial start of the file when
it is opened (for a Unicode file, File_open positions after the BOM) and then to File_seek to that
recorded beginning of the file rather than to File_seek to position 0.

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the file position was successfully found.
ID = 342

File_flush(File file)
Name
Integer File_flush(File file)

Description
Make sure the File file is up to date with what has been written out.

A function return value of zero indicates the file was successfully flushed.
ID = 340

File_rewind(File file)
Name
Integer File_rewind(File file)

Description
Rewind the File file to its beginning.
WARNING: This function is not to be used with a Unicode file.
If the file is a Unicode file then File_rewind will rewind to BEFORE the BOM. Then writing out
any information will overwrite the BOM.

So for a Unicode file, to correctly position to the beginning of the file but after the BOM you need
to first have used a File_tell when opening the file to get and record position of the initial start of
the file (for a Unicode file, File_open positions after the BOM) and then to File_seek to that
recorded beginning of the file rather than to File_seek to position 0.

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the file was successfully rewound.
ID = 339

File_read(File file,Integer &value)
Name
Integer File_read(File file,Integer &value)

Description
Read four bytes from the binary file file and return it as an Integer in value.
A function return value of zero indicates the Integer was successfully returned.
Page 161Input/Output

12d Model Programming Language Manual
ID = 1710

File_write(File file,Integer value)
Name
Integer File_write(File file,Integer value)

Description
Write out value as a four byte integer to the binary file file.

A function return value of zero indicates the Integer was successfully written.
ID = 1713

File_read(File file,Real &value)
Name
Integer File_read(File file,Real &value)

Description
Read eight bytes from the binary file file and return it as a Real in value.
A function return value of zero indicates the Real was successfully returned.
ID = 1711

File_write(File file,Real value)
Name
Integer File_write(File file,Real value)

Description
Write out value as an eight byte real to the binary file file.

A function return value of zero indicates the Real was successfully written.
ID = 1714

File_read_unicode(File file,Integer length,Text &value)
Name
Integer File_read_unicode(File file,Integer length,Text &value)

Description
Read length bytes from the binary file file and return it as Text in value.
Note - this works for UNICODE files.

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the Text was successfully returned.
ID = 2676

File_write_unicode(File file,Integer length,Text value)
Name
Page 162 Input/Output

Chapter 5 12dPL Library Calls
Integer File_write_unicode(File file,Integer length,Text value)

Description
Write out value as length lots of two byte Unicode characters to the binary file file.

If there is less than length characters in Text then the number of characters is brought up to
length by writing out null padding.

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the Text was successfully written.
ID = 2677

File_read(File file,Integer length,Text &value)
Name
Integer File_read(File file,Integer length,Text &value)

Description
Read length bytes from the binary file file and return it as Text in value.
Note - this only works for ANSI Text.

If any of the characters of Text is not ANSI, then a non-zero function return value is returned.
WARNING: This function is not to be used for Unicode files. For Unicode files, use
File_read_unicode(File file,Integer length,Text &value) instead.

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the Text was successfully returned.
ID = 1712

File_write(File file,Integer length,Text value)
Name
Integer File_write(File file,Integer length,Text value)

Description
Write out value as length lots of one byte ANSI characters to the binary file file.
If any of the characters of Text is not ANSI, then no data is written out and a non-zero function
return value is returned.

If there is less than length characters in Text then the number of characters is brought up to
length by writing out null padding.
WARNING: This function is not to be used for Unicode files. For Unicode files, use
File_write_unicode(File file,Integer length,Text value) instead.

For more information on ANSI, ASCII, Unicode, UTF’s and BOM’s, please see Set Ups.hwhich
is a copy of the information from the 12d Model Reference manual.
A function return value of zero indicates the Text was successfully written.
ID = 1715

File_read(File file,Integer length,Integer array[])
Page 163Input/Output

12d Model Programming Language Manual
Name
Integer File_read(File file,Integer length,Integer array[])

Description
Read the next length lots of four bytes from the binary file file and return them as an Integer
array in array[].
A function return value of zero indicates the Integer array was successfully returned.
ID = 1716

File_write(File file,Integer length,Integer array[])
Name
Integer File_write(File file,Integer length,Integer array[])

Description
Write out the Integer array array[] as length lots of four byte integers to the binary file file.
A function return value of zero indicates the Integer array was successfully written.

ID = 1718

File_read(File file,Integer length,Real array[])
Name
Integer File_read(File file,Integer length,Real array[])

Description
Read the next length lots of eight bytes from the binary file file and return them as a Real array
in array[].
A function return value of zero indicates the Real array was successfully returned.
ID = 1717

File_write(File file,Integer length,Real array[])
Name
Integer File_write(File file,Integer length,Real array[])

Description
Write out the Integer array array[] as length lots of eight byte reals to the binary file file.
A function return value of zero indicates the Real array was successfully written.

ID = 1719

File_read_short(File file,Integer &value)
Name
Integer File_read_short(File file,Integer &value)

Description
Read two bytes from the binary file file and return it as an Integer in value.

A function return value of zero indicates the Integer was successfully returned.
ID = 1720
Page 164 Input/Output

Chapter 5 12dPL Library Calls
File_write_short(File file,Integer value)
Name
Integer File_write_short(File file,Integer value)

Description
Write out value as a two byte integer to the binary file file.
Because it is only a two byte integer, value must be between -2 to the power of 32, and +2 to the
power 32.

A function return value of zero indicates the Integer was successfully written.
ID = 1722

File_read_short(File file,Real &value)
Name
Integer File_read_short(File file,Real &value)

Description
Read four bytes from the binary file file and return it as a Real in value.
Note - value can only be in the range -32,768 and 32,767.

A function return value of zero indicates the Real was successfully returned.
ID = 1721

File_write_short(File file,Real value)
Name
Integer File_write_short(File file,Real value)

Description
Write out value as a four byte real to the binary file file.
Because it is only a four byte real, only seven significant figures can be written out.
A function return value of zero indicates the Real was successfully written.

ID = 1723

File_close(File file)
Name
Integer File_close(File file)

Description
Close the File file.

A function return value of zero indicates file was closed successfully.
ID = 336

File_delete(Text file_name)
Name
Page 165Input/Output

12d Model Programming Language Manual
Integer File_delete(Text file_name)

Description
Delete a file from the disk

A function return value of zero indicates the file was deleted.
ID = 213

File_copy(Text new_name,Text old_name)
Name
Integer File_copy(Text new_name,Text old_name)

Description
Copy a file from the disk.
A function return value of zero indicates the file was copied successfully.
ID = 3837

File_set_endian(File file,Integer big)
Name
Integer File_set_endian(File file,Integer big)

Description
<not implemented>

ID = 1708

File_get_endian(File file,Integer &big)
Name
Integer File_get_endian(File file,Integer &big)

Description
<not implemented>

ID = 1709

File_redirect(Text input_file_path,Integer read_write,Integer use_cache,Text
&output_file_path)
Name
Integer File_redirect(Text input_file_path,Integer read_write,Integer use_cache,Text &output_file_path)

Description
Currently, this function is to work out the local file path output_file_path from a Synergy input
path input_file_path.
Integer read_write 0 means the file is for reading.
Integer read_write 1 means the file is for writing.

Integer use_cache 1 means true.
A function return value of zero indicates the Real was successfully written.
ID = 3481
Page 166 Input/Output

Chapter 5 12dPL Library Calls
Read_PDF(Text pdf_file,Text output_12da)
Name
Integer Read_PDF(Text pdf_file,Text output_12da)

Description
This call is for internal 12D staff only.
Read the vectors, texts and clipping boundaries of an exist pdf file pdf_file and write the result to
an output 12da file output_12da.

A function return value of zero indicates the file was copied successfully.
ID = 3839
Page 167Input/Output

12d Model Programming Language Manual
5.16.4 12d Ascii

Read_4d_ascii(Text filename,Text prefix)
Name
Integer Read_4d_ascii(Text filename,Text prefix)

Description
Read in and process the file called filename as a 12d Ascii file. The post-prefix for models is
given in prefix.
A function return value of zero indicates the file was successfully read.
ID = 1166

Read_4d_ascii(Text filename,Dynamic_Element &list)
Name
Integer Read_4d_ascii(Text filename,Dynamic_Element &list)

Description
Read the data from the 12d Ascii file called filename and load all the created Elements into the
Dynamic_Element list.
A function return value of zero indicates the file was successfully read.

ID = 2073
Page 168 Input/Output

Chapter 5 12dPL Library Calls
5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D

From version 12 and later release of version 11, the user can write out tins in a more accurate
full tin format. Since older versions of 12d Model than v11 c1i cannot read back the 12da or
12dxml file with the tin written in the full tin format, we introduce a global boolean variable
MACRO_CALL_WRITE_FULL_TIN_4D which is defaulted to false.
If the value of the variable is true, then the (older) macro calls will output in full tin format. If the
value of the variable is false, then the (older) macro calls will not output in full tin format; which is
the default behaviour.

Write_4d_ascii(Element elt,Text filename,Integer precision,Integer
output_model_name)
Name
Integer Write_4d_ascii(Element elt,Text filename,Integer precision,Integer output_model_name)

Description
Open the file called filename, and append the 12d Ascii of the Element elt to the file. Any
coordinates and Reals are written out to precision decimal places.

If output_model_name = 1 then write the name of the Model containing elt to the file before
writing out elt.
If output_model_name = 0 then don’t write out the Model name.
For output in full tin format see 5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D.

A function return value of zero indicates the data was successfully written.
ID = 1630
Page 169Input/Output

12d Model Programming Language Manual
5.16.4.2 Write_Panel_Flags

The write ascii and XML panels have a number of tick boxes to control various aspect of output
files. There are new macro calls in version 12 to capture some of those tick boxes. In stead of
having a lot of boolean parameters one for each tick box, we use one Integer parameter which is
a bitwise sum of numbers from the set:

Panel tick box Bitwise
output times 0x00000002

output IDs 0x00000004
output points IDs 0x00000008
output attribute IDs 0x00000010

output super string vertex segment uids
0x00000020

output pipe in new format 0x00000040

dereference by computators 0x00000080
output super alignment part 0x00000100
output drawables 0x00000200

output project description 0x00000400
output compact cloud strings 0x00000800

output full tin 0x00001000
output model path 0x00002000
output hex floats 0x00004000

For example, a bitwise sums (numbers in decimal) of 8 + 16 + 2048 + 4096 = 6168 (or 0x1818 in
hex) indicates that output points IDs, attribute IDs, compact cloud strings, and full tin format are
turned on, and other features are turned off.
Note: if output full tin is on, then older versions of 12d Model than v11 c1i cannot read back the
12da or 12dxml file with the tin written in the full tin format.

Write_4d_ascii(Element elt,Text filename,Integer precision,Integer
output_model_name,Integer bool_flags,Real null_value)
Name
Integer Write_4d_ascii(Element elt,Text filename,Integer precision,Integer output_model_name,Integer
bool_flags,Real null_value)

Description
Open the file called filename, and append the 12d Ascii of the Element elt to the file. Any
coordinates and Reals are written out to precision decimal places.

If output_model_name = 1 then write the name of the Model containing elt to the file before
writing out elt.
If output_model_name = 0 then don’t write out the Model name.
For Integer bool_flags see 5.16.4.2 Write_Panel_Flags.

Null values will be written as Real null_value.
A function return value of zero indicates the data was successfully written.
Page 170 Input/Output

Chapter 5 12dPL Library Calls
ID = 3192

Write_4d_ascii(Dynamic_Element list,Text filename,Integer precision,Integer
output_model_name)
Name
Integer Write_4d_ascii(Dynamic_Element list,Text filename,Integer precision,Integer
output_model_name)

Description
Open the file called filename, and append the 12d Ascii of all the Elements in the
Dynamic_Element list to the file. Any coordinates and Reals are written out to precision decimal
places.
If output_model_name = 1 then if write the name of the Model containing each Element to the
file before writing out the Element. The Model name is not repeated if is the same as the previous
Element).

If output_model_name = 0 then don’t write out the Model names.
For output in full tin format see 5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D.
A function return value of zero indicates the data was successfully written.

ID = 1631

Write_4d_ascii(Dynamic_Element list,Text filename,Integer precision,Integer
output_model_name,Integer bool_flags,Real null_value)
Name
Integer Write_4d_ascii(Dynamic_Element list,Text filename,Integer precision,Integer
output_model_name,Integer bool_flags,Real null_value)

Description
Open the file called filename, and append the 12d Ascii of all the Elements in the
Dynamic_Element list to the file. Any coordinates and Reals are written out to precision decimal
places.
If output_model_name = 1 then if write the name of the Model containing each Element to the
file before writing out the Element. The Model name is not repeated if is the same as the previous
Element).
If output_model_name = 0 then don’t write out the Model names.

For Integer bool_flags see 5.16.4.2 Write_Panel_Flags.
Null values will be written as Real null_value.
A function return value of zero indicates the data was successfully written.

ID = 3193

Write_4d_ascii(Model model,Text filename,Integer precision,Integer
output_model_name)
Name
Integer Write_4d_ascii(Model model,Text filename,Integer precision,Integer output_model_name)

Description
Open the file called filename, and append the 12d Ascii of all the Elements in the Model model
to the file. Any coordinates and Reals are written out to precision decimal places.
Page 171Input/Output

12d Model Programming Language Manual
If output_model_name = 1 then write the name of model out to the file before the Elements.
If output_model_name = 0 then don’t write out the Model name.
For output in full tin format see 5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D.

A function return value of zero indicates the data was successfully written.
ID = 1632

Write_4d_ascii(Model model,Text filename,Integer precision,Integer
output_model_name,Integer bool_flags,Real null_value)
Name
Integer Write_4d_ascii(Model model,Text filename,Integer precision,Integer output_model_name,Integer
bool_flags,Real null_value)

Description
Open the file called filename, and append the 12d Ascii of all the Elements in the Model model
to the file. Any coordinates and Reals are written out to precision decimal places.
If output_model_name = 1 then write the name of model out to the file before the Elements.

If output_model_name = 0 then don’t write out the Model name.
For Integer bool_flags see 5.16.4.2 Write_Panel_Flags.
Null values will be written as Real null_value.

A function return value of zero indicates the data was successfully written.
ID = 3194

Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level)
Name
Integer Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level)

Description
Write the 12d Ascii of the Element elt to the File file. Any coordinates and Reals are written out
to precision decimal places. The information written to the file is indented by indent_level
spaces.
For output in full tin format see 5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D.

A function return value of zero indicates the data was successfully written.
ID = 1928

Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Integer
bool_flags,Real null_value)
Name
Integer Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Integer bool_flags,Real
null_value)

Description
Write the 12d Ascii of the Element elt to the File file. Any coordinates and Reals are written out
to precision decimal places. The information written to the file is indented by indent_level
spaces.
For Integer bool_flags see 5.16.4.2 Write_Panel_Flags.
Page 172 Input/Output

Chapter 5 12dPL Library Calls
Null values will be written as Real null_value.
A function return value of zero indicates the data was successfully written.
ID = 3195

Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Text
header)
Name
Integer Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Text header)

Description
Write the Text header to the File file and then write the 12d Ascii of the Element elt to the
File file. Any coordinates and Reals are written out to precision decimal places. The information
written to the file is indented by indent_level spaces.
For output in full tin format see 5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D.
A function return value of zero indicates the data was successfully written.

ID = 1929

Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Text
header,Integer bool_flags,Real null_value)
Name
Integer Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Text header,Integer
bool_flags,Real null_value)

Description
Write the Text header to the File file and then write the 12d Ascii of the Element elt to the
File file. Any coordinates and Reals are written out to precision decimal places. The information
written to the file is indented by indent_level spaces.
For Integer bool_flags see 5.16.4.2 Write_Panel_Flags.
Null values will be written as Real null_value.

A function return value of zero indicates the data was successfully written.
ID = 3196
Page 173Input/Output

12d Model Programming Language Manual
5.17 Menus
Menus with the same look and feel as 12d Model menus can be easily created within 12dPL.
A 12dPL menu consists of a title and any number of menu options (called buttons) that are
displayed one per line down the screen.
When the menu is displayed on the screen, the menu buttons will highlight as the cursor passes
over them. If a menu button is selected (by pressing the LB whilst the button is highlighted), the
menu will be removed from the screen and the user-defined code for the selected button
returned to the macro.

To represent menus, 12dPL has a special variable type called Menu.

Screen Co-Ordinates
When placing Menus, screen positions are given as co-ordinates (across_pos,down_pos) where
across_pos and down_pos are measured from the top left-hand corner of the 12d Model
window.
The units for screen co-ordinates are pixels.
A full computer screen is approximately 1000 pixels across by 800 pixels down.

Create_menu(Text menu_title)
Name
Menu Create_menu(Text menu_title)

Description
A Menu is created which is used when referring to this particular menu. The menu title is defined
when the menu variable is created and is the Text menu_title.
The function return value is the required Menu variable.

(To represent menus, 12dPL has this special variable type called Menu.)
ID = 171

Menu_delete(Menu menu)
Name
Integer Menu_delete(Menu menu)

Description
Delete the menu defined by Menu menu.
A function return value of zero indicates the menu was deleted successfully.
ID = 588

Create_button(Menu menu,Text button_text,Text button_reply)
Name
Integer Create_button(Menu menu,Text button_text,Text button_reply)

Description
This function adds buttons to the menu with button_text as the text for the button.
The button is also supplied with a Text button_reply which is returned to the macro through the
function Display or Display_relative when the button is selected.
Page 174 Menus

Chapter 5 12dPL Library Calls
The menu buttons will appear in the Menu in the order that they are added to the menu structure
by the Create_button function.
A function return value of zero indicates that the button was created successfully.
ID = 172

Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply)
Name
Integer Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply)

Description
When called, the Menu menu is displayed on the screen with screen co-ordinates
(across_pos,down_pos).

The menu remains displayed on the screen until a menu button is selected by the user.
When a menu button is selected, the menu is removed from the screen and the appropriate
button return code returned in the Text variable reply.
Whilst displayed on the screen, the menu can be moved around the 12d Model window by using
the mouse. When a menu selection is finally made, the actual position of the menu at selection
time is returned as (across_pos,down_pos).

A function return value of zero indicates that a successful menu selection was made.
Note
An (across_pos,down_pos) of (-1,-1) indicates the current cursor position.

ID = 173

Display_relative(Menu menu,Integer &across_rel,Integer &down_rel,Text &reply)
Name
Integer Display_relative(Menu menu,Integer &across_rel,Integer &down_rel,Text &reply)

Description
When called, the Menu menu is displayed on the screen with screen co-ordinates of
(across_rel,down_rel) relative to the cursor position.

The menu remains displayed until a menu button is selected.
When a menu button is selected, the menu is removed from the screen and the appropriate
button return code returned in the Text variable reply.
Whilst displayed, the menu can be moved in 12d Model by using the mouse. When the selection
is made, the final absolute position of the menu is returned as (across_rel,down_rel).

A function return value of zero indicates that a successful menu selection was made.
Thus the sequence used to define and display a menu and the relevant functions used are:
(a) a Menu variable is created which is used when referring to this particular menu. The menu

title is defined when the menu variable is created. Use:
Create_menu(Text menu_title)

For example

Menu menu = Create_menu("Test");
(b) the menu buttons are added to the menu structure in the order that they will appear in the

menu. The button text and the text that will be returned to the macro if the button is selected
are both supplied. Use:

Create_button(Menu menu,Text button_text,Text reply)
Page 175Menus

12d Model Programming Language Manual
For example
Create_button(menu,"First options","Op1");
Create_button(menu,"Second options","Op2");
Create_button(menu,"Finish","Fin");

(c) the menu is displayed on the screen. The menu will continued to be displayed until a menu
button is selected. When the menu button is selected, the menu is removed from the screen
and the appropriate button return code returned to the macro.

Use:
Display(Menu menu,Integer row_pos,Integer col_pos,

Text &reply)

Display_relative(Menu menu,Integer row_pos,Integer col_pos,
Text &reply)

For example
Display(menu,5,10,reply);

A more complete example of defining and using a menu is:
void main()

{
 // create a menu with title "Silly Menu"
 Menu menu = Create_menu("Silly Menu");
 /* add menu button with titles "Read", "Write", "Draw"
 and "Quit". The returns codes for the buttons are
 the same as the button titles
 */

 Create_button(menu,"Read","Read");
 Create_button(menu,"Write","Write");
 Create_button(menu,"Draw","Draw");
 Create_button(menu,"Quit","Quit");
 /* display the menu on the screen at the current cursor
 position and wait for a button to selected.
 When a button is selected, print out its return code
 If the return code isn't "Quit", redisplay the menu.
 */
 Text reply;

 do {
 Display(menu,-1,-1,reply);
 Print(reply); Print("\n");
 } while(reply != "Quit");
}
ID = 364
Page 176 Menus

Chapter 5 12dPL Library Calls
5.18 Dynamic Arrays
The 12dPL Dynamic Arrays are used to hold one or more items. That is, a Dynamic Arrays
contains an arbitrary number of items.
The items in a Dynamic Array are accessed by their unique number position number in the
Dynamic Array.
As for fixed arrays, the Dynamic Array positions go from one to the number of items in the
Dynamic Array. However, unlike fixed arrays, extra items can be added to a Dynamic Array at
any time.

Hence a 12dPL Dynamic Array can be thought of as a dynamic array of items.
The types of Dynamic Arrays are Dynamic_Element, Dynamic_Text, Dynamic_Real and
Dynamic_Integer

For more information on Dynamic_Element, go to 5.18.1 Dynamic Element Arrays.
Dynamic_Text, go to 5.18.2 Dynamic Text Arrays.
Dynamic_Real, go to 5.18.3 Dynamic Real Arrays.
Dynamic_Integer, go to 5.18.4 Dynamic Integer Arrays.
Page 177Dynamic Arrays

12d Model Programming Language Manual
5.18.1 Dynamic Element Arrays
The 12dPL variable type Dynamic_Element is used to hold one or more Elements. That is, a
Dynamic_Element contains an arbitrary number of Elements.

The Elements in a Dynamic_Element are accessed by their unique number position number in
the Dynamic_Element.
As for fixed arrays, the Dynamic_Element positions go from one to the number of Elements in the
Dynamic_Element. However, unlike fixed arrays, extra Elements can be added to a
Dynamic_Element at any time.
Hence a 12dPL Dynamic_Element can be thought of as a dynamic array of Elements.

The following functions are used to access and modify Elements in a Dynamic_Element.

Append(Dynamic_Element from_de,Dynamic_Element &to_de)
Name
Integer Append(Dynamic_Element from_de,Dynamic_Element &to_de)

Description
Append the contents of the Dynamic_Element from_de to the Dynamic_Element to_de.

A function return value of zero indicates the append was successful.
ID = 220

Null(Dynamic_Element &delt)
Name
Integer Null(Dynamic_Element &delt)

Description
Removes and nulls all the Elements from the Dynamic_Element delt and sets the number of
items to zero.
A function return value of zero indicates that delt was successfully nulled.

ID = 127

Get_number_of_items(Dynamic_Element &delt,Integer &no_items)
Name
Integer Get_number_of_items(Dynamic_Element &delt,Integer &no_items)

Description
Get the number of Elements currently in the Dynamic_Element delt.
The number of Elements is returned in Integer no_items.
A function return value of zero indicates the number of Elements was returned successfully.
ID = 128

Get_item(Dynamic_Element &delt,Integer i,Element &elt)
Name
Integer Get_item(Dynamic_Element &delt,Integer i,Element &elt)
Page 178 Dynamic Arrays

Chapter 5 12dPL Library Calls
Description
Get the ith Element from the Dynamic_Element delt.
The Element is returned in elt.
A function return value of zero indicates the ith Element was returned successfully.
ID = 129

Set_item(Dynamic_Element &delt,Integer i,Element elt)
Name
Integer Set_item(Dynamic_Element &delt,Integer i,Element elt)

Description
Set the ith Element in the Dynamic_Element delt to the Element elt.
If the position i is greater or equal to the total number of Elements in the Dynamic_Element, then
the Dynamic_Element will automatically be extended so that the number of Elements is i. Any
extra Elements that are added will be set to null.

A function return value of zero indicates the Element was successfully set.
ID = 130

Null_item(Dynamic_Element &delt,Integer i)
Name
Integer Null_item(Dynamic_Element &delt,Integer i)

Description
Set the ith Element to null.
A function return value of zero indicates the Element was successfully set to null.
ID = 131
Page 179Dynamic Arrays

12d Model Programming Language Manual
5.18.2 Dynamic Text Arrays
The 12dPL variable type Dynamic_Text is used to hold one or more Texts. That is, a
Dynamic_Text contains an arbitrary number of Texts.

The Texts in a Dynamic_Text are accessed by their unique number position number in the
Dynamic_Text.
As for fixed arrays, the Dynamic_Text positions go from one to the total number of items in the
Dynamic_Text. However, unlike fixed arrays, extra Text can be added to a Dynamic_Text at any
time.
Hence a 12dPL Dynamic_Text can be thought of as a dynamic array of Texts.

The following functions are used to access and modify Dynamic_Text’s.

Append(Text text,Dynamic_Text &dt)
Name
Integer Append(Text text,Dynamic_Text &dt)

Description
Append the Text text to the end of the contents of the Dynamic_Text dt. This will increase the
size of the Dynamic_Text by one.
A function return value of zero indicates the append was successful.

ID = 434

Append(Dynamic_Text from_dt,Dynamic_Text &to_dt)
Name
Integer Append(Dynamic_Text from_dt,Dynamic_Text &to_dt)

Description
Append the contents of the Dynamic_Text from_dt to the Dynamic_Text to_dt.
A function return value of zero indicates the append was successful.
ID = 230

Null(Dynamic_Text &dt)
Name
Integer Null(Dynamic_Text &dt)

Description
Removes and deletes all the Texts from the Dynamic_Text dt and sets the number of items to
zero.
A function return value of zero indicates that dt was successfully nulled.

ID = 226

Get_number_of_items(Dynamic_Text &dt,Integer &no_items)
Name
Integer Get_number_of_items(Dynamic_Text &dt,Integer &no_items)

Description
Get the number of Texts currently in the Dynamic_Text dt.
Page 180 Dynamic Arrays

Chapter 5 12dPL Library Calls
The number of Texts is returned by Integer no_items.
A function return value of zero indicates the number of Texts was successfully returned.
ID = 227

Get_item(Dynamic_Text &dt,Integer i,Text &text)
Name
Integer Get_item(Dynamic_Text &dt,Integer i,Text &text)

Description
Get the ith Text from the Dynamic_Text dt.
The Text is returned by text.
A function return value of zero indicates the ith Text was returned successfully.
ID = 228

Set_item(Dynamic_Text &dt,Integer i,Text text)
Name
Integer Set_item(Dynamic_Text &dt,Integer i,Text text)

Description
Set the ith Text in the Dynamic_Text dt to the Text text.
A function return value of zero indicates success.

ID = 229

Get_all_linestyles(Dynamic_Text &linestyles)
Name
Integer Get_all_linestyles(Dynamic_Text &linestyles)

Description
Get all linestyle names defined in the Linestyles pop-up for the current project,

and return the list in the Dynamic_Text linestyles.
A function return value of zero indicates the linestyle names were returned successfully.
ID = 688

Get_all_textstyles(Dynamic_Text &textstyles)
Name
Integer Get_all_textstyles(Dynamic_Text &textstyles)

Description
Get all textstyle names defined in the Textstyles pop-up for the current project,
and return the list in the Dynamic_Text textstyles.

A function return value of zero indicates the textstyle names are returned successfully.
ID = 689
Page 181Dynamic Arrays

12d Model Programming Language Manual
Get_all_symbols(Dynamic_Text &symbols)
Name
Integer Get_all_symbols(Dynamic_Text &symbols)

Description
Get all symbol names defined in the Symbols pop-up for the current project, and return the list in
the Dynamic_Text symbols.

A function return value of zero indicates the symbol names were returned successfully.
ID = 1724

Get_all_patterns(Dynamic_Text &patterns)
Name
Integer Get_all_patterns(Dynamic_Text &patterns)

Description
Get all pattern names defined in the Patterns pop-up for the current project, and return the list in
the Dynamic_Text patterns.
A function return value of zero indicates the function was successful.
ID = 1725
Page 182 Dynamic Arrays

Chapter 5 12dPL Library Calls
5.18.3 Dynamic Real Arrays
The 12dPL variable type Dynamic_Real is used to hold one or more Reals. That is, a
Dynamic_Real contains an arbitrary number of Reals.

The Reals in a Dynamic_Real are accessed by their unique number position number in the
Dynamic_Real.
As for fixed arrays, the Dynamic_Real positions go from one to the total number of items in the
Dynamic_Real. However, unlike fixed arrays, extra Reals can be added to a Dynamic_Real at
any time.
Hence a 12dPL Dynamic_Real can be thought of as a dynamic array of Reals.

The following functions are used to access and modify Dynamic_Real’s.

Append(Real value,Dynamic_Real &real_list)
Name
Integer Append(Real value,Dynamic_Real &real_list)

Description
Append the Real value to the end of the contents of the Dynamic_Real real_list. This will
increase the size of the Dynamic_Real by one.

A function return value of zero indicates the append was successful.
ID = 1795

Append(Dynamic_Real from_dr,Dynamic_Real &to_dr)
Name
Integer Append(Dynamic_Real from_dr,Dynamic_Real &to_dr)

Description
Append the contents of the Dynamic_Real from_dr to the Dynamic_Real to_dr.
A function return value of zero indicates the append was successful.
ID = 1794

Null(Dynamic_Real &real_list)
Name
Integer Null(Dynamic_Real &real_list)

Description
Removes all the Reals from the Dynamic_Real real_list and sets the number of items to zero.
A function return value of zero indicates that real_list was successfully nulled.

ID = 1790

Get_number_of_items(Dynamic_Real &real_list,Integer &no_items)
Name
Integer Get_number_of_items(Dynamic_Real &real_list,Integer &no_items)

Description
Get the number of Reals currently in the Dynamic_Real real_list.
Page 183Dynamic Arrays

12d Model Programming Language Manual
The number of Reals is returned in Integer no_items.
A function return value of zero indicates the number of Reals was returned successfully.
ID = 1791

Set_item(Dynamic_Real &real_list,Integer i,Real value)
Name
Integer Set_item(Dynamic_Real &real_list,Integer i,Real value)

Description
Set the ith Real in the Dynamic_Real real_list to the Real value.
If the position i is greater or equal to the total number of Real in the Dynamic_Real, then the
Dynamic_Real will automatically be extended so that the number of Reals is i. Any extra Real
values that are added will be not be set, e.g. may contain any random Real number.

A function return value of zero indicates the Real was successfully set.
ID = 1793

Get_item(Dynamic_Real &real_list,Integer i,Real &value)
Name
Integer Get_item(Dynamic_Real &real_list,Integer index,Real &value)

Description
Get the i’th Real from the Dynamic_Real real_list.
The Real is returned in value.
A function return value of zero indicates the i’th Real was returned successfully.
ID = 1792
Page 184 Dynamic Arrays

Chapter 5 12dPL Library Calls
5.18.4 Dynamic Integer Arrays
The 12dPL variable type Dynamic_Integer is used to hold one or more Integers. That is, a
Dynamic_Integer contains an arbitrary number of Integers.

The Integers in a Dynamic_Integer are accessed by their unique number position number in the
Dynamic_Integer.
As for fixed arrays, the Dynamic_Integer positions go from one to the total number of items in the
Dynamic_Integer. However, unlike fixed arrays, extra Integers can be added to a
Dynamic_Integer at any time.
Hence a 12dPL Dynamic_Integer can be thought of as a dynamic array of Integers.

The following functions are used to access and modify Dynamic_Integer’s.

Append(Integer value,Dynamic_Integer &integer_list)
Name
Integer Append(Integer value,Dynamic_Integer &integer_list)

Description
Append the Integer value to the end of the contents of the Dynamic_Integer integer_list. This
will increase the size of the Dynamic_Integer by one.

A function return value of zero indicates the append was successful.
 ID = 1785

Append(Dynamic_Integer from_di,Dynamic_Integer &to_di)
Name
Integer Append(Dynamic_Integer from_di,Dynamic_Integer &to_di)

Description
Append the contents of the Dynamic_Integer from_di to the Dynamic_Integer to_di.
A function return value of zero indicates the append was successful.
ID = 1784

Null(Dynamic_Integer &integer_list)
Name
Integer Null(Dynamic_Integer &integer_list)

Description
Removes all the Integers from the Dynamic_Integer integer_list and sets the number of items to
zero.
A function return value of zero indicates that integer_list was successfully nulled.

ID = 1780

Get_number_of_items(Dynamic_Integer &integer_list,Integer &count)
Name
Integer Get_number_of_items(Dynamic_Integer &integer_list,Integer &count)

Description
Get the number of Integers currently in the Dynamic_Integer integer_list.
Page 185Dynamic Arrays

12d Model Programming Language Manual
The number of Integers is returned in Integer no_items.
A function return value of zero indicates the number of Integers was returned successfully.
ID = 1781

Set_item(Dynamic_Integer &integer_list,Integer i,Integer value)
Name
Integer Set_item(Dynamic_Integer &integer_list,Integer i,Integer value)

Description
Set the ith Integer in the Dynamic_Integer integer_list to the Integer value.
If the position i is greater or equal the total number of Integer in the Dynamic_Integer, then the
Dynamic_Integer will automatically be extended so that the number of Integers is i. Any extra
Integer values that are added will be not be set, e.g. may contain any random Integer number.

A function return value of zero indicates the Integer was successfully set.
ID = 1783

Get_item(Dynamic_Integer &integer_list,Integer i,Integer &value)
Name
Integer Get_item(Dynamic_Integer &integer_list,Integer i,Integer &value)

Description
Get the i’th Integer from the Dynamic_Integer integer_list.
The Integer is returned in value.
A function return value of zero indicates the i’th Integer was returned successfully.
ID = 1782
Page 186 Dynamic Arrays

Chapter 5 12dPL Library Calls
5.19 Points
A variable of type Point in created in the same way as Integers and Reals. That is, the Point
variable name is given after the Point declaration.
For example, a Point of name pt is created by:
Point pt;

When the Point pt is created, it has the default co-ordinates of (0,0,0).
The co-ordinates for pt can then be set to new values using Set commands.

Get_x(Point pt)
Name
Real Get_x(Point pt)

Description
Get the x co-ordinate of the Point pt.
The function return value is the x co-ordinate value of pt.
ID = 241

Get_y(Point pt)
Name
Real Get_y(Point pt)

Description
Get the y co-ordinate of the Point pt.
The function return value is the y co-ordinate value of pt.
ID = 242

Get_z(Point pt)
Name
Real Get_z(Point pt)

Description
Get the z co-ordinate of the Point pt.
The function return value is the z co-ordinate value of pt.
ID = 243

Set_x(Point &pt,Real x)
Name
Real Set_x(Point &pt,Real x)

Description
Set the x co-ordinate of the Point pt to the value x.
The function return value is the x co-ordinate value of pt.
ID = 244
Page 187Points

12d Model Programming Language Manual
Set_y(Point &pt,Real y)
Name
Real Set_y(Point &pt,Real y)

Description
Set the y co-ordinate of the Point pt to the value y.

The function return value is the y co-ordinate value of pt.
ID = 245

Set_z(Point &pt,Real z)
Name
Real Set_z(Point &pt,Real z)

Description
Set the z co-ordinate of the Point pt to the value z.
The function return value is the z co-ordinate value of pt.
ID = 246
Page 188 Points

Chapter 5 12dPL Library Calls
5.20 Lines
A Line is three dimensional line joining two Points.
A variable of type Line is created in the same way as Points. That is, the Line variable name is
given after the Line declaration.
For example, a Line of name line created by:

Line line;
When the Line line is created, it has default start and end Points with co-ordinates of (0,0,0).
The co-ordinates for the start and end Points of the Line line can then be set to new values using
Set commands.

The direction of the Line is from the start point to the end point.

Get_start(Line line)
Name
Point Get_start(Line line)

Description
Get the start Point of the Line line.

The function return value is the start Point of line.
ID = 251

Get_end(Line line)
Name
Point Get_end(Line line)

Description
Get the end Point of the Line line.
The function return value is the start Point of line.
ID = 252

Set_start(Line &line, Point pt)
Name
Point Set_start(Line &line, Point pt)

Description
Set the start Point of the Line line to be the Point pt.
The function return value is also the start Point of line.

ID = 253

Set_end(Line &line, Point pt)
Name
Point Set_end(Line &line, Point pt)

Description
Set the end Point of the Line line to be the Point pt.
Page 189Lines

12d Model Programming Language Manual
The function return value is also the end Point of line.
ID = 254

Reverse(Line line)
Name
Line Reverse(Line line)

Description
Reverse the direction of the Line line.
That is, Reverse swaps the start and end Points of the Line line.
The unary operator "-" will also reverse a Line.

The function return value is the reversed Line.
ID = 255
Page 190 Lines

Chapter 5 12dPL Library Calls
5.21 Arcs
A 12dPL Arc is a helix which projects onto a circle in the (x,y) plane.
An Arc has a radius and Points for its centre, start and end. The radius can be positive or
negative (but not zero).
A positive radius indicates that the direction of travel between the start and end points is in the
clockwise directions (to the right).

A negative radius indicates that the direction of travel between the start and end points is in the
anti-clockwise direction (to the left).
A variable of type Arc is created in the same way as Points and Lines. That is, the Arc variable
name is given after the Arc declaration.

For example, an Arc of name arc created by:
Arc arc;

When the Arc arc is created, it has default centre (0,0,0), start, end Points with co-ordinates of
(1,0,0) and a radius of one.

The radius and co-ordinates for centre, start and end points of the Arc can then be set to new
values using Set commands.

Creating an Arc
A 12dPL Arc can be created by first setting the radius and the (x,y) co-ordinates of the centre
point to define a plan circle.
This defines the unique plan circle that the 12dPL Arc projects onto.

Next the (x,y) part of the start and end points are dropped perpendicularly onto the plan circle to
define the start and the end points of the plan projection of the arc. Thus the start and end points
used to define the arc may not lie on the created arc but stored projected points will.
Finally, the arc is given the start and end heights of the start and end points respectively.
WARNING

For a new Arc, the radius and centre point must be defined before the start and end points.

Get_centre(Arc arc)
Name
Point Get_centre(Arc arc)

Description
Get the centre point of the Arc arc.

The function return value is the centre point of the arc.
ID = 260

Get_radius(Arc arc)
Name
Real Get_radius(Arc arc)

Description
Get the radius of the Arc arc.
The function return value is the radius of the arc.
Page 191Arcs

12d Model Programming Language Manual
ID = 261

Get_start(Arc arc)
Name
Point Get_start(Arc arc)

Description
Get the start point of the Arc arc.

The function return value is the start point of the arc.
ID = 262

Get_end(Arc arc)
Name
Point Get_end(Arc arc)

Description
Get the end point of the Arc arc.
The function return value is the end point of the arc.
ID = 263

Set_centre(Arc &arc,Point pt)
Name
Point Set_centre(Arc &arc,Point pt)

Description
Set the centre point of the Arc arc to be the Point pt. The start and end points are also translated
by the vector between the new and old arc centres.

The function return value is the centre point of the arc.
ID = 264

Set_radius(Arc &arc,Real rad)
Name
Real Set_radius(Arc &arc,Real rad)

Description
Set the radius of the Arc arc to the value rad. The start and end points are projected radially onto
the new arc.
The function return value is the radius of the arc.
ID = 265

Set_start(Arc &arc,Point start)
Name
Point Set_start(Arc &arc,Point start)

Description
Page 192 Arcs

Chapter 5 12dPL Library Calls
Set the start point of the Arc arc to be the Point start. If the start point is not on the Arc, the point
is dropped perpendicularly onto the Arc to define the actual start point that lies on the Arc.
The function return value is the actual start point on the arc.
ID = 266

Set_end(Arc &arc,Point end)
Name
Point Set_end(Arc &arc,Point end)

Description
Set the end point of the Arc arc to be the Point end. If the end point is not on the Arc, the point is
dropped perpendicularly onto the Arc to define the actual end point that lies on the Arc.

The function return value is the actual end point on the arc.
ID = 267

Reverse(Arc arc)
Name
Arc Reverse(Arc arc)

Description
Reverse the sign of the radius and swap the start and end points of the Arc arc. Hence the
direction of travel for the Arc is reversed.
The unary operator "-" will also reverse an Arc.
The function return value is the Arc arc.

ID = 268
Page 193Arcs

12d Model Programming Language Manual
5.22 Spirals and Transitions
There is often confusion between the words spirals and transitions.
Basically a transition is a curve which starts with a radius of curvature of infinity, and the radius
of curvature then continuously decreases along the transition until it reaches a final value of
R.
The purpose of a transition is to have a curve to join straights and arcs so that the radius of
curvature varies continuously between the infinite radius on the straight and the radius of
curvature on the arc (the radius of curvature of an arc is the arc radius). So a transition is used to
makes a smooth transition from a straight to an arc.

A spiral (also known as Euler spiral, or natural or a clothoid) is a special curve defined for each
point on the curve by:
 r x len = a constant = K
where r is the radius of curvature at a point and len is the length of the curve to that point.

This spiral is the most common theoretical transition used in road design (and some rail design)
however because the definition was difficult to use with hand calculations, various
approximations to the real spiral have been used.
For example, what is normally called a clothoid by most road authorities is only an approximation
to the full spiral. The Westrail Cubic used by Westrail in Western Australia is a different
approximation. The Cubic Spiral is another very simple approximation used in early textbooks.
Examples of a common transitions used (mainly for rail) are:

 Cubic Parabola - used by NSW Railways. This is NOT a spiral.
 Bloss
 Sinusoidal
 Cosinusoidal
So in its basic form, a transition starts with an infinite radius of curvature, and ends with a radius
of curvature of R and a total transition length of L.

R can be:
 positive. The transition will then curve to the right

or
or negative. The transition will curve to the left. The start radius of curvature would then be
considered to be negative infinity.

The transition can be drawn in local co-ordinates with the origin (0,0) at the point where the
radius of curvature is infinity.

positive y

positive x

transition origin (0,0)

curve of positive radius R

full transition end
with radius is R

point on the transition with
local co-ordinates (x,y)

The radius at the origin
is infinity

radius r at the point

Transition in Local Coordinates

is between infinity and R and length of the
full transition is LThe length to the point is l
Page 194 Spirals and Transitions

Chapter 5 12dPL Library Calls
Sometimes the full transition curve is not required and only a part of the transition is used. The
transition is only used from a start point (at transition length start length from the beginning of
the full transition), to and end point (at transition length end length from the beginning of the full
transition).
In practise transitions are required to be used in both directions. That is, starting on a straight and
ending on a curve, or starting on a curve and ending on a straight.
So a

leading transition starts on a straight and ends on an arc of absolute value R. The absolute
value of the radius of curvature goes from infinity to a value R.
trailing transition starts on a curve of absolute radius R and ends on a straight. The absolute
value of the radius of curvature goes from infinity to a value R

Finally the transition needs to be placed in world coordinates.
So to position the transition in world coordinates, the local transition origin (0,0) is translated to
the position (x,y) (called the anchor point of the transition) and the transition is rotated about the
anchor point though the angle direction (the angle is measure in a counterclockwise direction
from the positive x axis). So the at the anchor point will be at the angle direction.

travel direction of

The absolute value of the radius decreases
going along a leading transition

positive y

positive x

transition origin (0,0)

curve of positive radius R

full transition end
with radius is R

point on the transition with
local co-ordinates (x,y)

The radius at the origin
is infinity

radius r at the point

A Leading Transition in Local Coordinates

is between infinity and R and length of the
full transition is LThe length to the point is l

start point end pointthe transition
Page 195Spirals and Transitions

12d Model Programming Language Manual
Full Leading Transition

travel direction of string

straight

transition

curve of radius +600

radius

radius of transition

anchor point

end point of transition

at end point is +600

at anchor point

length of transition from
anchor point to end point is L

angle of tangent to transition

as the angle of the straight
at the anchor point is the same

and start point of

Partial Leading Transition

travel direction of string

start point
of partial transition

anchor point

radius of transition
end point of partial transition

at end point is +600

curve of radius +600

start length of partial transition
is the length from anchor point
to the start point

full transition

is infinity

of transition

travel direction

travel direction

straight

curve of radius +600curve of radius -600

straight

leading transition
going to the left

leading transition
going to the right

i.e.negative radius i.e. positive radius

of transition

of transition
Page 196 Spirals and Transitions

Chapter 5 12dPL Library Calls
In 12d Model, a variable of type Spiral exists to define and manipulate transitions and it is used
in the same way as variable types Points, Lines and Arcs. That is, a Spiral variable name is given
after the Spiral declaration.

Note: the radius of curvature at a point on a transition is simply referred to as the radius at that
point.

Defining a Transition
A 12dPL transition (Spiral) is defined by giving:
(a) the transition type
(b) the length of the full transition L
(c) the radius R at length L That is, the radius at the end of the full transition. This is a signed

radius.
(d) the start length for the part of the full transition that is actually going to be used. - the

transition length from the start of the
This is enough to define the full transition in Local Transition Coordinates with origin at (0,0).
(e) the (x,y) position of the anchor point. That is the real world co-ordinates (x,y) of what is the

origin in local transition coordinates. It if the real world coordinates of the point on the full
transition where the radius is infinity.

(f) the angle of the tangent of the transition at the anchor point (the direction).
This defines where the full transition is in world coordinates.
(g) the start length - the length of transition from the anchor point (the position on the full

transition where the radius in infinity) to what is the first position used on the transition
(h) the end length - the length of transition from the anchor point (the position on the transition

where the radius in infinity) to what is final position used on the transition

travel direction of string

leading transition with positive radius

trailing transition with positive radius

travel direction
on leading
transition

travel direction on
trailing transition

The absolute value of the radius decreases
going along a leading transition

The absolute value of the radius increases
going along a trailing transition
Page 197Spirals and Transitions

12d Model Programming Language Manual
This finally defines what part of the full transition is actually used.

Set_type(Spiral spiral,Integer type)
Name
Integer Set_type(Spiral spiral,Integer type)

Description
LJG - this could have problems with changes. This is broken for V8, V9, V10
V7? depends on file Spirals.4d; type = 0 clothoid, 1 westrail cubic, 2 cubic spiral 3 natural
clothoid (LandXML) 4 NSW cubic parabola

V9? type = 1 clothoid, 2 westrail cubic, 3 clothoid LandXML 4 Cubic spiral 5 Natural clothoid 6
Cubic parabola
ID = 1805

Set_leading(Spiral transition,Integer leading)
Name
Integer Set_leading(Spiral transition,Integer leading)

Description
Set whether transition is a leading transition (radius decreases along the transition) or a trailing
transition (radius increases along the transition).
If leading is non-zero then it is a leading transition.
If leading is zero then it is a trailing transition.

A function return value of zero indicates that the function call was successful.
ID = 1806

Set_length(Spiral transition,Real length)
Name
Integer Set_length(Spiral transition,Real length)

Description
Set the length of the full length transition to length.
A function return value of zero indicates that the function call was successful.
Note - the length of the transition is defined from the position on the transition where the radius is
infinity (i.e. is a straight) to the other end of the transition.

For a leading transition, the radius is infinity at the start of the transition.
For a trailing transition, the radius is infinity at the end of the transition.
ID = 1807

Set_radius(Spiral trans,Real radius)
Name
Integer Set_radius(Spiral trans,Real radius)

Description
Sign of radius.
For a leading transition, set the end radius of the transition trans to radius.
For a trailing transition, set the start radius of the transition trans to radius.
Page 198 Spirals and Transitions

Chapter 5 12dPL Library Calls
Note - the radius is a signed value.
 If radius > 0 the transition curves to the right.
 If radius <0, the transition curves to the left.
A function return value of zero indicates that the function call was successful.
ID = 1808

Set_direction(Spiral trans,Real angle)
Name
Integer Set_direction(Spiral trans,Real angle)

Description
For the end of the transition trans where the radius is infinity, set the angle of the tangent at that
position to angle. angle is in radians and is measured in a counterclockwise direction from the
positive x-axis.

For a leading transition, set the angle of the tangent at the start of trans to angle.
For a trailing transition, set the angle of the tangent at the end of trans to angle.
A function return value of zero indicates that the function call was successful.
ID = 1809

Set_anchor(Spiral trans,Real point)
Name
Integer Set_anchor(Spiral trans,Real point)

Description
For the end of the transition trans where the radius is infinity, set the co-ordinates of that position
to point.
For a leading transition, the anchor point is the start of trans.
For a trailing transition, the anchor point is the end of trans.

A function return value of zero indicates that the function call was successful.
ID = 1810

Set_start_length(Spiral trans,Real start_length)
Name
Integer Set_start_length(Spiral trans,Real start_length)

Description
Set the start length of the transition trans to start_length.
A function return value of zero indicates that the function call was successful.
Note - the start length is the distance from the position on the full transition where the radius is
infinity (anchor point) to the start of the transition. If the start_length is non-zero then it is not a full
transition but a partial transition.

ID = 1811

Set_end_length(Spiral trans,Real length)
Name
Page 199Spirals and Transitions

12d Model Programming Language Manual
Integer Set_end_length(Spiral trans,Real end_length)

Description
Set the end length of the transition trans to end_length.

The end length is the distance from the position on the full transition where the radius is infinity to
the point on the transition where no more of the transition is used.

A function return value of zero indicates that the function call was successful.

Note: even through the full transition has a length of L say, the part of the transition that is
actually used is only from the start length to the end length.
ID = 1812

Set_start_height(Spiral trans,Real height)
Name
Integer Set_start_height(Spiral trans,Real height)

Description
For the transition trans, set the z-value at the position start length along the transition to height.
A function return value of zero indicates that the function call was successful.
ID = 1813

Set_end_height(Spiral trans,Real height)
Name
Integer Set_end_height(Spiral trans,Real height)

Description
For the transition trans, set the z-value at the position end length along the transition to height.
A function return value of zero indicates that the function call was successful.
ID = 1814

Get_valid(Spiral trans)
Name
Integer Get_valid(Spiral trans)

Description
If trans is a valid transition, then the function return value is zero.
If trans is not a valid transition, then the function return value is non-zero.
Note - the parameters given to define the transition may be inconsistent and not be able to define
an actual transition.

ID = 1815

Get_type(Spiral trans)
Name
Integer Get_type(Spiral trans)
Page 200 Spirals and Transitions

Chapter 5 12dPL Library Calls
Description
The list of possible return value is:
1 for Clothoid MR

2 for Westrail Cubic Clothoid
3 for Cubic Spiral
4 for Natural Clothoid

5 for Cubic Parabola
6 for Taper
7 for Bloss

8 for Sinusoidal
9 for Cosinusoidal

10 for Ellipse
11 for Parabola
12 for Hyperbola

13 for Sin Half Diminish
0 or 14 for unknown type
ID = 1816

Get_leading(Spiral trans)
Name
Integer Get_leading(Spiral trans)

Description
A transition is a leading transition if the radius decreases along the transition, or a trailing
transition if the radius increases along the transition.
If trans is a leading transition then return a non-zero function return value.
If trans is a trailing transition then return zero as the function return value.

ID = 1817

Get_length(Spiral trans)
Name
Real Get_length(Spiral trans)

Description
For the full transition of trans, return the length to the end of the full transition as the function
return value.

ID = 1818

Get_radius(Spiral trans)
Name
Real Get_radius(Spiral trans)

Description
For a leading transition trans, get the radius at the end of the full transition and return it as the
Page 201Spirals and Transitions

12d Model Programming Language Manual
function return value.
For a trailing transition trans, get the radius at the start of the full transition and return it as the
function return value.
ID = 1819

Get_direction(Spiral trans)
Name
Real Get_direction(Spiral trans)

Description
Get the angle of the tangent at the anchor point (the end of the transition trans where the radius
is infinity), and return it as the function return value.
angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

For a leading transition trans, it is the angle of the tangent at the start of the full transition.
For a trailing transition trans, it is the angle of the tangent at the end of the full transition.
ID = 1820

Get_anchor(Spiral trans)
Name
Point Get_anchor(Spiral trans)

Description
Get the co-ordinates of the anchor point (the end of the full transition where the radius is infinity),
and return them as the function return value.
For a leading transition trans, the anchor point is the start of the full transition.
For a trailing transition trans, the anchor point is the end of the full transition.

ID = 1821

Get_start_length(Spiral trans)
Name
Real Get_start_length(Spiral trans)

Description
Get the start length of the transition trans and return it as the function return value.

ID = 1822

Get_end_length(Spiral trans)
Name
Real Get_end_length(Spiral trans)

Description
Get the end length of the transition trans and return it as the function return value.

ID = 1823

Get_start_height(Spiral trans)
Page 202 Spirals and Transitions

Chapter 5 12dPL Library Calls
Name
Real Get_start_height(Spiral trans)

Description
For the transition trans, get the height at the position start length along the transition and return
it as the function return value.
ID = 1824

Get_end_height(Spiral trans)
Name
Real Get_end_height(Spiral trans)

Description
For the transition trans, get the height at the position end length along the transition and return
it as the function return value.

ID = 1825

Get_start_point(Spiral trans)
Name
Point Get_start_point(Spiral trans)

Description
For the transition trans, get the Point at the position start length along the transition and return
it as the function return value.
ID = 1826

Get_end_point(Spiral trans)
Name
Point Get_end_point(Spiral trans)

Description
For the transition trans, get the Point at the position end length along the transition and return it
as the function return value.
 ID = 1827

Get_local_point(Spiral trans,Real len)
Name
Point Get_local_point(Spiral trans,Real len)

Description
For the transition trans, get the local co-ordinates (as a Point) of the position at length len from
the start of the full transition and return it as the function return value.
Note - the transition is in world coordinates and needs to be translated and rotated before getting
the local coordinates of the position at length len along the transition.

ID = 1828
Page 203Spirals and Transitions

12d Model Programming Language Manual
Get_point(Spiral trans,Real len)
Name
Point Get_point(Spiral trans,Real len)

Description
For the transition trans, get the co-ordinates of the position (as a Point) at length len from the
start of the full transition, and return it as the function return value.

ID = 1829

Get_local_angle(Spiral trans,Real len)
Name
Real Get_local_angle(Spiral trans,Real len)

Description
For the transition trans, get the local angle of the tangent at the position at length len from the
start of the full transition, and return it as the function return value.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.
Note - the transition is in world coordinates and needs to be translated and rotated before getting
the angle of the tangent of the position at length len along the transition.
ID = 1830

Get_angle(Spiral trans,Real len)
Name
Real Get_angle(Spiral trans,Real len)

Description
For the transition trans, get the angle of the tangent of the position at length len from the start of
the full transition, and return it as the function return value.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.
 ID = 1831

Get_radius(Spiral trans,Real len)
Name
Real Get_radius(Spiral trans,Real len)

Description
For the transition trans, get the radius at the position at length len from the start of the full
transition, and return it as the function return value.
ID = 1832

Get_shift_x(Spiral trans)
Name
Real Get_shift_x(Spiral trans)

Description
shift at end point of transition trans (what is x/y which is offset, which is along tangent)
Page 204 Spirals and Transitions

Chapter 5 12dPL Library Calls
ID = 1833

Get_shift_y(Spiral trans)
Name
Real Get_shift_y(Spiral trans)

Description
shift at end point of transition trans
ID = 1834

Get_shift(Spiral trans)
Name
Real Get_shift(Spiral trans)

Description
shift
ID = 1835

Reverse(Spiral trans)
Name
Spiral Reverse(Spiral trans)

Description
Create a Spiral that is the same as transition trans but has the reverse travel direction. The
created transition is returned as the function return value.
So a leading transition becomes a trailing transition and a trailing transition becomes a leading
transition.
The unary operator "-" will also reverse a Spiral.

The function return value is the reversed Spiral.
ID = 1803
Page 205Spirals and Transitions

12d Model Programming Language Manual
5.23 Parabolas
Parabolas are used in the vertical geometry of an Alignment or Super Alignment. The vertical
geometry is defined in the (chainage, height) plane and are placed on vertical intersection points.
So the parabola is defined in the (chainage, height) plane.
In 12dPL, a Parabola is a construction entity and is not stored in 12d Model models.
A Parabola is defined by a start point, an intersection point and end point. The start point to the
intersection point, and the intersection point to the end point define the start grade and the end
grade of the parabola.

The parabola is then finally defined by giving the chainage distance between the beginning of the
parabola and the end of the parabola. This is called the length of the parabola.

Start Point

End Point

Intersection Point

Chainage

Height

length

Start of Parabola
End of Parabola

Parabola
Page 206 Parabolas

Chapter 5 12dPL Library Calls
5.24 Segments
A Segment is either a Point, Line, Arc or a Spiral.
A Segment has a unique type that specifies whether it is a Point, Line, Arc or a Spiral.
Note: a Spiral is a general transition, not just a clothoid spiral.

Get_type(Segment segment)
Name
Integer Get_type(Segment segment)

Description
Get the type of the Segment segment.
A Segment type of

1 denotes a Point
2 denotes a Line
3 denotes an Arc
4 denotes a Spiral
The function return value is the Segment type.
ID = 273

Get_point(Segment segment,Point &point)
Name
Integer Get_point(Segment segment,Point &point)

Description
If the Segment is of type 1, the Point of the Segment is returned as point, otherwise it is an error.
A function return value of zero indicates the Segment was a Point Segment and that the Point
was returned successfully.

ID = 274

Get_line(Segment segment,Line &line)
Name
Integer Get_line(Segment segment,Line &line)

Description
If the Segment is of type 2, the Line of the Segment is returned as line, otherwise it is an error.

A function return value of zero indicates the Segment was a Line Segment and that the Line was
returned successfully.
ID = 275

Get_arc(Segment segment,Arc &arc)
Name
Integer Get_arc(Segment segment,Arc &arc)

Description
If the Segment is of type 3, the Arc of the Segment is returned as arc, otherwise it is an error.
Page 207Segments

12d Model Programming Language Manual
A function return value of zero indicates the Segment was an Arc Segment and that the Arc was
returned successfully.
ID = 276

Get_spiral(Segment segment,Spiral &trans)
Name
Integer Get_spiral(Segment segment,Spiral &trans)

Description
If the Segment is of type 4, the Spiral of the Segment is returned as transition trans, otherwise it
is an error.
A function return value of zero indicates the Segment was an Spiral Segment and that the Spiral
was returned successfully.
ID = 1837

Get_start(Segment segment,Point &point)
Name
Integer Get_start(Segment segment,Point &point)

Description
Get the start Point of the Segment segment.
The start value is returned by Point point.
A function return value of zero indicates the start point was successfully returned.
ID = 550

Get_end(Segment segment,Point &point)
Name
Integer Get_end(Segment segment,Point &point)

Description
Get the end Point of the Segment segment.
The end value is returned by Point point.

A function return value of zero indicates the end point was successfully returned.
ID = 551

Set_point(Segment &segment,Point point)
Name
Integer Set_point(Segment &segment,Point point)

Description
Sets the Segment type to 1 and the Point of the Segment to point.
A function return value of zero indicates the Segment was successfully set.
ID = 277
Page 208 Segments

Chapter 5 12dPL Library Calls
Set_line(Segment &segment,Line line)
Name
Integer Set_line(Segment &segment,Line line)

Description
Sets the Segment type to 2 and the Line of the Segment to line.

A function return value of zero indicates the Segment was successfully set.
ID = 278

Set_arc(Segment &segment,Arc arc)
Name
Integer Set_arc(Segment &segment,Arc arc)

Description
Sets the Segment type to 3 and the Arc of the Segment to arc.
A function return value of zero indicates the Segment was successfully set.

ID = 279

Set_spiral(Segment &segment,Spiral trans)
Name
Integer Set_spiral(Segment &segment,Spiral trans)

Description
Sets the Segment type to 4 and the Spiral of the Segment to transition trans.

A function return value of zero indicates the Segment was successfully set.
ID = 1836

Get_curve(Segment segment,Curve &curve)
Name
Integer Get_curve(Segment segment,Curve &curve)

Description
If the Segment is of type 6, the Curve of the Segment is returned as curve, otherwise it is an
error.
A function return value of zero indicates the Segment was a Curve Segment and that the Curve
was returned successfully.

ID = 2838

Set_curve(Segment &segment,Curve curve)
Name
Integer Set_curve(Segment &segment,Curve curve)

Description
Sets the Segment type to 6 and the Curve of the Segment to curve.
Page 209Segments

12d Model Programming Language Manual
A function return value of zero indicates the Segment was successfully set.
ID = 2839

Set_start(Segment &segment,Point point)
Name
Integer Set_start(Segment &segment,Point point)

Description
Set the start Point of the Segment segment.
The start value is defined by Point point.
A function return value of zero indicates the start point was successfully set.

ID = 552

Set_end(Segment &segment,Point point)
Name
Integer Set_end(Segment &segment,Point point)

Description
Set the end Point of the Segment segment.
The end value is defined by Point point.
A function return value of zero indicates the end point was successfully set.

ID = 553

Reverse(Segment segment)
Name
Segment Reverse(Segment segment)

Description
Reverse the direction of the Segment segment.
Note that the reverse of a segment of type 1 (a Point segment) is simply a point of exactly the
same co-ordinates.
The unary operator "-" will also reverse a Segment.
The function return value is the reversed Segment.

ID = 280

Get_segments(Element elt,Integer &nsegs)
Name
Integer Get_segments(Element elt,Integer &nsegs)

Description
Get the number of segments for a string Element elt.
The number of segments is returned as nsegs
A function return value of zero indicates the data was successfully returned.
Note
Page 210 Segments

Chapter 5 12dPL Library Calls
If a string is open and has n points, then it has n-1 segments.
If a string is closed it has the same number of points and segments.
If a string is closed and has n points, then it also has n segments.

That is, If a string is closed it has the same number of points and segments.
For example, a seven point open string has six segments.
A seven point closed string has seven segments.

ID = 545

Get_segment(Element elt,Integer i,Segment &seg)
Name
Integer Get_segment(Element elt,Integer i,Segment &seg)

Description
Get the segment for the ith segment on the string.
The segment is returned as seg.

The types of segments returned are Line, or Arc.
A function return value of zero indicates the data was successfully returned.
ID = 546
Page 211Segments

12d Model Programming Language Manual
5.25 Curve

Set_type(Curve curve,Integer type)
Name
Integer Set_type(Curve curve,Integer type)

Description
Set the type of the Curve curve to the Integer type.
A return value of zero indicates the function call was successful.

The list of values for valid type:
1 Clothoid
2 Westrail Cubic Clothoid

3 Cubic Spiral
4 Natural Clothoid
5 Cubic Parabola

7 Bloss
8 Sinusoidal
9 Cosinusoidal

ID = 2817

Get_type(Curve curve)
Name
Integer Get_type(Curve curve)

Description
Return the type of the Curve curve as an Integer.
The list of values for valid type:

1 Clothoid

2 Westrail Cubic Clothoid
3 Cubic Spiral
4 Natural Clothoid

5 Cubic Parabola
7 Bloss
8 Sinusoidal

9 Cosinusoidal
ID = 2827

Set_leading(Curve curve,Integer leading)
Name
Integer Set_leading(Curve curve,Integer leading)

Description
Page 212 Curve

Chapter 5 12dPL Library Calls
Set whether curve is a leading Curve (radius decreases along the curve) or trailing curve (radius
increases along the curve).
If leading is non-zero then it is a leading curve.
If leading is zero then it is a trailing curve.

A return value of zero indicates the function call was successful.
ID = 2818

Get_leading(Curve curve)
Name
Integer Get_leading(Curve curve)

Description
A Curve is a leading if the radius decreases along the curve or trailing if the radius increases
along the curve.
If curve is a leading then the function returns one.

If curve is trailing then the function returns zero.
ID = 2828

Set_start_length(Curve curve,Real length)
Name
Integer Set_start_length(Curve curve,Real length)

Description
Set the start length of the Curve curve to the Real length.
A return value of zero indicates the function call was successful.
ID = 2819

Real Get_start_length(Curve curve)
Name
Real Get_start_length(Curve curve)

Description
Get the start length of Curve curve and return it as the function return value.
ID = 2842

Set_end_length(Curve curve,Real length)
Name
Integer Set_end_length(Curve curve,Real length)

Description
Set the end length of the Curve curve to the Real length.
A return value of zero indicates the function call was successful.

ID = 2820
Page 213Curve

12d Model Programming Language Manual
Real Get_end_length(Curve curve)
Name
Real Get_end_length(Curve curve)

Description
Get the end length of Curve curve and return it as the function return value.

ID = 2843

Set_direction(Curve curve,Real angle)
Name
Integer Set_direction(Curve curve,Real angle)

Description
For the end of the Curve curve where the radius is infinity, set the angle of the tangent at that
position to angle.

The Real angle is in radians and is measured in a counterclockwise direction from the positive x-
axis.
For a leading curve, set the angle of the tangent at the start of curve to angle.
For a trailing curve, set the angle of the tangent at the end of curve to angle.

A function return value of zero indicates that the function call was successful.
ID = 2821

Real Get_direction(Curve curve)
Name
Real Get_direction(Curve curve)

Description
Get the angle of the tangent at the anchor point (the end of the Curve curve where the radius is
infinity), and return it as the function return value.
The returned angle is in radians and is measured in a counterclockwise direction from the
positive x-axis.

For a leading Curve curve, it is the angle of the tangent at the start of the full curve.
For a trailing Curve curve, it is the angle of the tangent at the end of the full curve.
ID = 2831

Set_anchor(Curve curve,Point point)
Name
Integer Set_anchor(Curve curve,Point point)

Description
For the end of the Curve curve where the radius is infinity, set the co-ordinates of that position to
point.
For a leading transition, the anchor point is the start of curve.

For a trailing transition, the anchor point is the end of curve.
A function return value of zero indicates that the function call was successful.
Page 214 Curve

Chapter 5 12dPL Library Calls
ID = 2822

Point Get_anchor(Curve curve)
Name
Point Get_anchor(Curve curve)

Description
Get the coordinates the anchor point (the end of the Curve curve where the radius is infinity),
and return it as the function return value.

For a leading Curve curve, it is the anchor point is the start of the full curve.
For a trailing Curve curve, it is the anchor point is the end of the full curve.

ID = 2832

Set_start_height(Curve curve,Real height)
Name
Integer Set_start_height(Curve curve,Real height)

Description
For the Curve curve, set the z-value at the position start length along the curve to height.
A function return value of zero indicates that the function call was successful.
ID = 2823

Set_end_height(Curve curve,Real height)
Name
Integer Set_end_height(Curve curve,Real height)

Description
For the Curve curve, set the z-value at the position end length along the curve to height.
A function return value of zero indicates that the function call was successful.
ID = 2824

Set_offset(Curve curve,Real offset)
Name
Integer Set_offset(Curve curve,Real offset)

Description
Set the offset of the Curve curve to the Real offset.
A return value of zero indicates the function call was successful.

ID = 2825

Real Get_offset(Curve curve)
Name
Real Get_offset(Curve curve)
Page 215Curve

12d Model Programming Language Manual
Description
Return the offset of the Curve curve.
ID = 2836

Get_valid(Curve curve)
Name
Integer Get_valid(Curve curve)

Description
If curve is a valid Curve, then the function return value is one.
If curve is not a valid Curve, then the function return value is zero.

ID = 2826

Point Get_start_point(Curve curve)
Name
Point Get_start_point(Curve curve)

Description
Return the start point of the Curve curve.

ID = 2829

Point Get_end_point(Curve curve)
Name
Point Get_end_point(Curve curve)

Description
Return the end point of the Curve curve.
ID = 2830

Point Get_point(Curve curve,Real l)
Name
Point Get_point(Curve curve,Real l)

Description
For the Curve curve, get the co-ordinates of the position (as a Point) at length l from the start of
the full curve, and return it as the function return value.
ID = 2833

Real Get_angle(Curve curve,Real l)
Name
Real Get_angle(Curve curve,Real l)

Description
For the Curve curve, get the angle of the tangent of the position at length l from the start of the
full curve, and return it as the function return value.
Page 216 Curve

Chapter 5 12dPL Library Calls
The returned angle is in radians and is measured in a counterclockwise direction from the
positive x-axis.
ID = 2834

Real Get_radius(Curve curve,Real l)
Name
Real Get_radius(Curve curve,Real l)

Description
For the Curve curve, get the radius at the position at length l from the start of the full curve, and
return it as the function return value.
ID = 2835

Real Get_mvalue(Curve curve)
Name
Real Get_mvalue(Curve curve)

Description
Return the m-value of the Curve curve.
Only use when the type of the curve is cubic parabola; m-value is used in the curve equation "y =
m*x*x*x".

ID = 2837

Real Get_length(Curve curve)
Name
Real Get_length(Curve curve)

Description
For the full Curve of curve, return the length to the end of the full curve as the function return
value.

ID = 2840

Real Get_end_length(Curve curve)
Name
Real Get_end_length(Curve curve)

Description
Get the end length of Curve curve and return it as the function return value.

ID = 2843

Real Get_radius(Curve curve)
Name
Real Get_radius(Curve curve)

Description
Page 217Curve

12d Model Programming Language Manual
For a leading Curve curve, get the radius at the end of the full curve and return it as the function
return value.
For a trailing Curve curve, get the radius at the start of the full curve and return it as the function
return value.
ID = 2841

Real Get_shift_x(Curve curve)
Name
Real Get_shift_x(Curve curve)

Description
Get the shift x of Curve curve and return it as the function return value.
The x in "shift x" indicates the direction of the tangent at the start of the full curve. The shift x of a
curve is the projected distance from the start point of the of the end point in the "x" direction of the
curve.

ID = 2844

Real Get_shift_y(Curve curve)
Name
Real Get_shift_y(Curve curve)

Description
Get the shift y of Curve curve and return it as the function return value.
The y in "shift y" indicates the direction perpendicular to the tangent at the start of the full curve.
The shift y of a curve is the projected distance from the start point of the of the end point in the "y"
direction of the curve.
ID = 2845

Real Get_shift(Curve curve)
Name
Real Get_shift(Curve curve)

Description
Get the shift of Curve curve and return it as the function return value.
The shift of a curve is the distance from the tangent at the start of the full curve to the circle at the
end of the full curve.

ID = 2846

Reverse(Curve curve)
Name
Curve Reverse(Curve curve)

Description
Return the reverse Curve of the input Curve curve.

ID = 2815
Page 218 Curve

Chapter 5 12dPL Library Calls
5.26 Segment Geometry

5.26.1 Length and Area
Get_length(Segment segment,Real &length)
Name
Integer Get_length(Segment segment,Real &length)

Description
Get the plan length of the Segment segment.

A function return value of zero indicates the plan length was successfully returned.
ID = 361

Get_length_3d(Segment segment,Real &length)
Name
Integer Get_length_3d(Segment segment,Real &length)

Description
Get the 3d length of the Segment segment.
A function return value of zero indicates the 3d length was successfully returned.
ID = 362

Plan_area(Segment segment,Real &plan_area)
Name
Integer Plan_area(Segment segment,Real &plan_area)

Description
Calculate the plan area of the Segment segment. For an Arc, the plan area of the sector is
returned. For a Line and a Point, zero area is returned.
The area is returned in the Real plan_area.

A function return value of zero indicates the plan area was successfully returned.
ID = 360
Page 219Segment Geometry

12d Model Programming Language Manual
5.26.2 Parallel
The parallel command is a plan parallel and is used for Lines, Arcs and Segments.

The sign of the distance to parallel the object is used to indicate whether the object is parallelled
to the left or to the right.
A positive distance means to parallel the object to the right.
A negative distance means to parallel the object to the left.

Parallel(Line line,Real distance,Line ¶llelled)
Name
Integer Parallel(Line line,Real distance,Line ¶llelled)

Description
Plan parallel the Line line by the distance distance.
The parallelled Line is returned as the Line parallelled. The z-values are not modified, i.e. they
are the same as for line.
A function return value of zero indicates the parallel was successful.

ID = 284

Parallel(Arc arc,Real distance,Arc ¶llelled)
Name
Integer Parallel(Arc arc,Real distance,Arc ¶llelled)

Description
Plan parallel the Arc arc by the distance distance.
The parallelled Arc is returned as the Arc parallelled. The z-values are not modified, i.e. they are
the same as for arc.
A function return value of zero indicates the parallel was successful.

ID = 285

Parallel(Segment segment,Real dist,Segment ¶llelled)
Name
Integer Parallel(Segment segment,Real dist,Segment ¶llelled)

Description
Plan parallel the Segment segment by the distance dist.
The parallelled Segment is returned as the Segment parallelled. The z-values are not modified,
i.e. they are the same as for segment.
If the Segment is of type Point, a Segment is not returned and the function return value is set to
non-zero.
A function return value of zero indicates the parallel was successful.

ID = 286

Fit Arcs (fillets)

Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet)
Page 220 Segment Geometry

Chapter 5 12dPL Library Calls
Name
Integer Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet)

Description
Fit a plan arc through the (x,y) co-ordinates of the three Points pt_1, pt_2 and pt_3.
The arc is returned as Arc fillet and the z-values of its start and end points are zero.
A function return value of zero indicates success.

A non-zero return value indicates no arc exists.
ID = 289

Fitarc(Segment seg_1,Segment seg_2,Real rad,Point cpt,Arc &fillet)
Name
Integer Fitarc(Segment seg_1,Segment seg_2,Real rad,Point cpt,Arc &fillet)

Description
Create an plan arc from Segment seg_1 to Segment seg_2 with radius rad.
The arc start point is on the extended Segment seg_1 with start direction the same as the
direction of seg_1.
The arc end point is on the extended Segment seg_2 with end direction the same as the
direction of seg_1.

If more than one arc satisfies the above conditions, then the arc with centre closest to the Point
cpt will be selected.
The arc is returned as Arc fillet and the z-values of its start and end points are zero.
A function return value of zero indicates an arc exists.

A non-zero return value indicates no arc exists.
ID = 287

Fitarc(Segment seg_1,Segment seg_2,Point start_tp,Arc &fillet)
Name
Integer Fitarc(Segment seg_1,Segment seg_2,Point start_tp,Arc &fillet)

Description
Create a plan arc from Segment seg_1 to Segment seg_2.

The arc start point is the perpendicular projection of the Point start_tp onto the extended
Segment seg_1. The start direction of the arc is the same as the direction of seg_1.
The arc end point is be on the extended Segment seg_2 with end direction the same as the
direction of seg_1.
There is at most one arc that satisfies the above conditions.

The arc is returned as Arc fillet and the z-values of its start and end points are zero.
A function return value of zero indicates success.
A non-zero return value indicates no arc exists.

ID = 288
Page 221Segment Geometry

12d Model Programming Language Manual
5.26.3 Tangents
Tangent(Segment seg_1,Segment seg_2,Line &line)
Name
Integer Tangent(Segment seg_1,Segment seg_2,Line &line)

Description
Create the plan tangent line from the extended Segment seg_1 to the extended Segment set_2.

The direction of the Segments seg_1 and seg_2 is used to select a unique tangent line.
The tangent line is returned as the Line line with z-values of zero.
A function return value of zero indicates there were no errors in the calculations.

ID = 290
Page 222 Segment Geometry

Chapter 5 12dPL Library Calls
5.26.4 Intersections
Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point
&p2)
Name
Integer Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)

Description
Find the internal intersection between the Segments seg_1 and seg_2. That is, only find the
intersections of the two Segments that occur between the start and end points of the Segments.
The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2. The z-values of p1 and p2 are set to zero.

There may be zero, one or two intersection points.
A function return value of zero indicates there were no errors in the calculations.
ID = 291

Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point
&p1,Point &p2)
Name
Integer Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)

Description
Find the intersection between the extended Segments seg_1 and seg_2.

The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2. The z-values of p1 and p2 are set to zero.
There may be zero, one or two intersection points.
A function return value of zero indicates there were no errors in the calculations.

ID = 303
Page 223Segment Geometry

12d Model Programming Language Manual
5.26.5 Offset Intersections
Offset_intersect(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer
&no_intersects,Point &p1,Point &p2)
Name
Integer Offset_intersect(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point
&p1,Point &p2)

Description
Find the internal intersection between the Segments seg_1 and seg_2 that have been
perpendicularly offset by the amounts off_1 and off_2 respectively.
The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2.
The z-values of p1 and p2 are set to zero.

There may be zero, one or two intersection points.
A function return value of zero indicates there were no errors in the calculations.
ID = 292

Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real
off_2,Integer &no_intersects,Point &p1,Point &p2)
Name
Integer Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer
&no_intersects,Point &p1,Point &p2)

Description
Find the intersection between the extended Segments seg_1 and seg_2 that have been
perpendicularly offset by the amounts off_1 and off_2 respectively.
The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2. The z-values of p1 and p2 are set to zero.
There may be zero, one or two intersection points.

A function return value of zero indicates there were no errors in the calculations.
ID = 304
Page 224 Segment Geometry

Chapter 5 12dPL Library Calls
5.26.6 Angle Intersect
Angle_intersect(Point pt_1,Real ang_1,Point pt_2, Real ang_2,Point &p)
Name
Integer Angle_intersect(Point pt_1,Real ang_1,Point pt_2,Real ang_2,Point &p)

Description
Find the point of intersection of the line going through the Point pt_1 with angle ang_1 and the
line going through the Point pt_2 with angle ang_2.

The intersection point is returned as Point p. The z-values of p1 and p2 are set to zero.
A function return value of zero indicates that the two lines intersect.

A function return value of zero indicates there were no errors in the calculations.
ID = 293
Page 225Segment Geometry

12d Model Programming Language Manual
5.26.7 Distance
Get_distance(Point p1,Point p2)
Name
Real Get_distance(Point p1,Point p2)

Description
Calculate the plan distance between the Points p1 and p2.

The function return value is the plan distance.
ID = 297

Get_distance_3d(Point p1,Point p2)
Name
Real Get_distance_3d(Point p1,Point p2)

Description
Calculate the 3d distance between the Points p1 and p2.
The function return value is the 3d distance.
ID = 363
Page 226 Segment Geometry

Chapter 5 12dPL Library Calls
5.26.8 Locate Point
Locate_point(Point from,Real ang,Real dist,Point &to)
Name
Integer Locate_point(Point from,Real ang,Real dist,Point &to)

Description
Create the Point to which is a plan distance dist along the line of angle ang which goes through
the Point from. The z-value of to is the same as the z-value of from.

A function return value of zero indicates there were no errors in the calculations.
ID = 298
Page 227Segment Geometry

12d Model Programming Language Manual
5.26.9 Drop Point
Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt)
Name
Integer Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt)

Description
Drop a Point pt_to_drop perpendicularly in plan onto the Segment segment.

The position of the dropped point on the Segment in returned in the Point dropped_pt.
If the point cannot be dropped perpendicularly onto the Segment, then the point is dropped onto
the closest end point of the Segment. A z-value for dropped_pt is created by interpolation.
A function return value of zero indicates the point was dropped successfully.

ID = 299

Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt,Real &dist)
Name
Integer Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt,Real &dist)

Description
Drop a Point pt_to_drop onto the Segment segment.
The position of the dropped point on the Segment in returned in the Point dropped_pt.
The plan distance from pt_to_drop to dropped_pt is returned as dist.
If the point cannot be dropped perpendicularly onto the Segment, then the point is dropped onto
the closest end point of the Segment. A z-value for dropped_pt is created by interpolation.
A function return value of zero indicates the point was dropped successfully.
ID = 306
Page 228 Segment Geometry

Chapter 5 12dPL Library Calls
5.26.10 Projection
Projection(Segment segment,Real dist,Point &projected_pt)
Name
Integer Projection(Segment segment,Real dist,Point &projected_pt)

Description
Create the Point projected_pt that is a plan distance of dist along from the start of the extended
Segment segment.

The z-value for projected_pt is calculated by linear interpolation. Note that for an Arc, the z-
value is interpolated for one full circuit of the arc beginning at the start point and the one circuit is
used for z-values for distances greater than the length of one circuit.

A function return value of zero indicates the projection was successful.
ID = 300

Projection(Segment segment,Point start_point, Real dist,Point &projected_pt)
Name
Integer Projection(Segment segment,Point start_point,Real dist,Point &projected_pt)

Description
Create the Point projected_pt that is a plan distance of dist along the extended Segment
segment where distance is measured from the Point start_point.
If start_point does not lie on the extended Segment, then start_point is automatically dropped
onto the extended Segment to create the start point for distance measurement.
The z-value for projected_pt is calculated by linear interpolation. Note that for an Arc, the z-

value is interpolated for one full circuit of the arc beginning at the start point and the one circuit is
used for z-values for distances greater than the length of one circuit.
A function return value of zero indicates the projection was successful.
ID = 301
Page 229Segment Geometry

12d Model Programming Language Manual
5.26.11 Change Of Angles
Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real &angle)
Name
Integer Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real &angle)

Description
Calculate the deflection angle between the directed line going from (x1,y1) to (x2,y2) and the
directed line going from (x2,x2) and (x3,y3) where the deflection angle is measured in radians
and in a CLOCKWISE direction. The deflection angle is returned in angle.

The use of clockwise fits in with the definition of travelling along a road where going to the right is
considered positive and going to the left is considered negative.
WARNING: This is not the normal mathematical angle between the two vectors which is
measured in the counter clockwise direction and would be the negative of this value.
A function return value of zero indicates the angle was returned successfully.

ID = 656

Change_of_angle(Line L1,Line L2,Real &angle)
Name
Integer Change_of_angle(Line L1,Line L2,Real &angle)

Description
Calculate the deflection angle between the line L1 and the line L2 where the deflection angle is
measured in radians and in a CLOCKWISE direction. The deflection angle is returned in angle.

The use of clockwise fits in with the definition of travelling along a road where going to the right is
considered positive and going to the left is considered negative.
WARNING: This is not the normal mathematical angle between the two vectors which is
measured in the counter clockwise direction and would be the negative of this value.

A function return value of zero indicates the angle was returned successfully.
ID = 657

(x1,y1)

(x3,y3)

(x2,y2)

deflection angle

directed line from
x1,y1) to (x2,y2)

directed line from
(x2,y2) to (x3,y3)

deflection angle

line L1

line L2

start of line L1

end of line L2

end of line L1

start of line L2
Page 230 Segment Geometry

Chapter 5 12dPL Library Calls
5.27 Colours
Colours are stored in 12d Model as a number between 0 and 15, or if defined by the user,
between 0 and anything up to 255.
Colour numbers from 0 to 15 always exist.
The actual (red,green,blue) intensities and colour names used for each colour number can be
user defined.

Hence it is necessary that 12dPL provides functions to check if colours of given names or
numbers exist and to convert between colour numbers and colour names.

Colour_exists(Text col_name)
Name
Integer Colour_exists(Text col_name)

Description
Checks if a colour of name col_name exists in 12dPL.

The colour name to check for is given by Text col_name.
A non-zero function return value indicates the colour exist.
A zero function return value indicates the colour does not exist.

Warning - this is the opposite to most 12dPL function return values
ID = 66

Colour_exists(Integer col_number)
Name
Integer Colour_exists(Integer col_number)

Description
Checks if a number is a valid colour number.
The number to check for is given by Integer col_number.
A non-zero function return value indicates the number is a valid colour number.

A zero function return value indicates the number is not a valid colour number.
Warning - this is the opposite of most 12dPL function return values
ID = 65

Convert_colour(Text col_name,Integer &col_number)
Name
Integer Convert_colour(Text col_name,Integer &col_number)

Description
Tries to convert the Text col_name to a colour number.
If successful, the colour number is returned in Integer col_number.
A function return value of zero indicates the conversion was successful.
ID = 67
Page 231Colours

12d Model Programming Language Manual
Convert_colour(Integer col_number,Text &col_name)
Name
Integer Convert_colour(Integer col_number,Text &col_name)

Description
Tries to convert the Integer col_number to a colour name.

If successful, the colour name is returned in Text col_name.
A function return value of zero indicates the conversion was successful.
ID = 68

Convert_colour(Integer value,Integer &red,Integer &green,Integer &blue)
Name
Integer Convert_colour(Integer value,Integer &red,Integer &green,Integer &blue)

Description
Convert the colour number value to its red, green and blue components (0-255) and return them
in red, green and blue respectively.
A function return value of zero indicates the colour was successfully converted.

ID = 2138

Get_project_colours(Dynamic_Text &colours)
Name
Integer Get_project_colours(Dynamic_Text &colours)

Description
Get a Dynamic_Text of all the colour names defined for the project.
The colour names are returned in the Dynamic_Text colours.
A function return value of zero indicates the colours were returned successfully.

ID = 235
Page 232 Colours

Chapter 5 12dPL Library Calls
5.28 User Defined Attributes
Extra data can be attached to the Project, Models, Functions, Elements, Super String Vertices,
Super String Segments, Water Link (drainage pipe), and Water Node (drainage pit) as user
defined attributes.
The user defined attributes are contained in a variable of type Attributes.
Any number of bits of data of type Real, Integer, Text, Binary (blobs), 64-bit Integer, Uid, Guid
and Attributes can be attached to Attributes and when a bit of data is attached, it is given a
name which is used to retrieved the data at a later date.

Attribute names can contain alphabetic characters of either upper and/or lower case, numeric
characters 0-9 and blank space character; note that valid names cannot have space as leading
or trailing character.
The attribute type used for each data type is:

Data Type Attribute Type
Integer 1
Real 2
Text 3
Binary (blob) 4
Attributes 5
Uid 6
64-bit integer 7
Guid 8

Note that an Attributes att can contain zero or more user defined attributes, and zero or more
Attributes, so the Attributes definition allows Attributes inside Attributes, inside Attributes
and so on. So the data inside an Attributes forms a tree structure just like a Windows folder
system (that is, Windows folders can not only contain files and links, but also Windows folders).

For an Attributes att, all the data attached to it (called attributes) is said to be of the first level
and all the attributes must have a unique name (attribute names are case sensitive). So the
Attributes att may have zero or more attributes attached to it, each with a unique case sensitive
name, and each with an attribute type.
Attributes are added to att in a sequential order so each attribute of att will have a unique
attribute number.

If bb is an attribute of att and bb is of type Attributes, then bb is also an Attributes and can
contain its own attributes of various attribute types. The first level of bb is considered to be the
second level of att.
The value from higher level than the first level of an attribute can be access through an attribute
path. An attribute path is a sequence of attribute names separated by back slash character ’/’. In
the example above, if cc is an attribute of bb then bb/cc is an attribute path of att.
From version 14 onward, the syntax of attribute name (path) is extended to work with attributes
with the same name, we call it the array syntax for attributes. Immediately after an attribute
name, an positive number n surrounded by open and close square bracket indicate the n-th
instance of the attribute with that name. For example cc[2] is the second attribute with the name
cc.
The array (square brackets) syntax can also be used in the upper parts of an attribute path.

For example bb[3]/cc[2] is the second attribute of the name cc in the third group of the name bb.
Special note, it might be a bit hard to understand but it is an important point to use the correct
index inside the square bracket. The square bracket at upper level are counting only on group
attributes. So in counting for the third group with the name bb, all other attribute with the same
name bb will be skip if they are of other types such as Integer or Text. The counting rule for
Page 233User Defined Attributes

12d Model Programming Language Manual
square bracket at the last level of an attribute part depends on which macro call.
If the macro call is not by_type then at the last level, 12D count every attributes

with the given name. An example of a call which is not by_type is Attribute_exists;
Attribute_exists(att,"bb[3]/cc[2]") would check if the third group with the name bb in att contains
at least two attributes with the name cc.

If the macro call is by_type then at the last level, 12D count every attributes with
the given name that must match the type only. An example of a call which is by_type is
Set_attribute_by_type; Set_attribute_by_type(att,"bb[3]/cc[2]","abc") would first look for the third
group with the name bb in att contains at least two attributes of type Text with the name cc; and
then the text would be set to the Text "abc".

Attribute_exists(Attributes attr,Text att_name)
Name
Integer Attribute_exists(Attributes attr,Text att_name)

Description
Checks to see if an attribute with the name att_name exists in the Attributes attr.
att_name can have a full path name of the attribute. Attribute names are case sensitive and they
support the array syntax.

A non-zero function return value indicates that the attribute does exist.
A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 12dPL function return values
ID = 1939

Attribute_exists(Attributes attr,Text name,Integer &no)
Name
Integer Attribute_exists(Attributes attr,Text name,Integer &no)

Description
Checks to see if an attribute with the name att_name exists in the Attributes attr.
att_name can have a full path name of the attribute. Attribute names are case sensitive and they
support the array syntax.
If the attribute exists, its position is returned in Integer no.

This position can be used in other Attribute functions.

A non-zero function return value indicates the attribute does exist.

A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values
ID = 1940

Attribute_delete(Attributes attr,Text att_name)
Name
Integer Attribute_delete(Attributes attr,Text att_name)

Description
Deletes the first attribute with the name att_name from the Attributes attr. Attribute names are
Page 234 User Defined Attributes

Chapter 5 12dPL Library Calls
case sensitive and they support the array syntax.
A function return value of zero indicates the attribute was deleted.
ID = 1941

Attribute_delete(Attributes attr,Integer att_no)
Name
Integer Attribute_delete(Attributes attr,Integer att_no)

Description
Delete the attribute with the attribute number att_no from the Attributes attr.
A function return value of zero indicates the attribute was deleted.
ID = 1942

Attribute_delete_all(Attributes attr)
Name
Integer Attribute_delete_all(Attributes attr)

Description
Delete all attributes from the Attributes attr.
A function return value of zero indicates all the attribute were deleted.
ID = 1943

Get_number_of_attributes(Attributes attr,Integer &no_atts)
Name
Integer Get_number_of_attributes(Attributes attr,Integer &no_atts)

Description
Get the number of top level attributes in the Attributes attr. The number is returned in no_atts.
A function return value of zero indicates the number is successfully returned.

ID = 1944

Get_attribute(Attributes attr,Text att_name,Text &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Text &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1945
Page 235User Defined Attributes

12d Model Programming Language Manual
Get_attribute(Attributes attr,Text att_name,Integer &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Integer &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type Integer.

If the attribute is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1946

Get_attribute(Attributes attr,Text att_name,Real &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Real &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type Real.

If the attribute is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

 ID = 1947

Get_attribute(Attributes attr,Text att_name,Uid &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Uid &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1948

Get_attribute(Attributes attr,Text att_name,Attributes &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Attributes &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
Page 236 User Defined Attributes

Chapter 5 12dPL Library Calls
att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attributes value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
 ID = 1949

Get_attribute(Attributes attr,Text att_name,Integer64 &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Integer64 &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type 64 bit Integer.

If the attribute is not of type 64 bit Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 3243

Get_attribute(Attributes attr,Text att_name,Guid &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Guid &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type Guid.

If the attribute is not of type Guid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 3244

Get_attribute(Attributes attr,Text att_name,Attribute_Blob &att)
Name
Integer Get_attribute(Attributes attr,Text att_name,Attribute_Blob &att)

Description
From the Attributes attr, get the first attribute called att_name and return the attribute value in
att. The attribute must be of type Attribute_Blob.

If the attribute is not of type Attribute_Blob then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 237User Defined Attributes

12d Model Programming Language Manual
ID = 3393

Get_attribute(Attributes attr,Integer att_no,Text &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Text &att)

Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 1950

Get_attribute(Attributes attr,Integer att_no,Integer &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Integer &att)

Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type Integer.

If the attribute is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 1951

Get_attribute(Attributes attr,Integer att_no,Real &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Real &att)

Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type Real.

If the attribute is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 1952
Page 238 User Defined Attributes

Chapter 5 12dPL Library Calls
Get_attribute(Attributes attr,Integer att_no,Uid &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Uid &att)

Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 1953

Get_attribute(Attributes attr,Integer att_no,Attributes &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Attributes &att)

Description
From the Attributes attr, get the first Attribute with number att_no and return the Attributes value
in att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 1954

Get_attribute(Attributes attr,Integer att_no,Integer64 &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Integer64 &att)

Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type 64 bit Integer.

If the attribute is not of type 64 bit Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 3245

Get_attribute(Attributes attr,Integer att_no,Guid &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Guid &att)
Page 239User Defined Attributes

12d Model Programming Language Manual
Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type Guid.

If the attribute is not of type Guid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 3246

Get_attribute(Attributes attr,Integer att_no,Attribute_Blob &att)
Name
Integer Get_attribute(Attributes attr,Integer att_no,Attribute_Blob &att)

Description
From the Attributes attr, get the first attribute with number att_no and return the attribute value in
att. The attribute must be of type Attribute_Blob.

If the attribute is not of type Attribute_Blob then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 3394

Get_attribute_name(Attributes attr,Integer att_no,Text &name)
Name
Integer Get_attribute_name(Attributes attr,Integer att_no,Text &name)

Description
From the Attributes attr, get the attribute with number att_no and return the Text value in name.
The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 1955

Get_attribute_type(Attributes attr,Text att_name,Integer &att_type)
Name
Integer Get_attribute_type(Attributes attr,Text att_name,Integer &att_type)

Description
Get the type of the attribute with the name att_name from the Attribute attr. The type is returned
in att_type.
Page 240 User Defined Attributes

Chapter 5 12dPL Library Calls
For the list of attribute types, go to Data Type Attribute Type.

A function return value of zero indicates the attribute type was successfully returned.

ID = 1956

Get_attribute_type(Attributes attr,Integer att_num,Integer &att_type)
Name
Integer Get_attribute_type(Attributes attr,Integer att_num,Integer &att_type)

Description
Get the type of the attribute with the number att_num from the Attribute attr. The type is returned
in att_type.
For the list of attribute types, go to Data Type Attribute Type.

A function return value of zero indicates the attribute type is successfully returned.
ID = 1957

Get_attribute_length(Attributes attr,Text att_name,Integer &att_len)
Name
Integer Get_attribute_length(Attributes attr,Text att_name,Integer &att_len)

Description
For the Attributes attr, get the length in bytes of the attribute of name att_name. The number of
bytes is returned in att_len.
This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.
ID = 1958

Get_attribute_length(Attributes attr,Integer att_no,Integer &att_len)
Name
Integer Get_attribute_length(Attributes attr,Integer att_no,Integer &att_len)

Description
For the Attributes attr, get the length in bytes of the attribute with number att_no. The number of
bytes is returned in att_len.
This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.
ID = 1959

Set_attribute(Attributes attr,Text att_name,Text att)
Name
Page 241User Defined Attributes

12d Model Programming Language Manual
Integer Set_attribute(Attributes attr,Text att_name,Text att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Text and give it the value
att.
 if the first attribute called att_name does exist and it is type Text, then set its value to att.
If the attribute exists and is not of type Text, then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1960

Set_attribute(Attributes attr,Text att_name,Integer att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Integer att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
att.
 if the attribute called att_name does exist and it is type Integer, then set its value to att.
If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
 ID = 1961

Set_attribute(Attributes attr,Text att_name,Real att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Real att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Real and give it the value
att.
 if the first attribute called att_name does exist and it is type Real, then set its value to att.
If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1962

Set_attribute(Attributes attr,Text att_name,Uid att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Uid att)

Description
For the Attributes attr,
Page 242 User Defined Attributes

Chapter 5 12dPL Library Calls
 if the attribute called att_name does not exist then create it as type Uid and give it the value
att.
 if the first attribute called att_name does exist and it is type Uid, then set its value to att.
If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1963

Set_attribute(Attributes attr,Text att_name,Attributes att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Attributes att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the first attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1964

Set_attribute(Attributes attr,Text att_name,Integer64 att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Integer64 att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type 64 bit Integer and give it
the value att.
 if the first attribute called att_name does exist and it is type 64 bit Integer, then set its value to
att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 3247

Set_attribute(Attributes attr,Text att_name,Guid att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Guid att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Guid and give it the value
att.
 if the first attribute called att_name does exist and it is type Guid, then set its value to att.
Page 243User Defined Attributes

12d Model Programming Language Manual
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 3248

Set_attribute(Attributes attr,Text att_name,Attribute_Blob att)
Name
Integer Set_attribute(Attributes attr,Text att_name,Attribute_Blob att)

Description
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Attribute_Blob (binary) and
give it the value att.
 if the first attribute called att_name does exist and it is type Attribute_Blob (binary), then set its
value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 3395

Set_attribute(Attributes attr,Integer att_no,Text att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Text att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Text, then its value is
set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Text then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1965

Set_attribute(Attributes attr,Integer att_no,Integer att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Integer att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Integer, then its value
is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Integer then a non-zero return value is
returned.
Page 244 User Defined Attributes

Chapter 5 12dPL Library Calls
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1966

Set_attribute(Attributes attr,Integer att_no,Real att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Real att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Real, then its value is
set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Real then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1967

Set_attribute(Attributes attr,Integer att_no,Uid att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Uid att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Uid, then its value is
set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1968

Set_attribute(Attributes attr,Integer att_no,Attributes att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Attributes att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Attributes, then its
value is set to att.
If there is no Attributes with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.
Page 245User Defined Attributes

12d Model Programming Language Manual
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
 ID = 1969

Set_attribute(Attributes attr,Integer att_no,Integer64 att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Integer64 att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type 64 bit Integer, then its
value is set to att.
If there is no Attributes with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type 64 bit Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
 ID = 3250

Set_attribute(Attributes attr,Integer att_no,Guid att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Guid att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Guid, then its value is
set to att.
If there is no Attributes with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Guid then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
 ID = 3251

Set_attribute(Attributes attr,Integer att_no,Attribute_Blob att)
Name
Integer Set_attribute(Attributes attr,Integer att_no,Attribute_Blob att)

Description
For the Attributes attr, if the attribute number att_no exists and it is of type Attribute_Blob
(binary), then its value is set to att.
If there is no Attributes with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attribute_Blob (binary) then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
Page 246 User Defined Attributes

Chapter 5 12dPL Library Calls
 ID = 3396

Attribute_debug(Attributes attr)
Name
Integer Attribute_debug(Attributes attr)

Description
For internal 12d Solutions use only.

Write out even more information about the Attributes attr to the Output Window.
A function return value of zero indicates the function was successful.

ID = 1971

Get_attribute_by_type(Attributes attr,Text att_name,Text &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Text &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Text and return the
attribute value in att.
If there is no such attribute then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
ID = 3251

Get_attribute_by_type(Attributes attr,Text att_name,Integer &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Integer &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Integer and return
the attribute value in att.
If there is no such attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
ID = 3252

Get_attribute_by_type(Attributes attr,Text att_name,Real &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Real &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Real and return the
attribute value in att.
If there is no such attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
ID = 3253
Page 247User Defined Attributes

12d Model Programming Language Manual
Get_attribute_by_type(Attributes attr,Text att_name,Uid &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Uid &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Uid and return the
attribute value in att.
If there is no such attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
ID = 3254

Get_attribute_by_type(Attributes attr,Text att_name,Attributes &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Attributes &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Attributes (group)
and return the attribute value in att.
If there is no such attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
ID = 3255

Get_attribute_by_type(Attributes attr,Text att_name,Integer64 &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Integer64 &att)

Description
From the Attributes attr, get the first attribute called att_name with the type 64 bit Integer and
return the attribute value in att.
If there is no such attribute then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

ID = 3256

Get_attribute_by_type(Attributes attr,Text att_name,Guid &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Guid &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Guid and return the
attribute value in att.
If there is no such attribute then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
ID = 3257
Page 248 User Defined Attributes

Chapter 5 12dPL Library Calls
Get_attribute_by_type(Attributes attr,Text att_name,Attribute_Blob &att)
Name
Integer Get_attribute_by_type(Attributes attr,Text att_name,Attribute_Blob &att)

Description
From the Attributes attr, get the first attribute called att_name with the type Attribute_Blob
(binary) and return the attribute value in att.
If there is no such attribute then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
ID = 3397

Set_attribute_by_type(Attributes attr,Text att_name,Text att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Text att)

Description
For the Attributes attr,
 if the attribute called att_name with type Text does not exist then create it and give it the value
att.
 if the attributes called att_name with type Text does exist, then assign the value of the first one
to att.
A function return value of zero indicates the attribute value is successfully set.
ID = 3258

Set_attribute_by_type(Attributes attr,Text att_name,Integer att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Integer att)

Description
For the Attributes attr,
 if the attribute called att_name with type Integer does not exist then create it and give it the
value att.
 if the attributes called att_name with type Integer does exist, then assign the value of the first
one to att.
A function return value of zero indicates the attribute value is successfully set.
ID = 3259

Set_attribute_by_type(Attributes attr,Text att_name,Real att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Real att)

Description
For the Attributes attr,
 if the attribute called att_name with type Real does not exist then create it and give it the value
att.
 if the attributes called att_name with type Real does exist, then assign the value of the first one
to att.
A function return value of zero indicates the attribute value is successfully set.
Page 249User Defined Attributes

12d Model Programming Language Manual
ID = 3260

Set_attribute_by_type(Attributes attr,Text att_name,Uid att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Uid att)

Description
For the Attributes attr,
 if the attribute called att_name with type Uid does not exist then create it and give it the value
att.
 if the attributes called att_name with type Uid does exist, then assign the value of the first one
to att.
A function return value of zero indicates the attribute value is successfully set.
ID = 3261

Set_attribute_by_type(Attributes attr,Text att_name,Attributes att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Attributes att)

Description
For the Attributes attr,
 if the attribute called att_name with type Attributes (group) does not exist then create it and
give it the value att.
 if the attributes called att_name with type Attributes (group) does exist, then assign the value
of the first one to att.
A function return value of zero indicates the attribute value is successfully set.

ID = 3262

Set_attribute_by_type(Attributes attr,Text att_name,Integer64 att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Integer64 att)

Description
For the Attributes attr,
 if the attribute called att_name with type 64 bit Integer does not exist then create it and give it
the value att.
 if the attributes called att_name with type 64 bit Integer does exist, then assign the value of the
first one to att.
A function return value of zero indicates the attribute value is successfully set.
ID = 3263

Set_attribute_by_type(Attributes attr,Text att_name,Guid att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Guid att)

Description
For the Attributes attr,
Page 250 User Defined Attributes

Chapter 5 12dPL Library Calls
 if the attribute called att_name with type Guid does not exist then create it and give it the value
att.
 if the attributes called att_name with type Guid does exist, then assign the value of the first one
to att.
A function return value of zero indicates the attribute value is successfully set.
ID = 3264

Set_attribute_by_type(Attributes attr,Text att_name,Attribute_Blob att)
Name
Integer Set_attribute_by_type(Attributes attr,Text att_name,Attribute_Blob att)

Description
For the Attributes attr,
 if the attribute called att_name with type Attribute_Blob (binary) does not exist then create it
and give it the value att.
 if the attributes called att_name with type Attribute_Blob (binary) does exist, then assign the
value of the first one to att.
A function return value of zero indicates the attribute value is successfully set.
ID = 3398

Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Text
att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Text att)

Description
For the Attributes attr, insert a new attribute called att_name with type Text and with the value
att at the given index position. All existing attributes with the old indices greater or equal
position will have their indices increased by one.
A function return value of zero indicates the attribute value is successfully set.

ID = 3658

Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Integer
att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Integer att)

Description
For the Attributes attr, insert a new attribute called att_name with type Integer and with the value
att at the given index position. All existing attributes with the old indices greater or equal
position will have their indices increased by one.
A function return value of zero indicates the attribute value is successfully set.
ID = 3659

Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Real
att)
Page 251User Defined Attributes

12d Model Programming Language Manual
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Real att)

Description
For the Attributes attr, insert a new attribute called att_name with type Real and with the value
att at the given index position. All existing attributes with the old indices greater or equal
position will have their indices increased by one.
A function return value of zero indicates the attribute value is successfully set.
ID = 3660

Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Uid att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Uid att)

Description
For the Attributes attr, insert a new attribute called att_name with type Uid and with the value att
at the given index position. All existing attributes with the old indices greater or equal position
will have their indices increased by one.
A function return value of zero indicates the attribute value is successfully set.

ID = 3661

Insert_attribute_at_position(Attributes attr,Text att_name,Integer
position,Attributes att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Attributes att)

Description
For the Attributes attr, insert a new attribute called att_name with type Attributes (group) and
with the value att at the given index position. All existing attributes with the old indices greater or
equal position will have their indices increased by one.
A function return value of zero indicates the attribute value is successfully set.

ID = 3662

Insert_attribute_at_position(Attributes attr,Text att_name,Integer
position,Attribute_Blob att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Attribute_Blob att)

Description
For the Attributes attr, insert a new attribute called att_name with type Attribute_Blob (binary)
and with the value att at the given index position. All existing attributes with the old indices
greater or equal position will have their indices increased by one.
A function return value of zero indicates the attribute value is successfully set.
ID = 3663

Insert_attribute_at_position(Attributes attr,Text att_name,Integer
Page 252 User Defined Attributes

Chapter 5 12dPL Library Calls
position,Integer64 att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Integer64 att)

Description
For the Attributes attr, insert a new attribute called att_name with type 64 bit Integer and with the
value att at the given index position. All existing attributes with the old indices greater or equal
position will have their indices increased by one.

A function return value of zero indicates the attribute value is successfully set.
ID = 3664

Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Guid
att)
Name
Integer Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Guid att)

Description
For the Attributes attr, insert a new attribute called att_name with type Guid and with the value
att at the given index position. All existing attributes with the old indices greater or equal
position will have their indices increased by one.

A function return value of zero indicates the attribute value is successfully set.
ID = 3665
Page 253User Defined Attributes

12d Model Programming Language Manual
5.29 Folders
Directory_exists(Text folder_name)
Name
Integer Directory_exists(Text folder_name)

Description
Check if a folder of name folder_name exists.

If folder_name is a relative path, the folder is checked in the current working folder of the project.
If folder_name is an absolute (starts with say C:, \\, //), then the folder is checked using the
absolute path.
A non-zero function return value indicates that the folder exists.

A zero function return value indicates that the folder does not existed.
Warning - this is the opposite of most 12dPL function return values
ID = 2468

Get_file_size(Text file_name,Integer &size)
Name
Integer Get_file_size(Text file_name,Integer &size)

Description
Get the size in bytes of the file named file_name and returns the number of bytes in Integer size.
Note that the file needs to be a file of size less than 2 Gigabytes.

A function return value of zero indicates the function was successful.
 ID = 2407

Get_file_encoding(Text file_name,Integer &encode)
Name
Integer Get_file_encoding(Text file_name,Integer &encode)

Description
Get the encoding style encode of the file named file_name.
List of encoding
 File_Encoding_Error -1

 File_Encoding_None 0
 File_Encoding_UTF_8 1
 File_Encoding_UTF_16_LE 2

 File_Encoding_UTF_16_BE 3
 File_Encoding_UTF_32_LE 4
 File_Encoding_UTF_32_BE 5

A function return value of zero indicates the function was successful.
 ID = 3821
Page 254 Folders

Chapter 5 12dPL Library Calls
Directory_create(Text folder_name)
Name
Integer Directory_create(Text folder_name)

Description
Create the folder folder_name in the current working folder (the folder name can not contain any
paths)

Note - Directory_create_recursive will create a folder tree.
A function return value of zero indicates the function was successful.
ID = 2470

Directory_create_recursive(Text folder_name)
Name
Integer Directory_create_recursive(Text folder_name)

Description
Create the folder folder_name. The folder name can contain paths and if any of the folders along
the path do not exist, then they will also be created.

If folder_name does not contain any path then the folder is created in the current working folder.
A function return value of zero indicates the function was successful.
ID = 2471

Directory_delete(Text folder_name)
Name
Integer Directory_delete(Text folder_name)

Description
If the folder named folder_name is empty, delete the folder folder_name.
Note - Directory_delete_recursive will delete a non-empty folder and all of its sub-folders.

A function return value of zero indicates the function was successful.
ID = 2469

Directory_delete_recursive(Text folder_name)
Name
Integer Directory_delete_recursive(Text folder_name)

Description
Delete the folder named folder_name, and all the sub-folders of folder_name.
A function return value of zero indicates the function was successful.

WARNING Using a folder name of d: will delete the entire d drive.
You have been warned.

ID = 2472
Page 255Folders

12d Model Programming Language Manual
5.30 12d Model Program and Folders
Get_program_version_number()
Name
Integer Get_program_version_number()

Description
The function return value is the 12d Model version number.

For example, 14 for 12d Model 14C1c

ID = 2291

Get_program_major_version_number()
Name
Integer Get_program_major_version_number()

Description
The function return value is the 12d Model major version number. That is 1 for C1, 2 for C2 etc,
0 for Alpha or Beta.
For example, 1 for 12d Model 14C1c

ID = 2292

Get_program_minor_version_number()
Name
Integer Get_program_minor_version_number()

Description
The function return value is the 12d Model minor version number. That is 1 for a, 2 for b, 3 of c
etc.

For example, 3 for 12d Model 14C1c
ID = 2293

Get_program_folder_version_number()
Name
Integer Get_program_folder_version_number()

Description
The function return value is the 12d Model folder version number.
For example, 00 in "Program Files\12dModel\14.00
 ID = 2294

Get_program_build_number()
Name
Integer Get_program_build_number()

Description
Page 256 12d Model Program and Folders

Chapter 5 12dPL Library Calls
The function return value is the 12d Model build number.
This is for internal use only and for minidumps.
ID = 2295

Get_program_special_build_name()
Name
Text Get_program_special_build_name()

<no description>
ID = 2296

Get_program_patch_version_name()
Name
Text Get_program_patch_version_name()

Description
The function return value is a special patch version description for pre-release versions and it is
written after the 12d Model version information. It is blank for release versions.
For example "Alpha 274 SLF,SLX,Image Dump - Not For Production"

ID = 2297

Get_program_full_title_name()
Name
Text Get_program_full_title_name()

Description
The function return value is the full name that is written out after 12d Model on the top of the
12d Model Window.

For example "10.0 Alpha 274 SLF,SLX,Image Dump - Not For Production"
ID = 2298

Get_program()
Name
Text Get_program()

Description
The function return value is the full path to where the 12d.exe is on disk. It includes the
"12d.exe".
For example "C:\Program Files\12d\12dmodel\10.00\nt.x86\12d.exe"
ID = 2299

Get_program_name()
Name
Text Get_program_name()
Page 25712d Model Program and Folders

12d Model Programming Language Manual
Description
The function return value is the name of the 12d Model executable without the ".exe".
That is, "12d".

ID = 2300

Get_program_folder()
Name
Text Get_program_folder()

Description
The function return value is the full path to the folder where the 12d Model executable (12d.exe)
is on disk.

For example "C:\Program Files\12d\12dmodel\10.00\nt.x86"
ID = 2301

Get_program_parent_folder()
Name
Text Get_program_parent_folder()

Description
The function return value is the full path to the folder above where the 12d Model executable
(12d.exe) is on disk.
For example "C:\Program Files\12d\12dmodel\10.00"

ID = 2302

Get_project_folder(Text &name)
Name
Integer Get_project_folder(Text &name)

Description
Get the path to the working folder (the folder containing the current project) and return it in name.

A function return value of zero indicates the function was successful.
ID = 1891

Get_temporary_directory(Text &folder_name)
Name
Integer Get_temporary_directory(Text &folder_name)

Description
Get the name of the Windows temporary folder %TEMP% and return it as folder_name.
A function return value of zero indicates the function was successful.
ID = 2473

Get_temporary_12d_directory(Text &folder_name)
Page 258 12d Model Program and Folders

Chapter 5 12dPL Library Calls
Name
Integer Get_temporary_12d_directory(Text &folder_name)

Description
Get the name of the 12d Model temporary folder "%TEMP%\12d", and return it as folder_name.
A function return value of zero indicates the function was successful.
ID = 2474

Get_temporary_project_directory(Text &folder_name)
Name
Integer Get_temporary_project_directory(Text &folder_name)

Description
Get the name of the current 12d Model Project temporary folder "%TEMP%\12d\process-id"
(where process-id is the process id of the current running 12d.exe), and return it as folder_name

A function return value of zero indicates the function was successful.
Note - Every 12d project has a independent temporary folder.
ID = 2475
Page 25912d Model Program and Folders

12d Model Programming Language Manual
5.31 Control bar

Set_cad_controlbar(Text name,Model model,Integer colour,Real z,Text
linestyle,Real weight,Integer tinable)
Name
Integer Set_cad_controlbar(Text name,Model model,Integer colour,Real z,Text linestyle,Real
weight,Integer tinable)

Description
Set fields of CAD control bar with Text name, Model model, standard 12D colour Integer colour,
height measure Real z, linestyle name Text linestyle, line weight Real weight, Integer tinable

A return value of zero indicates the function call was successful.
ID = 3141

Get_cad_controlbar(Text &name,Model &model,Integer &colour,Real &z,Text
&linestyle,Real &weight,Integer &tinable)
Name
Integer Get_cad_controlbar(Text &name,Model &model,Integer &colour,Real &z,Text &linestyle,Real
&weight,Integer &tinable)

Description
Get fields of CAD control bar to Text name, Model model, standard 12D colour Integer colour,
height measure Real z, linestyle name Text linestyle, line weight Real weight, Integer tinable

A return value of zero indicates the function call was successful.
ID = 3140

Set_text_controlbar(Text textstyle_name,Real size)
Name
Integer Set_text_controlbar(Text textstyle_name,Real size)

Description
Set fields of text control bar with textstyle name Text textstyle_name, size Real size
A return value of zero indicates the function call was successful.
ID = 3143

Get_text_controlbar(Text &textstyle_name,Real &size)
Name
Integer Get_text_controlbar(Text &textstyle_name,Real &size)

Description
Get fields of text control bar to textstyle name Text textstyle_name, size Real size
A return value of zero indicates the function call was successful.

ID = 3142
Page 260 Control bar

Chapter 5 12dPL Library Calls
Set_text_controlbar(Textstyle_Data textstyle_data)
Name
Integer Set_text_controlbar(Textstyle_Data textstyle_data)

Description
Set fields of text control bar with Textstyle_Data textstyle_data

A return value of zero indicates the function call was successful.
ID = 3145

Get_text_controlbar(Textstyle_Data &textstyle_data)
Name
Integer Get_text_controlbar(Textstyle_Data &textstyle_data)

Description
Get fields of text control bar to Textstyle_Data textstyle_data
A return value of zero indicates the function call was successful.

ID = 3144

Set_symbol_controlbar(Text symbol_name,Real size)
Name
Integer Set_symbol_controlbar(Text symbol_name,Real size)

Description
Set fields of symbol control bar with symbol name Text symbol_name, size Real size
A return value of zero indicates the function call was successful.
ID = 3147

Get_symbol_controlbar(Text &symbol_name,Real &size)
Name
Integer Get_symbol_controlbar(Text &symbol_name,Real &size)

Description
Get fields of symbol control bar to symbol name Text symbol_name, size Real size
A return value of zero indicates the function call was successful.
ID = 3146

Set_symbol_controlbar(Integer use_flag,Text symbol_name,Integer colour,Real
size,Real offset,Real raise,Real angle)
Name
Integer Set_symbol_controlbar(Integer use_flag,Text symbol_name,Integer colour,Real size,Real
offset,Real raise,Real angle)

Description
Set fields of symbol control bar with symbol name Text symbol_name, Integer colour, Real
size, Real offset, Real raise, Real angle
Page 261Control bar

12d Model Programming Language Manual
Integer use_flag is the bit-wise sum of a subset of
0x001 Style
0x002 Colour

0x004 Size
0x008 Offset
0x010 Raise

0x020 Angle
A return value of zero indicates the function call was successful.
ID = 3149

Get_symbol_controlbar(Integer &use_flag,Text &symbol_name,Integer
&colour,Real &size,Real &offset,Real &raise,Real &angle)
Name
Integer Get_symbol_controlbar(Integer &use_flag,Text &symbol_name,Integer &colour,Real &size,Real
&offset,Real &raise,Real &angle)

Description
Get fields of symbol control bar to symbol name Text symbol_name, Integer colour, Real size,
Real offset, Real raise, Real angle
Integer use_flag is the bit-wise sum of a subset of

0x001 Style

0x002 Colour
0x004 Size
0x008 Offset

0x010 Raise
0x020 Angle

A return value of zero indicates the function call was successful.

ID = 3148

Set_pipe_controlbar(Integer shape,Integer justify,Real size1,Real size2)
Name
Integer Set_pipe_controlbar(Integer shape,Integer justify,Real size1,Real size2)

Description
Set fields of pipe control bar with Integer shape, Integer justify, Real size1, Real size2
Value for shape: 0 not use, 1 pipe, 2 culvert
Value for justify: 0 invert, 1 centre, 2 obvert
A return value of zero indicates the function call was successful.

ID = 3151

Get_pipe_controlbar(Integer &shape,Integer &justify,Real &size1,Real &size2)
Name
Integer Get_pipe_controlbar(Integer &shape,Integer &justify,Real &size1,Real &size2)
Page 262 Control bar

Chapter 5 12dPL Library Calls
Description
Get fields of pipe control bar to Integer shape, Integer justify, Real size1, Real size2
Value for shape: 0 not use, 1 pipe, 2 culvert
Value for justify: 0 invert, 1 centre, 2 obvert

A return value of zero indicates the function call was successful.
ID = 3150

Set_attributes_controlbar(Attributes att)
Name
Integer Set_attributes_controlbar(Attributes att)

Description
Set field of attributes control bar with Attributes att
A return value of zero indicates the function call was successful.

ID = 3153

Get_attributes_controlbar(Attributes &att)
Name
Integer Get_attributes_controlbar(Attributes &att)

Description
Get field of attributes control bar to Attributes att
A return value of zero indicates the function call was successful.
ID = 3152
Page 263Control bar

12d Model Programming Language Manual
5.32 Project
All the 12d Model information is saved in a Project.
Projects are made up of data in the form of elements in models, and tins, and views to look at
selected data sets from the project.
Projects also have information such as functions, linestyles, textstyles, fonts and colours.

Get_project_name(Text &name)
Name
Integer Get_project_name(Text &name)

Description
Get the names of the current project.
The names is returned in the Text name.
A function return value of zero indicates the function names were successfully returned.

ID = 813

Project_save()
Name
Integer Project_save()

Description
Save the Project to the disk.
A function return value of zero indicates the Project was successfully saved.
ID = 1570

Program_exit(Integer ignore_save)
Name
Integer Program_exit(Integer ignore_save)

Description
Exit the 12d Model program.
If ignore_save is non-zero then the project is closed without saving and 12d Model then stops.

If ignore_save is zero then a save of the project is done and 12d Model then stops.
ID = 1571

Get_project_functions(Dynamic_Text &function_names)
Name
Integer Get_project_functions(Dynamic_Text &function_names)

Description
Get the names of all the functions in the project.
The dynamic array of function names is returned in the Dynamic_Text function_names.
A function return value of zero indicates the function names were successfully returned.

ID = 236
Page 264 Project

Chapter 5 12dPL Library Calls
Sleep(Integer milli)
Name
Integer Sleep(Integer milli)

Description
Send 12d Model to sleep for milli milliseconds
A function return value of zero indicates the function was successful.

ID = 2476

Set_project_attributes(Attributes att)
Name
Integer Set_project_attributes(Attributes att)

Description
For the Project, set the Attributes to att.
A function return value of zero indicates the Attributes was successfully set.
ID = 1982

Get_project_attributes(Attributes &att)
Name
Integer Get_project_attributes(Attributes &att)

Description
For the Project, return the Attributes for the Project as att.
If the Project has no attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully returned.
ID = 1983

Get_project_attribute(Text att_name,Uid &att)
Name
Integer Get_project_attribute(Text att_name,Uid &att)

Description
For the Project, get the attribute called att_name and return the attribute value in uid. The
attribute must be of type Uid.
If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1984

Get_project_attribute(Text att_name,Attributes &att)
Name
Page 265Project

12d Model Programming Language Manual
Integer Get_project_attribute(Text att_name,Attributes &att)

Description
For the Project, get the attribute called att_name and return the attribute value in att. The
attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1985

Get_project_attribute(Integer att_no,Uid &uid)
Name
Integer Get_project_attribute(Integer att_no,Uid &att)

Description
For the Project, get the attribute with number att_no and return the attribute value in uid. The
attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 1986

Get_project_attribute(Integer att_no,Attributes &att)
Name
Integer Get_project_attribute(Integer att_no,Attributes &att)

Description
For the Project, get the attribute with number att_no and return the attribute value in att. The
attribute must be of type Attributes.
If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 1987

Set_project_attribute(Text att_name,Uid uid)
Name
Integer Set_project_attribute(Text att_name,Uid uid)

Description
For the Project,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.
If the attribute exists and is not of type Uid then a non-zero return value is returned.
Page 266 Project

Chapter 5 12dPL Library Calls
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
 ID = 1988

Set_project_attribute(Text att_name,Attributes att)
Name
Integer Set_project_attribute(Text att_name,Attributes att)

Description
For the Project,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1989

Set_project_attribute(Integer att_no,Uid uid)
Name
Integer Set_project_attribute(Integer att_no,Uid uid)

Description
For Project, if the attribute number att_no exists and it is of type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1990

Set_project_attribute(Integer att_no,Attributes att)
Name
Integer Set_project_attribute(Integer att_no,Attributes att)

Description
For Project, if the attribute number att_no exists and it is of type Attributes, then its value is set to
att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
Page 267Project

12d Model Programming Language Manual
ID = 1991

Project_attribute_exists(Text att_name)
Name
Integer Project_attribute_exists(Text att_name)

Description
Checks to see if a Project attribute with the name att_name exists in current project.

A non-zero function return value indicates that the attribute does exist.
A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values

ID = 1378

Project_attribute_exists(Text name,Integer &no)
Name
Integer Project_attribute_exists(Text name,Integer &no)

Description
Checks to see if a project attribute with the name name exists in current project.

If the attribute exists, its position is returned in Integer no.
This position can be used in other Attribute functions described below.

A non-zero function return value indicates the attribute does exist.
A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values

ID = 1379

Project_attribute_delete(Text att_name)
Name
Integer Project_attribute_delete(Text att_name)

Description
Delete the project attribute with the name att_name in current project.

A function return value of zero indicates the attribute was deleted.
ID = 1380

Project_attribute_delete(Integer att_no)
Name
Integer Project_attribute_delete(Integer att_no)

Description
Delete the project attribute with the Integer att_no in current project.

A function return value of zero indicates the attribute was deleted.
ID = 1381

Project_attribute_delete_all(Element elt)
Page 268 Project

Chapter 5 12dPL Library Calls
Name
Integer Project_attribute_delete_all(Element elt)

Description
Delete all the attributes for Project.
Element elt has nothing to do with this call and is ignored.
A function return value of zero indicates all the attributes were deleted.

ID = 1382

Project_attribute_dump()
Name
Integer Project_attribute_dump()

Description
Write out information about the Project attributes to the Output Window.

A function return value of zero indicates the function was successful.
ID = 1383

Project_attribute_debug()
Integer Project_attribute_debug()

Description
Write out even more information about the Project attributes to the Output Window.
A function return value of zero indicates the function was successful.

ID = 1384

Get_project_number_of_attributes(Integer &no_atts)
Name
Integer Get_project_number_of_attributes(Integer &no_atts)

Description
Get number of attributes Integer no_atts in current project.
A function return value of zero indicates the number is successfully returned.

ID = 1385

Get_project_attribute_name(Integer att_no,Text &name)
Name
Integer Get_project_attribute_name(Integer att_no,Text &name)

Description
Get project attribute name Text name with attribute number Integer att_no in current project.
A function return value of zero indicates the name is successfully returned.

ID = 1392

Get_project_attribute_length(Integer att_no,Integer &att_len)
Name
Integer Get_project_attribute_length(Integer att_no,Integer &att_len)

Description
Page 269Project

12d Model Programming Language Manual
Get the length of the project attribute at position att_no.
The project attribute length is returned in att_len.
A function return value of zero indicates the attribute type was successfully returned.

Note
The length is useful for user attributes of type Text and Binary (Blobs).
ID = 1396

Get_project_attribute_length(Text att_name,Integer &att_len)
Name
Integer Get_project_attribute_length(Text att_name,Integer &att_len)

Description
Get the length of the project attribute with the name att_name for the current project.
The project attribute length is returned in att_len.
A function return value of zero indicates the attribute type was successfully returned.

Note
The length is useful for user attributes of type Text and Binary (Blobs).
ID = 1395

Get_project_attribute_type(Text att_name,Integer &att_type)
Name
Integer Get_project_attribute_type(Text att_name,Integer &att_type)

Description
Get the type of the project attribute with the name att_name from the current project.
The project attribute type is returned in Integer att_type.

For the list of attribute types, go to Data Type Attribute Type.
A function return value of zero indicates the attribute type was successfully returned.
ID = 1393

Get_project_attribute_type(Integer att_no,Integer &att_type)
Name
Integer Get_project_attribute_type(Integer att_no,Integer &att_type)

Description
Get the type of the project attribute at position att_no for the current project.
The project attribute type is returned in att_type.

For the list of attribute types, go to Data Type Attribute Type.
A function return value of zero indicates the attribute type was successfully returned.
ID = 1394

Get_project_attribute(Text att_name,Real &att)
Name
Integer Get_project_attribute(Text att_name,Real &att)

Description
Page 270 Project

Chapter 5 12dPL Library Calls
Get project attribute Real att with attribute name Text att_name in current project.
A function return value of zero indicates the name is successfully returned.
ID = 1388

Set_project_attribute(Text att_name,Real att)
Name
Integer Set_project_attribute(Text att_name,Real att)

Description
Set the project attribute with name att_name to the Real att.
The project attribute must be of type Real
A function return value of zero indicates the attribute was successfully set.
ID = 1399

Get_project_attribute(Text att_name,Integer &att)
Name
Integer Get_project_attribute(Text att_name,Integer &att)

Description
Get project attribute Integer att with attribute name Text att_name in current project.
A function return value of zero indicates the name is successfully returned.

ID = 1387

Set_project_attribute(Text att_name,Integer att)
Name
Integer Set_project_attribute(Text att_name,Integer att)

Description
Set the project attribute with name att_name to the Integer att.
The project attribute must be of type Integer
A function return value of zero indicates the attribute was successfully set.
ID = 1398

Get_project_attribute(Integer att_no,Text &att)
Name
Integer Get_project_attribute(Integer att_no,Text &att)

Description
Get project attribute Text att with attribute number Integer att_no in current project.
A function return value of zero indicates the name is successfully returned.
ID = 1389

Set_project_attribute(Integer att_no,Text att)
Name
Page 271Project

12d Model Programming Language Manual
Integer Set_project_attribute(Integer att_no,Text att)

Description
Set the project attribute at position att_no to the Text att.

The project attribute must be of type Text
A function return value of zero indicates the attribute was successfully set.
ID = 1400

Get_project_attribute(Integer att_no,Integer &att)
Name
Integer Get_project_attribute(Integer att_no,Integer &att)

Description
Get project attribute Integer att with attribute number Integer att_no in current project.
A function return value of zero indicates the name is successfully returned.

ID = 1390

Set_project_attribute(Integer att_no,Integer att)
Name
Integer Set_project_attribute(Integer att_no,Integer att)

Description
Set the project attribute at position att_no to the Integer att.
The project attribute must be of type Integer
A function return value of zero indicates the attribute was successfully set.

ID = 1401

Get_project_attribute(Integer att_no,Real &att)
Name
Integer Get_project_attribute(Integer att_no,Real &att)

Description
Get project attribute Real att with attribute number Integer att_no in current project.

A function return value of zero indicates the name is successfully returned.
ID = 1391

Set_project_attribute(Integer att_no,Real att)
Name
Integer Set_project_attribute(Integer att_no,Real att)

Description
Set the project attribute at position att_no to the Real att.
The project attribute must be of type Real
A function return value of zero indicates the attribute was successfully set.
Page 272 Project

Chapter 5 12dPL Library Calls
ID = 1402

Get_project_attribute(Text att_name,Text &att)
Name
Integer Get_project_attribute(Text att_name,Text &att)

Description
Get project attribute Text att with attribute name Text att_name in current project.

A function return value of zero indicates the name is successfully returned.
ID = 1386

Set_project_attribute(Text att_name,Text att)
Name
Integer Set_project_attribute(Text att_name,Text att)

Description
Set the project attribute with name att_name to the Text att.
The project attribute must be of type Text
A function return value of zero indicates the attribute was successfully set.
ID = 1397

Project_attribute_delete_all()
Name
Integer Project_attribute_delete_all()

Description
Delete all the project attributes.
A function return value of zero indicates all the attribute were successfully deleted.
ID = 2679
Page 273Project

12d Model Programming Language Manual
5.33 Models
The variable type Model is used to refer to 12d Model models.
Model variables act as handles to the actual 12d Model model so that the model can be easily
referred to and manipulated within a macro (see 2.5.3.3 12d Model Database Handles).
The items that can be stored in Models are known as Elements (strings, tins, plot frames etc -
see 5.35 Elements).

The list of Elements in a model can be obtained as a Dynamic_Element (see and this allows you
to "walk" through all the Elements in a Model (see 5.18.1 Dynamic Element Arrays):
 Element elt;
 Dynamic_Element de; // a list of Elements
 Integer number_of_elts;
 Text elt_type;
 Get_elements(model,de,number_of_elts);
 for (Integer i;i<=number_of_elements;i++) {
 Get_item(de,i,elt); // get the next Element from the Model model.
// the Element elt can now be processed
 ...

Important Note:
To add an Element elt to a Model model, use the call Set_model(Element elt,Model model).

Create_model(Text model_name)
Name
Model Create_model(Text model_name)

Description
Create a Model with the name model_name.
If the model is created, its handle is returned as the function return value.
If no model can be created, a null Model is returned as the function return value.

ID = 59

Get_model_create(Text model_name)
Name
Model Get_model_create(Text model_name)

Description
Get a handle to the model with name model_name.

If the model exists, its handle is returned as the function return value.
If no such model exists, then a new model with the name model_name is created, and its handle
returned as the function return value.
If no model exists and the creation fails, a null Model is returned as the function return value.

ID = 60
Page 274 Models

Chapter 5 12dPL Library Calls
Get_number_of_items(Model model,Integer &num)
Name
Integer Get_number_of_items(Model model,Integer &num)

Description
Get the number of items (Elements) in the Model model.
The number of Elements is returned as the Integer num.

A function return value of zero indicates success.
 ID = 452

Get_elements(Model model,Dynamic_Element &de,Integer &total_no)
Name
Integer Get_elements(Model model,Dynamic_Element &de,Integer &total_no)

Description
Get all the Elements from the Model model and add them to the Dynamic_Element array, de.
The total number of Elements in de is returned by total_no.

Note: whilst this Dynamic_Element exists, all of the elements with handles in the
Dynamic_Element are locked.
A function return value of zero indicates success.

ID = 132

Model_exists(Text model_name)
Name
Integer Model_exists(Text model_name)

Description
Checks to see if a model with the name model_name exists.

A non-zero function return value indicates a model does exist.
A zero function return value indicates that no model of name model_name exists.
Warning - this is the opposite of most 12dPL function return values

ID = 63

Model_exists(Model model)
Name
Integer Model_exists(Model model)

Description
Checks if the Model model is valid (that is, not null).

A non-zero function return value indicates model is not null.
A zero function return value indicates that model is null.

Warning - this is the opposite of most 12dPL function return values
Page 275Models

12d Model Programming Language Manual
ID = 62

Get_project_models(Dynamic_Text &model_names)
Name
Integer Get_project_models(Dynamic_Text &model_names)

Description
Get the names of all the models in the project.

The dynamic array of model names is returned in the Dynamic_Text model_names.
A function return value of zero indicates the model names are returned successfully.
ID = 231

Get_model(Text model_name)
Name
Model Get_model(Text model_name)

Description
Get the Model model with the name model_name.
If the model exists, its handle is returned as the function return value.

If no model of name model_name exists, a null Model is returned as the function return value.
ID = 58

Get_name(Model model,Text &model_name)
Name
Integer Get_name(Model model,Text &model_name)

Description
Get the name of the Model model.
The model name is returned in the Text model_name.

A function return value of zero indicates the model name was successfully returned.
If model is null, the function return value is non-zero.
ID = 57

Get_time_created(Model model,Integer &time)
Name
Integer Get_time_created(Model model,Integer &time)

Description
Get the time that the Model model was created and return the time in time.
The time time is given as seconds since January 1 1970.

A function return value of zero indicates the time was successfully returned.
ID = 2111
Page 276 Models

Chapter 5 12dPL Library Calls
Get_time_updated(Model model,Integer &time)
Name
Integer Get_time_updated(Model model,Integer &time)

Description
Get the time that the Model model was last updated and return the time in time.

The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully returned.
ID = 2112

Set_time_updated(Model model,Integer time)
Name
Integer Set_time_updated(Model model,Integer time)

Description
Set the update time for the Model model to time.

The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully set.
ID = 2113

Get_id(Model model,Uid &id)
Name
Integer Get_id(Model model,Uid &id)

Description
Get the Uid of the Model model and return it in id.
A function return value of zero indicates the Uid was successfully returned.

ID = 1914

Get_id(Model model,Integer &id)
Name
Integer Get_id(Model model,Integer &id)

Description
Get the id of the Model model and return it in id.

A function return value of zero indicates the id was successfully returned.
Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_id(Model model,Uid &id) instead.
ID = 1182

Get_model(Uid model_id,Model &model)
Name
Integer Get_model(Uid model_id,Model &model)

Description
Page 277Models

12d Model Programming Language Manual
Get the model in the Project that has the Uid model_id and return it in model.
If the model does not exist then a non-zero function return value is returned.
A function return value of zero indicates the model was successfully returned.

ID = 1912

Get_model(Integer model_id,Model &model)
Name
Integer Get_model(Integer model_id,Model &model)

Description
Get the model in the Project that has the id model_id and return it in model.
If the model does not exist then a non-zero function return value is returned.
A function return value of zero indicates the model was successfully returned.
Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_model(Uid model_id,Model &model) instead.

ID = 1180

Get_element(Uid model_id,Uid element_id,Element &elt)
Name
Integer Get_element(Uid model_id,Uid element_id,Element &elt)

Description
Get the Element with Uid element_id from the model that has the Uid model_id and return it in
elt.
If the Element does not exist in the model with Uid model_id then a non-zero function return
value is returned.
A function return value of zero indicates the Element was successfully returned.

ID = 1913

Get_element(Integer model_id,Integer element_id,Element &elt)
Name
Integer Get_element(Integer model_id,Integer element_id,Element &elt)

Description
Get the Element with id element_id from the model that has the id model_id and return it in elt.
If the Element does not exist in the model with model_id then a non-zero function return value is
returned.
A function return value of zero indicates the Element was successfully returned.
Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_element(Uid model_id,Uid element_id,Element &elt)
instead.

ID = 1181

Get_extent_x(Model model,Real &xmin,Real &xmax)
Page 278 Models

Chapter 5 12dPL Library Calls
Name
Integer Get_extent_x(Model model,Real &xmin,Real &xmax)

Description
Gets the x-extents of the Model model.
The minimum x extent is returned by the Real xmin.
The maximum x extent is returned by the Real xmax.

A function return value of zero indicates the x-extents were returned successfully.
ID = 163

Get_extent_y(Model model,Real &ymin,Real &ymax)
Name
Integer Get_extent_y(Model model,Real &ymin,Real &ymax)

Description
Gets the y-extents of the Model model.
The minimum y extent is returned by the Real ymin.

The maximum y extent is returned by the Real ymax.
A function return value of zero indicates the y-extents were returned successfully.
ID = 164

Get_extent_z(Model model,Real &zmin,Real &zmax)
Name
Integer Get_extent_z(Model model,Real &zmin,Real &zmax)

Description
Gets the z-extents of the Model model.
The minimum z extent is returned by the Real zmin.

The maximum z extent is returned by the Real zmax.
A function return value of zero indicates the z-extents were returned successfully.
ID = 165

Calc_extent(Model model)
Name
Integer Calc_extent(Model model)

Description
Calculate the extents of the Model model. This is necessary when Elements have been deleted
from a model.
A function return value of zero indicates the extent calculation was successful.

ID = 166

Model_duplicate(Model model,Text dup_name)
Name
Page 279Models

12d Model Programming Language Manual
Integer Model_duplicate(Model model,Text dup_name)

Description
Create a new Model with the name dup_name and add duplicates of all the elements in model to
it.

It is an error if a Model called dup_name already exists.
A function return value of zero indicates the duplication was successful.
ID = 428

Model_rename(Text original_name,Text new_name)
Name
Integer Model_rename(Text original_name,Text new_name)

Description
Change the name of the Model original_name to the new name new_name.
A function return value of zero indicates the rename was successful.

ID = 423

Model_draw(Model model)
Name
Integer Model_draw(Model model)

Description
Draw each element in the Model model for each view that the model is on. The elements are
drawn in their own colour.
A function return value of zero indicates the draw was successful.
ID = 415

Model_draw(Model model,Integer col_num)
Name
Integer Model_draw(Model model,Integer col_num)

Description
Draw, in the colour number col_num, each element in the Model model for each view that the
model is on.
A function return value of zero indicates the draw was successful.

ID = 416

Null(Model model)
Name
Integer Null(Model model)

Description
Set the Model handle model to null. This does not affect the 12d Model model that the handle
pointed to.

A function return value of zero indicates model was successfully nulled.
Page 280 Models

Chapter 5 12dPL Library Calls
ID = 134

Model_delete(Model model)
Name
Integer Model_delete(Model model)

Description
Delete from the project and the disk, the 12d Model model pointed to by the Model model. The
handle model is then set to null.

A function return value of zero indicates the model was successfully deleted.
ID = 61

Model_clean(Model model,Integer raster_mode)
Name
Integer Model_clean(Model model,Integer raster_mode)

Description
Clean all elements from an existing Model model. If the model or any element in the model is
locked, a non zero value is returned. Raster elements in the model being considered specially,
based on the value of Integer raster_mode. The valid value for raster_mode are:
0 retain all raster element in the model

1 pop up confirmation for each raster
2 pop up confirmation once (for this current macro call)
3 clean all raster elements without confirmation

A function return value of zero indicates the model was successfully cleaned.
ID = 3836

Get_model_attributes(Model model,Attributes &att)
Name
Integer Get_model_attributes(Model model,Attributes &att)

Description
For the Model model, return the Attributes for the Model as att.
If the Model has no Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute is successfully returned.

ID = 2042

Set_model_attributes(Model model,Attributes att)
Name
Integer Set_model_attributes(Model model,Attributes att)

Description
For the Model model, set the Attributes for the Model to att.
A function return value of zero indicates the attribute is successfully set.
Page 281Models

12d Model Programming Language Manual
ID = 2043

Get_model_attribute(Model model,Text att_name,Uid &uid)
Name
Integer Get_model_attribute(Model model,Text att_name,Uid &uid)

Description
From the Model model, get the attribute called att_name and return the attribute value in uid.
The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2044

Get_model_attribute(Model model,Text att_name,Attributes &att)
Name
Integer Get_model_attribute(Model model,Text att_name,Attributes &att)

Description
From the Model model, get the attribute called att_name from model and return the attribute
value in att. The attribute must be of type Attributes.
If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - this function is more efficient than getting the Attributes from the Model and then getting
the data from that Attributes.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
 ID = 2045

Get_model_attribute(Model model,Integer att_no,Uid &uid)
Name
Integer Get_model_attribute(Model model,Integer att_no,Uid &uid)

Description
From the Model model, get the attribute with number att_no and return the attribute value in uid.
The attribute must be of type Uid.
If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
 ID = 2046

Get_model_attribute(Model model,Integer att_no,Attributes &att)
Name
Integer Get_model_attribute(Model model,Integer att_no,Attributes &att)
Page 282 Models

Chapter 5 12dPL Library Calls
Description
From the Model model, get the attribute with number att_no and return the Attribute value in att.
The attribute must be of type Attributes.
If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 2047

Set_model_attribute(Model model,Text att_name,Uid att)
Name
Integer Set_model_attribute(Model model,Text att_name,Uid att)

Description
For the Model model,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
att.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.
If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

 ID = 2048

Set_model_attribute(Model model,Text att_name,Attributes att)
Name
Integer Set_model_attribute(Model model,Text att_name,Attributes att)

Description
For the Model model,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2049

Set_model_attribute(Model model,Integer att_no,Uid uid)
Name
Integer Set_model_attribute(Model model,Integer att_no,Uid uid)

Description
For the Model model, if the attribute number att_no exists and it is of type Uid, then its value is
set to uid.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
Page 283Models

12d Model Programming Language Manual
If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2050

Set_model_attribute(Model model,Integer att_no,Attributes att)
Name
Integer Set_model_attribute(Model model,Integer att_no,Attributes att)

Description
For the Model model, if the attribute number att_no exists and it is of type Attributes, then its
value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 2051

Model_attribute_exists(Model model,Text att_name)
Name
 Integer Model_attribute_exists(Model model,Text att_name)

Description
Checks to see if a model attribute with the name att_name exists in the Model model.
A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values
ID = 1403

Model_attribute_exists(Model model,Text name,Integer &no)
Name
Integer Model_attribute_exists(Model model,Text name,Integer &no)

Description
Checks to see if a model attribute with the name name exists in the Model model.
If the attribute exists, its position is returned in Integer no.

This position can be used in other Attribute functions described below.
A non-zero function return value indicates the attribute does exist.
A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 12dPL function return values
ID = 1404
Page 284 Models

Chapter 5 12dPL Library Calls
Model_attribute_delete(Model model,Text att_name)
Name
Integer Model_attribute_delete(Model model,Text att_name)

Description
Delete the model attribute with the name att_name for Model model.
A function return value of zero indicates the attribute was deleted.

ID = 1405

Model_attribute_delete(Model model,Integer att_no)
Name
Integer Model_attribute_delete(Model model,Integer att_no)

Description
Delete the model attribute at the position att_no for Model model.
A function return value of zero indicates the attribute was deleted.
ID = 1406

Model_attribute_delete_all(Model model,Element elt)
Name
 Integer Model_attribute_delete_all(Model model,Element elt)

Description
Delete all the model attributes for Model model.
A function return value of zero indicates all the attributes were deleted.

ID = 1407

Model_attribute_dump(Model model)
Name
Integer Model_attribute_dump(Model model)

Description
Write out information about the Model attributes to the Output Window.

A function return value of zero indicates the function was successful.
ID = 1408

Model_attribute_debug(Model model)
Name
Integer Model_attribute_debug(Model model)

Description
Write out even more information about the Model attributes to the Output Window.
A function return value of zero indicates the function was successful.
Page 285Models

12d Model Programming Language Manual
ID = 1409

Get_model_attribute(Model model,Text att_name,Text &att)
Name
 Integer Get_model_attribute(Model model,Text att_name,Text &att)

Description
Get the data for the model attribute with the name att_name for Model model.
The model attribute must be of type Text and is returned in Text att.
A function return value of zero indicates the attribute was successfully returned.
ID = 1411

Get_model_attribute(Model model,Text att_name,Integer &att)
Name
 Integer Get_model_attribute(Model model,Text att_name,Integer &att)

Description
Get the data for the model attribute with the name att_name for Model model.
The model attribute must be of type Integer and is returned in att.
A function return value of zero indicates the attribute was successfully returned.
ID = 1412

Get_model_attribute(Model model,Text att_name,Real &att)
Name
 Integer Get_model_attribute(Model model,Text att_name,Real &att)

Description
Get the data for the model attribute with the name att_name for Model model.
The model attribute must be of type Real and is returned in att.
A function return value of zero indicates the attribute was successfully returned.

ID = 1413

Get_model_attribute(Model model,Integer att_no,Text &att)
Name
 Integer Get_model_attribute(Model model,Integer att_no,Text &att)

Description
Get the data for the model attribute at the position att_no for Model model.
The model attribute must be of type Text and is returned in att.
A function return value of zero indicates the attribute was successfully returned.
ID = 1414

Get_model_attribute(Model model,Integer att_no,Integer &att)
Name
 Integer Get_model_attribute(Model model,Integer att_no,Integer &att)
Page 286 Models

Chapter 5 12dPL Library Calls
Description
Get the data for the model attribute at the position att_no for Model model.
The model attribute must be of type Integer and is returned in Integer att.
A function return value of zero indicates the attribute was successfully returned.
ID = 1415

Get_model_attribute(Model model,Integer att_no,Real &att)
Name
 Integer Get_model_attribute(Model model,Integer att_no,Real &att)

Description
Get the data for the model attribute at the position att_no for Model model.
The model attribute must be of type Real and is returned in Real att.
A function return value of zero indicates the attribute was successfully returned.
ID = 1416

Set_model_attribute(Model model,Integer att_no,Real att)
Name
 Integer Set_model_attribute(Model model,Integer att_no,Real att)

Description
For the Model model, set the model attribute at position att_no to the Real att.
The model attribute must be of type Real
A function return value of zero indicates the attribute was successfully set.

ID = 1427

Set_model_attribute(Model model,Integer att_no,Integer att)
Name
 Integer Set_model_attribute(Model model,Integer att_no,Integer att)

Description
For the Model model, set the model attribute at position att_no to the Integer att.
The model attribute must be of type Integer
A function return value of zero indicates the attribute was successfully set.
ID = 1426

Set_model_attribute(Model model,Integer att_no,Text att)
Name
 Integer Set_model_attribute(Model model,Integer att_no,Text att)

Description
For the Model model, set the model attribute at position att_no to the Text att.
The model attribute must be of type Text
Page 287Models

12d Model Programming Language Manual
A function return value of zero indicates the attribute was successfully set.
ID = 1425

Set_model_attribute(Model model,Text att_name,Real att)
Name
 Integer Set_model_attribute(Model model,Text att_name,Real att)

Description
For the Model model, set the model attribute with name att_name to the Real att.
The model attribute must be of type Real
A function return value of zero indicates the attribute was successfully set.

ID = 1424

Set_model_attribute(Model model,Text att_name,Integer att)
Name
 Integer Set_model_attribute(Model model,Text att_name,Integer att)

Description
For the Model model, set the model attribute with name att_name to the Integer att.
The model attribute must be of type Integer
A function return value of zero indicates the attribute was successfully set.
ID = 1423

Set_model_attribute(Model model,Text att_name,Text att)
Name
 Integer Set_model_attribute(Model model,Text att_name,Text att)

Description
For the Model model, set the model attribute with name att_name to the Text att.
The model attribute must be of type Text
A function return value of zero indicates the attribute was successfully set.
ID = 1422

Get_model_attribute_name(Model model,Integer att_no,Text &name)
Name
 Integer Get_model_attribute_name(Model model,Integer att_no,Text &name)

Description
Get the name for the model attribute at the position att_no for Model model.
The model attribute name found is returned in Text name.
A function return value of zero indicates the attribute name was successfully returned.
ID = 1417

Get_model_attribute_type(Model model,Text att_name,Integer &att_type)
Name
Page 288 Models

Chapter 5 12dPL Library Calls
 Integer Get_model_attribute_type(Model model,Text att_name,Integer &att_type)

Description
Get the type of the model attribute with the name att_name from the Model model.
The model attribute type is returned in Integer att_type.
For the list of attribute types, go to Data Type Attribute Type.
A function return value of zero indicates the attribute type was successfully returned.

ID = 1418

Get_model_attribute_type(Model model,Integer att_name,Integer &att_type)
Name
 Integer Get_model_attribute_type(Model model,Integer att_name,Integer &att_type)

Description
Get the type of the model attribute at position att_no for the Model model.
The model attribute type is returned in att_type.
For the list of attribute types, go to Data Type Attribute Type.

A function return value of zero indicates the attribute type was successfully returned.
ID = 1419

Get_model_attribute_length(Model model,Text att_name,Integer &att_len)
Name
 Integer Get_model_attribute_length(Model model,Text att_name,Integer &att_len)

Description
Get the length of the model attribute with the name att_name for Model model.
The model attribute length is returned in att_len.
A function return value of zero indicates the attribute type was successfully returned.

Note - the length is useful for user attributes of type Text and Binary (Blobs).
ID = 1420

Get_model_attribute_length(Model model,Integer att_no,Integer &att_len)
Name
 Integer Get_model_attribute_length(Model model,Integer att_no,Integer &att_len)

Description
Get the length of the model attribute at position att_no for Model model.
The model attribute length is returned in att_len.
A function return value of zero indicates the attribute type was successfully returned.

Note - the length is useful for user attributes of type Text and Binary (Blobs).
ID = 1421

Get_model_number_of_attributes(Model model,Integer &no_atts)
Page 289Models

12d Model Programming Language Manual
Name
 Integer Get_model_number_of_attributes(Model model,Integer &no_atts)

Description
Get the total number of model attributes for Model model.
The total number of attributes is returned in Integer no_atts.
A function return value of zero indicates the attribute was successfully returned.

ID = 1410
Page 290 Models

Chapter 5 12dPL Library Calls
5.34 Views
The variable type View is used to refer to 12d Model views.
View variables act as handles to the actual view so that the view can be easily referred to and
manipulated within a macro (see 2.5.3.3 12d Model Database Handles).

View_exists(Text view_name)
Name
Integer View_exists(Text view_name)

Description
Checks to see if a view with the name view_name exists.
A non-zero function return value indicates a view does exist.
A zero function return value indicates value that no view of that name exists.

Warning - this is the opposite of most 12dPL function return values
ID = 373

View_exists(View view)
Name
Integer View_exists(View view)

Description
Checks if the View view is valid (that is, not null).
A non-zero function return value indicates view is not null.
A zero function return value indicates that view is null.

Warning - this is the opposite of most 12dPL function return values
ID = 374

Get_name(View view,Text &view_name)
Name
Integer Get_name(View view,Text &view_name)

Description
Get the name of the View view.
The view name is returned in the Text view_name.
If view is null, the function return value is non-zero.

A function return value of zero indicates the view name was returned successfully.
ID = 435

Null(View view)
Name
Integer Null(View view)

Description
Set the View handle view to null. This does not affect the 12d Model view that the handle pointed
Page 291Views

12d Model Programming Language Manual
to.
A function return value of zero indicates view was successfully nulled.
ID = 375

Get_project_views(Dynamic_Text &view_names)
Name
Integer Get_project_views(Dynamic_Text &view_names)

Description
Get the names of all the views in the project.
The dynamic array of view names is returned in the Dynamic_Text view_names.

A function return value of zero indicates the view names were returned successfully.
ID = 234

Get_view(Text view_name)
Name
View Get_view(Text view_name)

Description
Get the View with the name view_name.
If the view exists, its handle is returned as the function return value.

If no view of name view_name, a null View is returned as the function return value.
ID = 347

Get_type(View view,Text &type)
Name
Integer Get_type(View view,Text &type)

Description
Get the type of the View view as the Text type.
The type is
Plan if the view is a plan view
Section section view
Perspective perspective view or Opengl perspective view
Hidden_perspective hidden perspective view.

A function return value of zero indicates that the view type was returned successfully.
ID = 358

Get_type(View view,Integer &view_num)
Name
Integer Get_type(View view,Integer &view_num)

Description
For the view view, view_num returns the type of the view.

view_num = 2010 if view is a PLAN VIEW
view_num = 2011 if view is a SECTION VIEW
Page 292 Views

Chapter 5 12dPL Library Calls
view_num = 2012 if view is a PERSP VIEW and OPEN GL 2012
view_num = 2030 if view is a HIDDEN PERSPECTIVE
A function return value of zero indicates the successfully.
ID = 357

Model_get_views(Model model,Dynamic_Text &view_names)
Name
Integer Model_get_views(Model model,Dynamic_Text &view_names)

Description
Get the names of all the views that the Model model is on.
The view names are returned in the Dynamic_Text view_names.

A function return value of zero indicates that the view names were returned successfully.
ID = 354

View_get_models(View view,Dynamic_Text &model_names)
Name
Integer View_get_models(View view,Dynamic_Text &model_names)

Description
Get the names of all the Models on the View view.
The model names are returned in the Dynamic_Text model_names.
A function return value of zero indicates that the model names were returned successfully.

ID = 350

View_add_model(View view,Model model)
Name
Integer View_add_model(View view,Model model)

Description
Add the Model model to the View view.

A function return value of zero indicates that model was successfully added to the view.
ID = 348

View_remove_model(View view,Model model)
Name
Integer View_remove_model(View view,Model model)

Description
Remove the Model model from the View view.
A function return value of zero indicates that model was successfully removed from the view.
ID = 349

View_redraw(View view)
Page 293Views

12d Model Programming Language Manual
Name
Integer View_redraw(View view)

Description
Redraw the 12d Model View view.
A function return value of zero indicates that the view was successfully redrawn.
ID = 351

View_fit(View view)
Name
Integer View_fit(View view)

Description
Perform a fit on the 12d Model View view.
A function return value of zero indicates that the view was successfully fitted.

ID = 353

Section_view_profile(View view,Element string,Integer fit_view)
Name
Integer Section_view_profile(View view,Element string,Integer fit_view)

Description
Profile the Element string on the View view.
If fit_view = 1 then a fit is also done on the view.
If view is not a Section view, then a non-zero function return value is returned.

A function return value of zero indicates the profile was successful.
ID = 2110

View_get_size(View view,Integer &width,Integer &height)
Name
Integer View_get_size(View view,Integer &width,Integer &height)

Description
Find the size in screen units (pixels) of the View view.
The width and height of the view are width and height pixels respectively.
A function return value of zero indicates that the view size was successfully returned.

ID = 352

View_get_draw_area_size(Integer &width,Integer &height)
Name
Integer View_get_draw_area_size(Integer &width,Integer &height)

Description
This call should not be used, the correct version is View_get_draw_area_size(View view,Integer
&width,Integer &height);
Page 294 Views

Chapter 5 12dPL Library Calls
The internal rectangle of a view where data can be drawn, selected is call the draw area. In other
word, the draw area is part of the view excluding the border, title, menu.
Find the size in screen units (pixels) of the draw area of the last active view.
The width and height of the draw area of the view are width and height pixels respectively.

A function return value of zero indicates that the view size was successfully returned.
ID = 3774

View_set_draw_area_size(Integer width,Integer height)
Name
Integer View_set_draw_area_size(Integer width,Integer height)

Description
This call should not be used, the correct version is View_set_draw_area_size(View view,Integer
width,Integer height);
The internal rectangle of a view where data can be drawn, selected is call the draw area. In other
word, the draw area is part of the view excluding the border, title, menu.

Set the size in screen units (pixels) of the draw area of the last active view to the value of width
and height.
A function return value of zero indicates that the view size was successfully set.
ID = 3775

View_set_draw_area_size(View view,Integer width,Integer height)
Name
Integer View_set_draw_area_size(View view,Integer width,Integer height)

Description
The internal rectangle of a view where data can be drawn, selected is call the draw area. In other
word, the draw area is part of the view excluding the border, title, menu.
Set the size in screen units (pixels) of the draw area of the View view to the value of width and
height.
A function return value of zero indicates that the view size was successfully set.
ID = 3798

View_get_draw_area_size(View view,Integer &width,Integer &height)
Name
Integer View_get_draw_area_size(View view,Integer &width,Integer &height)

Description
The internal rectangle of a view where data can be drawn, selected is call the draw area. In other
word, the draw area is part of the view excluding the border, title, menu.
Find the size in screen units (pixels) of the draw area of the View view.
The width and height of the draw area of the view are width and height pixels respectively.

A function return value of zero indicates that the view size was successfully returned.
ID = 3797
Page 295Views

12d Model Programming Language Manual
Calc_extent(View view)
Name
Integer Calc_extent(View view)

Description
Calculate the extents of the View view. This is necessary when Elements have been deleted
from a model on a view.

A function return value of zero indicates the extent calculation was successful.
ID = 477

View_maximize(View v)
Name
Integer View_maximize(View v)

Description
Maximize a View v
A return value of zero indicates the function call was successful.
ID = 3034

View_minimize(View v)
Name
Integer View_minimize(View v)

Description
Minimize a View v
A return value of zero indicates the function call was successful.
ID = 3035

View_restore(View v)
Name
Integer View_restore(View v)

Description
Restore a View v
A return value of zero indicates the function call was successful.
ID = 3036

View_delete(View v)
Name
Integer View_delete(View v)

Description
Delete a View v
A return value of zero indicates the function call was successful.

ID = 3443
Page 296 Views

Chapter 5 12dPL Library Calls
View_clone(View v,Text clone_name)
Name
Integer View_clone(View v,Text clone_name)

Description
Create a clone of an existing View v with new name clone_name
A return value of zero indicates the function call was successful.

ID = 3384

View_create(Integer type,Text name,Integer left,Integer top,Integer width,Integer
height,Integer engine_type)
Name
Integer View_create(Integer type,Text name,Integer left,Integer top,Integer width,Integer height,Integer
engine_type)

Description
Create a new view with given: Integer type; Text name; Real position in screen pixels left left,
top top; size in screen pixels width width, height height; Integer engine_type
A return value of zero indicates the function call was successful.

List of values for type of view
0 Plan,
1 Section,

2 Perspective,
3 Perspective_Hide,

List of values for view engine_type
0 GDI_Legacy,
1 GDI,
2 GDI_Threaded,

3 OpenGL_Legacy,
4 OpenGL,
5 OpenGL_Threaded,

6 OpenGL_GPU,
ID = 3037

View_move_resize(View v,Integer left,Integer top,Integer width,Integer height)
Name
Integer View_move_resize(View v,Integer left,Integer top,Integer width,Integer height)

Description
Move the View v to the new position left, top; set new size to width, height. The numbers are all
Integer measuring the screen pixels.
A return value of zero indicates the function call was successful.

ID = 3038
Page 297Views

12d Model Programming Language Manual
Plan_view_set_rotation(View v,Real rotation_angle)
Name
Integer Plan_view_set_rotation(View v,Real rotation_angle)

Description
Set the rotation angle of the plan View v to rotation_angle.
A return value of zero indicates the function call was successful.

ID = 3040

Plan_view_get_rotation(View v,Real &rotation_angle)
Name
Integer Plan_view_get_rotation(View v,Real &rotation_angle)

Description
Get the rotation angle rotation_angle of the plan View v
A return value of zero indicates the function call was successful.
ID = 3039

View_set_name(View v,Text name)
Name
Integer View_set_name(View v,Text name)

Description
Set the new name to the View v
A return value of zero indicates the function call was successful.

ID = 3041

View_get_background_colour(View v,Integer &colour)
Name
Integer View_get_background_colour(View v,Integer &colour)

Description
Get the background colour of the View v and returns its value to Integer colour.
A return value of zero indicates the function call was successful.
ID = 3042

View_set_background_colour(View v,Integer colour)
Name
Integer View_set_background_colour(View v,Integer colour)

Description
Set the background colour of the View v to the one of Integer value colour.
A return value of zero indicates the function call was successful.
Page 298 Views

Chapter 5 12dPL Library Calls
ID = 3043

Plan_view_set_plot_scale(View v,Real scale)
Name
Integer Plan_view_set_plot_scale(View v,Real scale)

Description
Set plot scale factor of the plan View v to Real scale.

A return value of zero indicates the function call was successful.
ID = 3045

Plan_view_get_plot_scale(View v,Real &scale)
Name
Integer Plan_view_get_plot_scale(View v,Real &scale)

Description
Get plot scale factor Real scale of the plan View v
A return value of zero indicates the function call was successful.

ID = 3044

View_get_grid_settings(View v,Integer &draw_mode,Integer
&text_x_mode,Integer &text_y_mode,Integer &grid_mode,Real &space_x,Real
&space_y,Real &level,Integer &colour,Real &text_height,Real
&text_plot_height,Integer &text_clour,Integer &cross_mode,Real
&cross_size_pixel,Real &cross_size_mm,Text &text_style,Text &text_prefix_x,Text
&text_prefix_y)
Name
Integer View_get_grid_settings(View v,Integer &draw_mode,Integer &text_x_mode,Integer
&text_y_mode,Integer &grid_mode,Real &space_x,Real &space_y,Real &level,Integer &colour,Real
&text_height,Real &text_plot_height,Integer &text_clour,Integer &cross_mode,Real
&cross_size_pixel,Real &cross_size_mm,Text &text_style,Text &text_prefix_x,Text &text_prefix_y)

Description
Get various settings of the View v.
Parameter 2: draw mode 0 no grid 1 last on view 2 first on view

Parameter 3: text x mode 0 no text 1 bottom 2 top 3 bottom and top
Parameter 4: text y mode 0 no text 1 left 2 right 3 left and right
Parameter 5: grid mode 1 line 2 cross -2 mark 3 mark and cross

Parameter 6: space between vertical lines
Parameter 7: space between horizontal lines
Parameter 8: level of grid lines (points)

Parameter 9: grid colour
Parameter 10: grid text height

Parameter 11: grid text plot height
Parameter 12: grid text colour
Page 299Views

12d Model Programming Language Manual
Parameter 13: another draw mode? 0 not use 1 use
Parameter 14: cross size pixels
Parameter 15: cross size mm (plot)

Parameter 16: text style for grid text
Parameter 17: pre-post text for grid text x
Parameter 18: pre-post text for grid text y

A return value of zero indicates the function call was successful.
ID = 3046

View_set_grid_settings(View v,Integer draw_mode,Integer text_x_mode,Integer
text_y_mode,Integer grid_mode,Real space_x,Real space_y,Real level,Integer
colour,Real text_height,Real text_plot_height,Integer text_colour,Integer
cross_mode,Real cross_size_pixel,Real cross_size_mm,Text text_style,Text
text_prefix_x,Text text_prefix_y)
Name
Integer View_set_grid_settings(View v,Integer draw_mode,Integer text_x_mode,Integer
text_y_mode,Integer grid_mode,Real space_x,Real space_y,Real level,Integer colour,Real
text_height,Real text_plot_height,Integer text_colour,Integer cross_mode,Real cross_size_pixel,Real
cross_size_mm,Text text_style,Text text_prefix_x,Text text_prefix_y)

Description
Set various settings of the View v
Parameter 2: draw mode 0 no grid 1 last on view 2 first on view
Parameter 3: text x mode 0 no text 1 bottom 2 top 3 bottom and top
Parameter 4: text y mode 0 no text 1 left 2 right 3 left and right

Parameter 5: grid mode 1 line 2 cross -2 mark 3 mark and cross
Parameter 6: space between vertical lines
Parameter 7: space between horizontal lines

Parameter 8: level of grid lines (points)
Parameter 9: grid colour
Parameter 10: grid text height

Parameter 11: grid text plot height
Parameter 12: grid text colour
Parameter 13: another draw mode? 0 not use 1 use

Parameter 14: cross size pixels
Parameter 15: cross size mm (plot)
Parameter 16: text style for grid text

Parameter 17: pre-post text for grid text x
Parameter 18: pre-post text for grid text y

A return value of zero indicates the function call was successful.
ID = 3047
Page 300 Views

Chapter 5 12dPL Library Calls
View_set_engine_type(View v,Integer engine_type)
Name
Integer View_set_engine_type(View v,Integer engine_type)

Description
Set view engine type of the View v to Integer engine_type
A return value of zero indicates the function call was successful.
List of values for view engine_type

0 GDI_Legacy,

1 GDI,
2 GDI_Threaded,

3 OpenGL_Legacy,
4 OpenGL,
5 OpenGL_Threaded,

6 OpenGL_GPU,
ID = 3049

View_get_engine_type(View v,Integer &engine_type)
Name
Integer View_get_engine_type(View v,Integer &engine_type)

Description
Get view engine type Integer engine_type of the View v
A return value of zero indicates the function call was successful.
List of values for view engine_type

0 GDI_Legacy,
1 GDI,
2 GDI_Threaded,

3 OpenGL_Legacy,
4 OpenGL,
5 OpenGL_Threaded,

6 OpenGL_GPU,
ID = 3048

View_set_attribute(View view,Text attribute_name,Integer value,Integer
&internal_return)
Name
Integer View_set_attribute(View view,Text attribute_name,Integer value,Integer &internal_return)

Description
Set attribute attribute_name of the View view with value Integer value

Internal return internal_return is for developer debugging purpose.
A return value of zero indicates the function call was successful.
Page 301Views

12d Model Programming Language Manual
ID = 3066

View_set_attribute(View view,Text attribute_name,Real value,Integer
&internal_return)
Name
Integer View_set_attribute(View view,Text attribute_name,Real value,Integer &internal_return)

Description
Set attribute attribute_name of the View view with value Real value
Internal return internal_return is for developer debugging purpose.
A return value of zero indicates the function call was successful.

ID = 3067

View_set_attribute(View view,Text attribute_name,Text value,Integer
&internal_return)
Name
Integer View_set_attribute(View view,Text attribute_name,Text value,Integer &internal_return)

Description
Set attribute attribute_name of the View view with value Text value
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3068

View_set_attribute(View view,Text model_name,Text attribute_name,Integer
value,Integer &internal_return)
Name
Integer View_set_attribute(View view,Text model_name,Text attribute_name,Integer value,Integer
&internal_return)

Description
Set attribute attribute_name of the View view within model with name model_name with value
Integer value
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3069

View_set_attribute(View view,Text model_name,Text attribute_name,Real
value,Integer &internal_return)
Name
Integer View_set_attribute(View view,Text model_name,Text attribute_name,Real value,Integer
&internal_return)

Description
Set attribute attribute_name of the View view within model with name model_name with value
Page 302 Views

Chapter 5 12dPL Library Calls
Real value
Internal return internal_return is for developer debugging purpose.
A return value of zero indicates the function call was successful.

ID = 3070

View_set_attribute(View view,Text model_name,Text attribute_name,Text
value,Integer &internal_return)
Name
Integer View_set_attribute(View view,Text model_name,Text attribute_name,Text value,Integer
&internal_return)

Description
Set attribute attribute_name of the View view within model with name model_name with value
Text value
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3071

View_get_attribute(View view,Text attribute_name,Integer &value,Integer
&internal_return)
Name
Integer View_get_attribute(View view,Text attribute_name,Integer &value,Integer &internal_return)

Description
Get Integer value of attribute attribute_name of the View view
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3072

View_get_attribute(View view,Text attribute_name,Real &value,Integer
&internal_return)
Name
Integer View_get_attribute(View view,Text attribute_name,Real &value,Integer &internal_return)

Description
Get Real value of attribute attribute_name of the View view
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3073

View_get_attribute(View view,Text attribute_name,Text &value,Integer
&internal_return)
Name
Integer View_get_attribute(View view,Text attribute_name,Text &value,Integer &internal_return)
Page 303Views

12d Model Programming Language Manual
Description
Get Text value of attribute attribute_name of the View view
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3074

View_get_attribute(View view,Text model_name,Text attribute_name,Integer
&value,Integer &internal_return)
Name
Integer View_get_attribute(View view,Text model_name,Text attribute_name,Integer &value,Integer
&internal_return)

Description
Get Integer value of attribute attribute_name of the View view within model with name
model_name
Internal return internal_return is for developer debugging purpose.

A return value of zero indicates the function call was successful.
ID = 3075

View_get_attribute(View view,Text model_name,Text attribute_name,Real
&value,Integer &internal_return)
Name
Integer View_get_attribute(View view,Text model_name,Text attribute_name,Real &value,Integer
&internal_return)

Description
Get Real value of attribute attribute_name of the View view within model with name
model_name

Internal return internal_return is for developer debugging purpose.
A return value of zero indicates the function call was successful.
ID = 3076

View_get_attribute(View view,Text model_name,Text attribute_name,Text
&value,Integer &internal_return)
Name
Integer View_get_attribute(View view,Text model_name,Text attribute_name,Text &value,Integer
&internal_return)

Description
Get Text value of attribute attribute_name of the View view within model with name
model_name

Internal return internal_return is for developer debugging purpose.
A return value of zero indicates the function call was successful.
ID = 3077
Page 304 Views

Chapter 5 12dPL Library Calls
View_remove_attribute(View view,Text attribute_name)
Name
Integer View_remove_attribute(View view,Text attribute_name)

Description
Remove the attribute attribute_name from the View view

A return value of zero indicates the function call was successful.
ID = 3078

View_remove_attribute(View view,Text model_name,Text attribute_name)
Name
Integer View_remove_attribute(View view,Text model_name,Text attribute_name)

Description
Remove an attribute attribute_name from the View view within model with name model_name
A return value of zero indicates the function call was successful.

ID = 3079

View_remove_draw_data_textstyle(View view,Text model_name,Text
prefix,Integer &internal_return)
Name
Integer View_remove_draw_data_textstyle(View view,Text model_name,Text prefix,Integer
&internal_return)

Description
Intended for 12D developers use only
ID = 3080

View_remove_plot_data_textstyle(View view,Text model_name,Text prefix,Integer
&internal_return)
Name
Integer View_remove_plot_data_textstyle(View view,Text model_name,Text prefix,Integer
&internal_return)

Description
Intended for 12D developers use only
ID = 3081

View_get_draw_data_textstyle_merge(View view,Text model_name,Text
prefix,Textstyle_Data &d,Integer &internal_return)
Name
Integer View_get_draw_data_textstyle_merge(View view,Text model_name,Text prefix,Textstyle_Data
&d,Integer &internal_return)

Description
Intended for 12D developers use only
Page 305Views

12d Model Programming Language Manual
ID = 3082

View_remove_plot_data_textstyle(View view,Text model_name,Text prefix,Integer
&internal_return)
Name
Integer View_remove_plot_data_textstyle(View view,Text model_name,Text prefix,Integer
&internal_return)

Description
Intended for 12D developers use only
ID = 3083

View_get_draw_data_textstyle(View view,Text model_name,Text
prefix,Textstyle_Data &d,Integer &internal_return)
Name
Integer View_get_draw_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data &d,Integer
&internal_return)

Description
Intended for 12D developers use only

ID = 3084

View_get_plot_data_textstyle(View view,Text model_name,Text
prefix,Textstyle_Data &d,Integer &internal_return)
Name
Integer View_get_plot_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data &d,Integer
&internal_return)

Description
Intended for 12D developers use only
ID = 3085

View_set_draw_data_textstyle(View view,Text model_name,Text
prefix,Textstyle_Data d,Integer &internal_return)
Name
Integer View_set_draw_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data d,Integer
&internal_return)

Description
Intended for 12D developers use only
ID = 3086

View_set_plot_data_textstyle(View view,Text model_name,Text
prefix,Textstyle_Data d,Integer &internal_return)
Name
Page 306 Views

Chapter 5 12dPL Library Calls
Integer View_set_plot_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data d,Integer
&internal_return)

Description
Intended for 12D developers use only

ID = 3087

View favourite and view position file are v12+ only feature

View_apply_favourite(View v,Text file_name,Text &return_message)
Name
Integer View_apply_favourite(View v,Text file_name,Text &return_message)

Description
Apply a view favourite file file_name to a View v.

Some text message is returned in Text return_message
A return value of zero indicates the function call was successful.
ID = 3135

View_apply_position(View v,Text file_name,Text &return_message)
Name
Integer View_apply_position(View v,Text file_name,Text &return_message)

Description
Apply a view position file file_name to a View v.
Some text message is returned in Text return_message
A return value of zero indicates the function call was successful.
ID = 3136

View_write_favourite_file(View v,Text favourite_name,Integer add_file_extension)
Name
Integer View_write_favourite_file(View view,Text favourite_name,Integer add_file_extension)

Description
Write a view favourite file favourite_name of a given View v.
If add_file_extension is 1 then add the approriate file extension to the file name.
A return value of zero indicates the function call was successful.

ID = 3385

View_write_position_file(View v,Text position_name,Integer add_file_extension)
Name
Integer View_write_position_file(View view,Text position_name,Integer add_file_extension)

Description
Write a view position file position_name of a given View v.
Page 307Views

12d Model Programming Language Manual
If add_file_extension is 1 then add the approriate file extension to the file name.
A return value of zero indicates the function call was successful.
ID = 3386

View_favourite_file_exists(View v,Text favourite_name,Integer &exists)
Name
Integer View_favourite_file_exists(View view,Text favourite_name,Integer &exists)

Description
Check if the view favourite file of matching type to a given View v of name favourite_name exist.
Set Integer exists to 1 if the file exists, 0 otherwise.

A return value of zero indicates the function call was successful.
ID = 3387

View_position_file_exists(View v,Text position_name,Integer &exists)
Name
Integer View_position_file_exists(View view,Text position_name,Integer &exists)

Description
Check if the view position file of matching type to a given View v of name position_name exist.
Set Integer exists to 1 if the file exists, 0 otherwise.

A return value of zero indicates the function call was successful.
ID = 3388

Get_last_view(Text &view_name)
Name
Integer Get_last_view(Text &view_name)

Description
Set the Text view_name to the name of the last active view.
A return value of zero indicates the function call was successful.
ID = 3480

Section_view_regenerate(View section_view,Integer fit)
Name
Integer Section_view_regenerate(View section_view,Integer fit)

Description
Regenerate a given section View section_view. Also perform a fit operation on the view if
Integer fit is 1.
A return value of zero indicates the function call was successful.

ID = 3528
Page 308 Views

Chapter 5 12dPL Library Calls
Get_section_profile_string(View section_view,Element &profile_string)
Name
Integer Get_section_profile_string(View section_view,Element &profile_string)

Description
Get the profile string of a given section View section_view; and assign it to Element
profile_string.

A return value of zero indicates the function call was successful.
ID = 3529
Page 309Views

12d Model Programming Language Manual
5.35 Elements
The variable type Element is used as a handle to all the data types that can be stored in a
12d Model model. That is, it is used to refer to 12d Model strings, tins, super tins and plot frames
(see 2.5.3.3 12d Model Database Handles).
This allows you to "walk" through a model getting access to each of the Elements stored in the
model without having to know what type it is. Once the Element is retrieved, it can then be
processed within the macro.
For example, for a given Model model, you access all the Elements in model by loading them into
a dynamic array of Elements (Dynamic_Element) and then stepping through the dynamic array:

 Element elt;
 Dynamic_Element de; // a list of Elements
 Integer number_of_elts;
 Text elt_type;
 Get_elements(model,de,number_of_elts);
 for (Integer i;i<=number_of_elements;i++) {
 Get_item(de,i,elt); // get the next Element from the Model model.
// the Element elt can now be processed
 Get_type(elt,elt_type); // find out if elt is a super string, arc, tin, plot frame etc
 if (elt_type == "Super") {
 . . .

See 5.35.1 Types of Elements
See 5.35.2 Parts of 12d Elements
See 5.35.2.1 Element Header Functions
See 5.35.2.2 Element Attributes Functions

See 5.36 Tin Element
See 5.37 Super String Element
See 5.46 Interface String Element
See 5.39 Super Alignment String Element
See 5.40 Arc String Element
See 5.41 Circle String Element
See 5.42 Text String Element
See 5.44 Drainage String Element
See 5.43 Pipeline String Element
See 5.47 Grid String and Grid Tin Element
See 5.51 Plot Frame Element
See 5.45 Feature String Element

From 12d Model 9, some strings types are being phased out (superseded) and replaced by the
Super String or the Super Alignment.

See 5.53 Alignment String Element
See 5.52.1 2d Strings
See 5.52.2 3d Strings
See 5.52.3 4d Strings
See 5.52.5 Polyline Strings
See 5.52.4 Pipe Strings
Page 310 Elements

Chapter 5 12dPL Library Calls
5.35.1 Types of Elements
There are different types of elements and the type is found by either of the calls
Get_type(Element elt,Text &elt_type) or.

The different types of Elements are first given a the Text value then followed by the Integer value.
For example, Tin 18

Element Type Descriptions
Super for a super string - a general string with (x,y,z,radius,text,attributes) at each

point, plus the possibility of many other dimensions of information. See 5.37
Super String Element

In earlier versions of 12d Model, there were a large number of string types but from
12d Model 9 onwards, the Super String was introduced which with its possible dimensions,
replaces 2d, 3d, 4d, polyline and pipe strings.
However, for some applications it was important to know if the super string was like one of the
original strings. For example, some options required a string to be a contour string, the
original 2d string. That is, the string has the one z-value (or height) for the entire string. To
make it easier than checking on the various dimensions, there is a call that returns a Type
Like value. For example, a Super String that has a constant dimension for height, behaves
like a 2d string and in that case will return the Type Like of 2d.
Over time, all the 12d Model options that create strings that can be replaced by a Super
String are being modified to only create Super Strings, and with the correct Type Like if it is
required in some circumstances.

The Type Like’s an be referred to by a number or by a text.
 Type Like Number Type Like Text

 11 2d string - a constant height for the entire string

 12 3d string - a different height allowed for each vertex.
 13 interface string - a colour for segments for cut and fill
 29 4d string - variable vertex text

 36 pipe string - a constant diameter for the entire string
 62 polyline string - a different radius allowed for each segment
 40 face string

 71 none of the above - just a normal super string
For a Super String, the Type Like is found by the calls Get_type_like(Element super,Integer
&type) and Get_type_like(Element elt,Text &type).

Super_Alignment for a Super Alignment string - a string with separate horizontal and
vertical geometry

In earlier versions of 12d Model there was only the Alignment string whose geometry could
only contain horizontal ips and vertical ip. In later versions of 12d Model, the Super Alignment
was introduced which allowed not only hips and vips but also fixed and floating methods,
computators etc.
Over time, all the options inside 12d Model that create strings with a a separate horizontal
and vertical geometry are being modified so that they only create Super Alignments.

Arc for an Arc string - a string of an arc in plan and with a linearly varying z value.
 Note that this is a helix in three dimensional space. See 5.40 Arc String
Page 311Elements

12d Model Programming Language Manual
Element.
Circle for a Circle string - a string of a circle in plan with a constant z value. Note that

 this is a circle in a plane parallel to the (x,y) plane. See 5.41 Circle String
Element.
Feature a circle with a z-value at the centre but only null values on the circumference.
See 5.45 Feature String Element.

Drainage string for drainage and sewer elements. See 5.44 Drainage String Element.
Interface string with (x,y,z,cut-fill flag) at each point. See 5.46 Interface String Element.
Text string with text at a point.See 5.42 Text String Element.

Tin 18 triangulated irregular network - a triangulation. See 5.36 Tin Element.
Grid_tin 275 a Grid tin.
SuperTin 70 a SuperTin of tins.

Plot Frame for a plot frame - an element used for production of plan plots.
See 5.51 Plot Frame Element.

Pipeline a string with separate horizontal and vertical geometry defined by Intersection
points only, and one diameter for the entire string. See 5.43 Pipeline String

Element.

Strings being replaced by Super Strings:
2d for a 2d string - a string with (x,y) at each pt but constant z value.

An old string type being replaced by a Super String with Type Like 11.
3d for a 3d string - a string with (x,y,z) at each point

An old string type being replaced by a Super String with Type Like 12.
4d for a 4d string - a string with (x,y,z,text) at each point

An old string type being replaced by a Super String with Type Like 29.

Pipe for a pipe string - a string with (x,y,z) at each point and a diameter
An old string type replaced by a Super String with Type Like 36.

Polyline for a polyline string - a string with (x,y,z,radius) at each point
An old string type replaced by a Super String with Type Like 62.

String being replaced by Super Alignment:

Alignment for an Alignment string - a string with separate horizontal and vertical geometry
 defined by Intersection Points only.
An old string type replaced by the Super Alignment string. See 5.53 Alignment

String Element

Note
The Element of type tin is provided because tins (triangulations) can be part of a model. Tins are
normally created using the Triangulation functions and there are special Tin functions for
modifying tin information.
Page 312 Elements

Chapter 5 12dPL Library Calls
5.35.2 Parts of 12d Elements
All 12d Elements consists of three parts -

(a) Header Information which exists for all Elements. The header information includes the
Element type, name, colour, style, number of points, start chainage, model and extents.
The functions for manipulating the header information are in the section 5.35.2.1 Element
Header Functions

(b) Element Attributes for the entire Element
The functions for manipulating the Element attributes are in the section 5.35.2.2 Element
Attributes Functions

Note that for some types of Elements, there are additional attributes as part of the element-
type body of the Element. For example super strings have attributes for vertices and
segments, and drainage strings have attributes for maintenance holes/pits and pipes.

The functions for manipulating the header information and attributes are documented first,
followed by the specific functions for each type of Element (e.g. tins, super strings).

(c) Element Body - element-type specific information (the body of the Element) such as the
(x,y,z) values for an vertex.
Super strings, interface strings and the old 2d, 3d, 4d and polyline strings consist of data
values given at one or more points in the string.

For the above types, the associated Element body is created by giving fixed arrays
containing the required information at each point, and extra data for optional super string
dimensions.
Text, Plot Frames and strings of type Super Alignment, Alignment, Arc, Circle do not have
simple arrays to define them.
Tins consist of vertices for the triangles and all the triangle edges that make up the tin. See
5.36 Tin Element for functions for working with Tins.

The Element-type specific functions for each type of Element (e.g. tins, super strings) are
given in:

5.36 Tin Element
5.37 Super String Element
5.38 Examples of Setting Up Super Strings
5.39 Super Alignment String Element
5.40 Arc String Element
5.41 Circle String Element
5.42 Text String Element
5.43 Pipeline String Element
5.44 Drainage String Element
5.45 Feature String Element
5.46 Interface String Element
5.47 Grid String and Grid Tin Element
5.51 Plot Frame Element
5.52 Strings Replaced by Super Strings

Other general and miscellaneous Element functions are collected in the section 5.54 General
Element Operations.
Page 313Elements

12d Model Programming Language Manual
5.35.2.1 Element Header Functions
When an Element is created, its type is given by the Element creation function.

All new Elements are given the default header information:
 Uid unique Uid for the Element
 model none
 colour magenta
 name none
 chainage 0
 style 1
 weight 0
For all Element types, inquiries and modifications to the Element header information can be
made by the following 12dPL functions.

Element_exists(Element elt)
Name
Integer Element_exists(Element elt)

Description
Checks the validity of an Element elt. That is, it checks that elt has not been set to null.
A non-zero function return value indicates elt is not null.
A zero function return value indicates that elt is null.

ID = 56

Get_points(Element elt,Integer &num_verts)
Name
Integer Get_points(Element elt,Integer &num_verts)

Description
Get the number of vertices in the Element elt.
The number of vertices is returned as the Integer num_verts.
For Elements of type Alignment, Arc and Circle, Get_points gives the number of vertices when
the Element is approximated using the 12d Model chord-to-arc tolerance.

A function return value of zero indicates the number of vertices was successfully returned.
ID = 43

Get_data(Element elt,Integer i,Real &x,Real &y,Real &z)
Name
Integer Get_data(Element elt,Integer i,Real &x,Real &y,Real &z)

Description
Get the (x,y,z) data for the ith vertex of the string Element elt.
The x value is returned in Real x.
The y value is returned in Real y.

The z value is returned in Real z.
A function return value of zero indicates the data was successfully returned.
NOTE: The functions to set the data arrays are given in the sections of each string type. For
Page 314 Elements

Chapter 5 12dPL Library Calls
example 5.37.2.1 Super String Create Functions.
ID = 653

Set_name(Element elt,Text elt_name)
Name
Integer Set_name(Element elt,Text elt_name)

Description
Set the name of the Element elt to the Text elt_name.
A function return value of zero indicates the Element name was successfully set.

Note
This will not set the name of an Element of type Tin.
ID = 45

Get_name(Element elt,Text &elt_name)
Name
Integer Get_name(Element elt,Text &elt_name)

Description
Get the name of the Element elt.
The name is returned by the Text elt_name.

A function return value of zero indicates the name was returned successfully.
If elt is null, the function return value is non-zero.
ID = 44

Set_colour(Element elt,Integer colour)
Name
Integer Set_colour(Element elt,Integer colour)

Description
Set the colour of the Element elt. The colour is given by the Integer colour.
A function return value of zero indicates that the colour was successfully set.

Notes
(a) For an Interface string, the colour is only used when the string is converted to a different

string type.
(b) There are supplied functions to convert the colour number to a colour name and vice-versa.
ID = 47

Get_colour(Element elt,Integer &colour)
Name
Integer Get_colour(Element elt,Integer &colour)

Description
Get the colour of the Element elt.
Page 315Elements

12d Model Programming Language Manual
The colour (as a number) is returned as the Integer colour.
A function return value of zero indicates the Element colour was successfully returned.
Note

There are 12dPL functions to convert the colour number to a colour name and vice-versa.
ID = 46

Set_model(Element elt,Model model)
Name
Integer Set_model(Element elt,Model model)

Description
Sets the 12d Model model of the Element elt to be Model model.
If elt is already in a model, then it is moved to the Model model.
If elt is not in a model, then elt is added to the Model model.
A function return value of zero indicates the model was successfully set.
ID = 55

Set_model(Dynamic_Element de,Model model)
Name
Integer Set_model(Dynamic_Element de,Model model)

Description
Sets the Model of all the Elements in the Dynamic_Element de to model.
For each Element elt in the Dynamic_Element, de if elt is already in a model, then it is moved to
the Model model. If elt is not in a model, elt is added to the Model model.
A function return value of zero indicates the models were successfully set.
ID = 141

Get_model(Element elt,Model &model)
Name
Integer Get_model(Element elt,Model &model)

Description
Get the model handle of the model containing the Element elt. The model is returned by the
Model model. Note: the function cannot get the model when elt is a tin.
A function return value of zero indicates the handle was returned successfully.
ID = 54

Set_breakline(Element elt,Integer break_type)
Name
Integer Set_breakline(Element elt,Integer break_type)

Description
Sets the breakline type for triangulation purposes for the Element elt.
Page 316 Elements

Chapter 5 12dPL Library Calls
The breakline type is given as the Integer break_type.
The break_type is
0 if elt is to be used as a point string
1 if elt is to be used as a breakline string

A function return value of zero indicates the breakline type was successfully set.
ID = 53

Get_breakline(Element elt,Integer &break_type)
Name
Integer Get_breakline(Element elt,Integer &break_type)

Description
Gets the breakline type of the Element elt. The breakline type is used for triangulation purposes
and is returned as the Integer break_type.
The break_type is

0 if elt is used as a point string
1 breakline string
A function return value of zero indicates the breakline type was returned successfully.

ID = 52

Get_type(Element elt,Text &elt_type)
Name
Integer Get_type(Element elt,Text &elt_type)

Description
Get the Element type of the Element elt. as a Text value.

The Element type is returned as the Text elt_type.
For the Text types of elements, go to 5.35.1 Types of Elements.
A function return value of zero indicates the type was returned successfully.

ID = 64

Get_type(Element elt,Integer &elt_type)
Name
Integer Get_type(Element elt,Integer &elt_type)

Description
Get the Element type of the Element elt as an Integer value.

The Element type is returned as the Integer elt_type.
For the Integer types of elements, go to 5.35.1 Types of Elements.
A function return value of zero indicates the type was returned successfully.

ID = 42

Set_style(Element elt,Text elt_style)
Page 317Elements

12d Model Programming Language Manual
Name
Integer Set_style(Element elt,Text elt_style)

Description
Set the line style of the Element elt.
The name of the line style is given by the Text elt_style.
A function return value of zero indicates the style was successfully set.

ID = 49

Get_style(Element elt,Text &elt_style)
Name
Integer Get_style(Element elt,Text &elt_style)

Description
Get the line style of the Element elt.
The name of the line style is returned by the Text elt_style.
The style is not used for Elements of type Tin or Text.
A function return value of zero indicates the style was returned successfully.

ID = 48

Set_weight(Element elt,Real weight)
Name
Integer Set_weight(Element elt,Real weight)

Description
Set the weight of the Element elt.
The value of the weight is given by the Real weight.
A function return value of zero indicates the weight was successfully set.

ID = 1609

Get_weight(Element elt,Real &weight)
Name
Integer Get_weight(Element elt,Real &weight)

Description
Get the line style of the Element elt.
The value of the weight is returned by the Real weight.
A function return value of zero indicates the weight was returned successfully.
ID = 1608

Set_chainage(Element elt,Real start_chain)
Name
Integer Set_chainage(Element elt,Real start_chain)
Page 318 Elements

Chapter 5 12dPL Library Calls
Description
Set the start chainage of the Element elt.
The start chainage is given by the Real start_chain.

A function return value of zero indicates the start chainage was successfully set.
ID = 51

Get_chainage(Element elt,Real &start_chain)
Name
Integer Get_chainage(Element elt,Real &start_chain)

Description
Get the start chainage of the Element elt.
The start chainage is returned by the Real start_chain.

A function return value of zero indicates the chainage was returned successfully.
ID = 50

Get_end_chainage(Element elt,Real &chainage)
Name
Integer Get_end_chainage(Element elt,Real &chainage)

Description
Get the end chainage of the Element elt.
The end chainage is returned by the Real chainage.
A function return value of zero indicates the chainage was returned successfully.

ID = 654

Get_id(Element elt,Uid &uid)
Name
Integer Get_id(Element elt,Uid &uid)

Description
Get the unique Uid of the Element elt and return it in uid.

If elt is null or an error occurs, uid is set to zero.
A function return value of zero indicates the Element Uid was successfully returned.
ID = 1908

Get_id(Element elt,Integer &id)
Name
Integer Get_id(Element elt,Integer &id)

Description
Get the unique id of the Element elt and return it in id.

If elt is null or an error occurs, id is set to zero.
Page 319Elements

12d Model Programming Language Manual
A function return value of zero indicates the Element id was successfully returned.
Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_id(Element elt,Uid &id) instead.
ID = 378

Get_time_created(Element elt,Integer &time)
Name
Integer Get_time_created(Element elt,Integer &time)

Description
Get the time of creation of the Element elt.
The time value is returned in Integer time (seconds since January 1 1970).

A function return value of zero indicates the data was returned successfully.
ID = 673

Get_time_updated(Element elt,Integer &time)
Name
Integer Get_time_updated(Element elt,Integer &time)

Description
Get the time of the last update of the Element elt.
The time value is returned in Integer time (seconds since January 1 1970).

A function return value of zero indicates the data was returned successfully.
ID = 674

Set_time_updated(Element elt,Integer time)
Name
Integer Set_time_updated(Element elt,Integer time)

Description
Set the time of the last update of the Element elt.
The time value is defined in Integer time.
A function return value of zero indicates the time was updated successfully.

ID = 675

Integer Null(Element elt)
Name
Integer Null(Element elt)

Description
Set the Element elt to null.

A function return value of zero indicates the Element elt was successfully set to null.
Note
The database item pointed to by the Element elt is not affected in any way.
Page 320 Elements

Chapter 5 12dPL Library Calls
ID = 133

Get_extent_x(Element elt,Real &xmin,Real &xmax)
Name
Integer Get_extent_x(Element elt,Real &xmin,Real &xmax)

Description
Gets the x-extents of the Element elt.
The minimum x extent is returned by the Real xmin.
The maximum x extent is returned by the Real xmax.

A function return value of zero indicates the x extents were successfully returned.
ID = 159

Get_extent_y(Element elt,Real &ymin,Real &ymax)
Name
Integer Get_extent_y(Element elt,Real &ymin,Real &ymax)

Description
Gets the y-extents of the Element elt.
The minimum y extent is returned by the Real ymin.
The maximum y extent is returned by the Real ymax.

A function return value of zero indicates the y extents were successfully returned.
ID = 160

Get_extent_z(Element elt,Real &zmin,Real &zmax)
Name
Integer Get_extent_z(Element elt,Real &zmin,Real &zmax)

Description
Gets the z-extents of the Element elt.
The minimum z extent is returned by the Real zmin.
The maximum z extent is returned by the Real zmax.

A function return value of zero indicates the z extents were successfully returned.
ID = 161

Calc_extent(Element elt)
Name
Integer Calc_extent(Element elt)

Description
Calculate the extents of the Element elt.
This is necessary after an Element's body data has been modified.

A function return value of zero indicates the extent calculation was successful.
Page 321Elements

12d Model Programming Language Manual
ID = 162

Element_duplicate(Element elt,Element &dup_elt)
Name
Integer Element_duplicate(Element elt,Element &dup_elt)

Description
Create a duplicate of the Element elt and return it as the Element dup_elt.
A function return value of zero indicates the duplication was successful.
ID = 430

Element_delete(Element elt)
Name
Integer Element_delete(Element elt)

Description
Delete from the 12d Model database the item that the Element elt points to. The Element elt is
then set to null.
A function return value of zero indicates the data base item was deleted successfully.
ID = 41
Page 322 Elements

Chapter 5 12dPL Library Calls
5.35.2.2 Element Attributes Functions

Get_attributes(Element elt,Attributes &att)
Name
Integer Get_attributes(Element elt,Attributes &att)

Description
For the Element elt, return the Attributes for the Element as att.
If the Element has no attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully returned.
ID = 1972

Set_attributes(Element elt,Attributes att)
Name
Integer Set_attributes(Element elt,Attributes att)

Description
For the Element elt, set the Attributes for the Element to att.
A function return value of zero indicates the attribute is successfully set.

ID = 1973

Get_attribute(Element elt,Text att_name,Uid &uid)
Name
Integer Get_attribute(Element elt,Text att_name,Uid &uid)

Description
From the Element elt, get the attribute called att_name from elt and return the attribute value in
uid. The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - this function is more efficient than getting the Attributes from the Element and then getting
the data from that Attributes.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1974

Get_attribute(Element elt,Text att_name,Attributes &att)
Name
Integer Get_attribute(Element elt,Text att_name,Attributes &att)

Description
From the Element elt, get the attribute called att_name from elt and return the attribute value in
att. The attribute must be of type Attributes.
If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - this function is more efficient than getting the Attributes from the Element and then getting
Page 323Elements

12d Model Programming Language Manual
the data from that Attributes.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
 ID = 1975

Get_attribute(Element elt,Integer att_no,Uid &uid)
Name
Integer Get_attribute(Element elt,Integer att_no,Uid &uid)

Description
From the Element elt, get the attribute with number att_no and return the attribute value in uid.
The attribute must be of type Uid.
If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 1976

Get_attribute(Element elt,Integer att_no,Attributes &att)
Name
Integer Get_attribute(Element elt,Integer att_no,Attributes &att)

Description
From the Element elt, get the attribute with number att_no and return the attribute value in att.
The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 1977

Set_attribute(Element elt,Text att_name,Uid uid)
Name
Integer Set_attribute(Element elt,Text att_name,Uid uid)

Description
For the Element elt,
 if the attribute called att_name does not exist in the element then create it as type Uid and give
it the value uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.
If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1978

Set_attribute(Element elt,Text att_name,Attributes att)
Page 324 Elements

Chapter 5 12dPL Library Calls
Name
Integer Set_attribute(Element elt,Text att_name,Attributes att)

Description
For the Element elt,
 if the attribute called att_name does not exist in the element then create it as type Attributes
and give it the value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1979

Set_attribute(Element elt,Integer att_no,Uid uid)
Name
Integer Set_attribute(Element elt,Integer att_no,Uid uid)

Description
For the Element elt, if the attribute number att_no exists and it is of type Uid, then its value is set
to uid.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 1980

Set_attribute(Element elt,Integer att_no,Attributes att)
Name
Integer Set_attribute(Element elt,Integer att_no,Attributes att)

Description
For the Element elt, if the attribute number att_no exists and it is of type Attributes, then its value
is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1981

Attribute_exists(Element elt,Text att_name)
Name
Integer Attribute_exists(Element elt,Text att_name)
Page 325Elements

12d Model Programming Language Manual
Description
Checks to see if a user attribute with the name att_name exists in the Element elt.
A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values.
ID = 555

Attribute_exists(Element elt,Text att_name,Integer &att_no)
Name
Integer Attribute_exists(Element elt,Text att_name,Integer &att_no)

Description
Checks to see if a user attribute with the name att_name exists in the Element elt.
If the attribute exists, its position is returned in Integer att_no.

This position can be used in other Attribute functions described below.
A non-zero function return value indicates the attribute does exist.
A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 12dPL function return values
ID = 556

Attribute_delete(Element elt,Text att_name)
Name
Integer Attribute_delete(Element elt,Text att_name)

Description
Delete the user attribute with the name att_name for Element elt.
A function return value of zero indicates the attribute was deleted.

ID = 557

Attribute_delete(Element elt,Integer att_no)
Name
Integer Attribute_delete(Element elt,Integer att_no)

Description
Delete the user attribute at the position att_no for Element elt.
A function return value of zero indicates the attribute was deleted.
ID = 558

Attribute_delete_all(Element elt)
Name
Integer Attribute_delete_all(Element elt)

Description
Page 326 Elements

Chapter 5 12dPL Library Calls
Delete all the user attributes for Element elt.
A function return value of zero indicates all the attributes were deleted.
ID = 559

Get_number_of_attributes(Element elt,Integer &no_atts)
Name
Integer Get_number_of_attributes(Element elt,Integer &no_atts)

Description
Get the total number of user attributes for Element elt.
The total number of attributes is returned in Integer no_atts.
A function return value of zero indicates the attribute was successfully returned.
ID = 560

Get_attribute(Element elt,Text att_name,Text &att)
Name
Integer Get_attribute(Element elt,Text att_name,Text &att)

Description
Get the data for the user attribute with the name att_name for Element elt.
The user attribute must be of type Text and is returned in Text att.
A function return value of zero indicates the attribute was successfully returned.
ID = 561

Get_attribute(Element elt,Text att_name,Integer &att)
Name
Integer Get_attribute(Element elt,Text att_name,Integer &att)

Description
Get the data for the user attribute with the name att_name for Element elt.
The user attribute must be of type Integer and is returned in att.
A function return value of zero indicates the attribute was successfully returned.

ID = 562

Get_attribute(Element elt,Text att_name,Real &att)
Name
Integer Get_attribute(Element elt,Text att_name,Real &att)

Description
Get the data for the user attribute with the name att_name for Element elt.
The user attribute must be of type Real and is returned in att.
A function return value of zero indicates the attribute was successfully returned.

ID = 563
Page 327Elements

12d Model Programming Language Manual
Get_attribute(Element elt,Integer att_no,Text &att)
Name
Integer Get_attribute(Element elt,Integer att_no,Text &att)

Description
Get the data for the user attribute at the position att_no for Element elt.
The user attribute must be of type Text and is returned in att.
A function return value of zero indicates the attribute was successfully returned.
ID = 564

Get_attribute(Element elt,Integer att_no,Integer &att)
Name
Integer Get_attribute(Element elt,Integer att_no,Integer &att)

Description
Get the data for the user attribute at the position att_no for Element elt.
The user attribute must be of type Integer and is returned in Integer att.
A function return value of zero indicates the attribute was successfully returned.

ID = 565

Get_attribute(Element elt,Integer att_no,Real &att)
Name
Integer Get_attribute(Element elt,Integer att_no,Real &att)

Description
Get the data for the user attribute at the position att_no for Element elt.
The user attribute must be of type Real and is returned in Real att.
A function return value of zero indicates the attribute was successfully returned.

ID = 566

Get_attribute_name(Element elt,Integer att_no,Text &name)
Name
Integer Get_attribute_name(Element elt,Integer att_no,Text &name)

Description
Get the name for the user attribute at the position att_no for Element elt.
The user attribute name found is returned in Text name.
A function return value of zero indicates the attribute name was successfully returned.
ID = 567

Get_attribute_type(Element elt,Text att_name,Integer &att_type)
Name
Page 328 Elements

Chapter 5 12dPL Library Calls
Integer Get_attribute_type(Element elt,Text att_name,Integer &att_type)

Description
Get the type of the user attribute with the name att_name from the Element elt.
The user attribute type is returned in Integer att_type.
For the list of attribute types, go to Data Type Attribute Type.
A function return value of zero indicates the attribute type was successfully returned.

ID = 568

Get_attribute_type(Element elt,Integer att_no,Integer &att_type)
Name
Integer Get_attribute_type(Element elt,Integer att_no,Integer &att_type)

Description
Get the type of the user attribute at position att_no for the Element elt.
The user attribute type is returned in att_type.
For the list of attribute types, go to Data Type Attribute Type.

A function return value of zero indicates the attribute type was successfully returned.
ID = 569

Get_attribute_length(Element elt,Text att_name,Integer &att_len)
Name
Integer Get_attribute_length(Element elt,Text att_name,Integer &att_len)

Description
Get the length of the user attribute with the name att_name for Element elt.
The user attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.
ID = 570

Get_attribute_length(Element elt,Integer att_no,Integer &att_len)
Name
Integer Get_attribute_length(Element elt,Integer att_no,Integer &att_len)

Description
Get the length of the user attribute at position att_no for Element elt.
The user attribute length is returned in att_len.
A function return value of zero indicates the attribute type was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.
ID = 571

Set_attribute(Element elt,Text att_name,Text att)
Page 329Elements

12d Model Programming Language Manual
Name
Integer Set_attribute(Element elt,Text att_name,Text att)

Description
For the Element elt, set the user attribute with name att_name to the Text att.
The user attribute must be of type Text
A function return value of zero indicates the attribute was successfully set.

ID = 572

Set_attribute(Element elt,Text att_name,Integer att)
Name
Integer Set_attribute(Element elt,Text att_name,Integer att)

Description
For the Element elt, set the user attribute with name att_name to the Integer att.

The user attribute must be of type Integer
A function return value of zero indicates the attribute was successfully set.
ID = 573

Set_attribute(Element elt,Text att_name,Real att)
Name
Integer Set_attribute(Element elt,Text att_name,Real att)

Description
For the Element elt, set the user attribute with name att_name to the Real att.
The user attribute must be of type Real
A function return value of zero indicates the attribute was successfully set.
ID = 574

Set_attribute(Element elt,Integer att_no,Text att)
Name
Integer Set_attribute(Element elt,Integer att_no,Text att)

Description
For the Element elt, set the user attribute at position att_no to the Text att.
The user attribute must be of type Text
A function return value of zero indicates the attribute was successfully set.
ID = 575

Set_attribute(Element elt,Integer att_no,Integer att)
Name
Integer Set_attribute(Element elt,Integer att_no,Integer att)

Description
Page 330 Elements

Chapter 5 12dPL Library Calls
For the Element elt, set the user attribute at position att_no to the Integer att.
The user attribute must be of type Integer
A function return value of zero indicates the attribute was successfully set.

ID = 576

Set_attribute(Element elt,Integer att_no,Real att)
Name
Integer Set_attribute(Element elt,Integer att_no,Real att)

Description
For the Element elt, set the user attribute at position att_no to the Real att.
The user attribute must be of type Real
A function return value of zero indicates the attribute was successfully set.

ID = 577

Attribute_dump(Element elt)
Name
Integer Attribute_dump(Element elt)

Description
Write out information about the Element attributes to the Output Window.

A function return value of zero indicates the function was successful.
ID = 578

Attribute_debug(Element elt)
Name
Integer Attribute_debug(Element elt)

Description
Write out even more information about the Element attributes to the Output Window.

A function return value of zero indicates the function was successful.
 ID = 589
Page 331Elements

12d Model Programming Language Manual
5.36 Tin Element
The variable type Tin is used to refer to the standard 12d Model tins or triangulations.
Tin variables act as handles to the actual tin so that the tin can be easily referred to and
manipulated within a macro.
See 5.36.1 Triangulate Data
See 5.36.2 Tin Functions
See 5.36.3 Null Triangles
See 5.36.4 Colour Triangles
Page 332 Tin Element

Chapter 5 12dPL Library Calls
5.36.1 Triangulate Data
Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer
preserve,Integer bubbles,Tin &tin)
Name
Integer Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer preserve,Integer
bubbles,Tin &tin)

Description
The elements from the Dynamic_Element de are triangulated and a tin named tin_name created
with colour tin_colour.
A non zero value for preserve allows break lines to be preserved.

A non zero value for bubbles removes bubbles from the triangulation.
A created tin is returned by Tin tin.
A function return value of zero indicates the triangulation was successful.

ID = 142

Triangulate(Dynamic_Text list,Text tin_name,Integer colour,Integer
preserve,Integer bubbles,Tin &tin)
Name
 Integer Triangulate(Dynamic_Text list,Text tin_name,Integer colour,Integer preserve,Integer bubbles,Tin
&tin)

Description
Triangulate the data from a list of models Dynamic_Text list.
The tin name is given as Text tin_name, the tin colour is given as Integer colour, the preserve
string option is given by Integer preserve, and the remove bubbles option is given by Integer
bubbles, 1 is on, 0 is off.
A function return value of zero indicates the Tin tin was successfully returned.

ID = 1428
Page 333Tin Element

12d Model Programming Language Manual
5.36.2 Tin Functions
Tin_exists(Text tin_name)
Name
Integer Tin_exists(Text tin_name)

Description
Checks to see if a tin with the name tin_name exists.

A non-zero function return value indicates a tin does exist.
A zero function return value indicates that no tin of that name exists.
Warning this is the opposite of most 12dPL function return values

ID = 355

Tin_exists(Tin tin)
Name
Integer Tin_exists(Tin tin)

Description
Checks if the Tin tin is valid (that is, not null).

A non-zero function return value indicates that tin is not null.
A zero function return value indicates that tin is null.

Warning this is the opposite of most 12dPL function return values
ID = 356

Get_project_tins(Dynamic_Text &tins)
Name
Integer Get_project_tins(Dynamic_Text &tins)

Description
Get the names of all the tins in the project. The names are returned in the Dynamic_Text, tins.
A function return value of zero indicates the tin names were returned successfully.
ID = 232

Get_tin(Text tin_name)
Name
Tin Get_tin(Text tin_name)

Description
Get a Tin handle for the tin with name tin_name.
If the tin exists, the handle to it is returned as the function return value.

If the tin does not exist, a null Tin is returned as the function return value.
ID = 146

Get_tin(Element elt)
Page 334 Tin Element

Chapter 5 12dPL Library Calls
Name
Tin Get_tin(Element elt)

Description
If the Element elt is of type Tin and the tin exists, a Tin handle to the tin is returned as the
function return value.
If the tin does not exist or the Element is not of type Tin, a null Tin is returned as the function
return value.
ID = 370

Get_name(Tin tin,Text &tin_name)
Name
Integer Get_name(Tin tin,Text &tin_name)

Description
Get the name of the Tin tin.

The tin name is returned in the Text tin_name.
A function return value of zero indicates success.
If tin is null, the function return value is non-zero.

Tin_models(Tin tin, Dynamic_Text &models_used)
Name
Integer Tin_models(Tin tin, Dynamic_Text &models_used)

Description
Get the names of all the models that were used to create the Tin tin.
The model names are returned in the Dynamic_Text models_used.

A function return value of zero indicates that the view names were returned successfully.
ID = 431

Get_time_created(Tin tin,Integer &time)
Name
Integer Get_time_created(Tin tin,Integer &time)

Description
Get the time that the Tin tin was created and return the time in time.
The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully returned.

ID = 2114

Get_time_updated(Tin tin,Integer &time)
Name
Integer Get_time_updated(Tin tin,Integer &time)

Description
Page 335Tin Element

12d Model Programming Language Manual
Get the time that the Tin tin was last updated and return the time in time.
The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully returned.

ID = 2115

Set_time_updated(Tin tin,Integer time)
Name
Integer Set_time_updated(Tin tin,Integer time)

Description
Set the update time for the Tin tin to time.

The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully set.
ID = 2116

Tin_number_of_points(Tin tin,Integer ¬ri)
Name
Integer Tin_number_of_points(Tin tin,Integer ¬ri)

Description
Get the total number of points used in creating the Tin tin.

This value includes duplicate points and also the four construction points.
The number of triangles is returned in the Integer notri.
A function return value of zero indicates success.

If tin is null, the function return value is non-zero.
ID = 472

Tin_number_of_triangles(Tin tin,Integer ¬ri)
Name
Integer Tin_number_of_triangles(Tin tin,Integer ¬ri)

Description
Get the number of triangles in the Tin tin.
This value includes null triangles and also construction triangles.
The number of triangles is returned in the Integer notri.
A function return value of zero indicates success.
If tin is null, the function return value is non-zero.
ID = 473

Tin_number_of_duplicate_points(Tin tin,Integer ¬ri)
Name
Integer Tin_number_of_duplicate_points(Tin tin,Integer ¬ri)
Page 336 Tin Element

Chapter 5 12dPL Library Calls
Description
Get the number of duplicate points found whilst creating the Tin tin.
The number of duplicate points is returned in the Integer notri.
A function return value of zero indicates success.
If tin is null, the function return value is non-zero.
ID = 474

Tin_number_of_items(Tin tin,Integer &num_items)
Name
Integer Tin_number_of_items(Tin tin,Integer &num_items)

Description
The number of strings in the tin tin is returned as num_items. Note that if the original string in
the data set to be triangulated had invisible segments (discontinuities) then that string is broken
into two or more strings in the tin.

A function return value of zero indicates that num_items was successfully returned.
 ID = 475

Tin_colour(Tin tin,Real x,Real y,Integer &colour)
Name
Integer Tin_colour(Tin tin,Real x,Real y,Integer &colour)

Description
Get the colour of the tin at the point (x,y)
A function return value of zero indicates success.
ID = 218

Tin_height(Tin tin,Real x,Real y,Real &height)
Name
Integer Tin_height(Tin tin,Real x,Real y,Real &height)

Description
Get the height of the tin at the point (x,y).
If (x,y) is outside the tin, then an error has occurred and a non-zero function return value is set.

A function return value of zero indicates the height was successfully returned.
ID = 215

Tin_slope(Tin tin,Real x,Real y,Real &slope)
Name
Integer Tin_slope(Tin tin,Real x,Real y,Real &slope)

Description
Get the slope of the tin at the point (x,y).
The units for slope is an angle in radians measured from the horizontal plane.
Page 337Tin Element

12d Model Programming Language Manual
If (x,y) is outside the tin, then an error has occurred and a non-zero function return value is set.
A function return value of zero indicates the slope was successfully returned.
ID = 216

Tin_aspect(Tin tin,Real x,Real y,Real &aspect)
Name
Integer Tin_aspect(Tin tin,Real x,Real y,Real &aspect)

Description
Get the aspect of the tin at the point (x,y).
The units for aspect is a bearing in radians. That is, aspect is given as a clockwise angle
measured from the positive y-axis (North).

If (x,y) is outside the tin, then an error has occurred and a non-zero function return value is set.
A function return value of zero indicates the aspect was successfully returned.
ID = 217

Tin_duplicate(Tin tin,Text dup_name)
Name
Integer Tin_duplicate(Tin tin,Text dup_name)

Description
Create a new Tin with name dup_name which is a duplicate the Tin tin.

IT is an error if a Tin called dup_name already exists.
A function return value of zero indicates the duplication was successful.
ID = 429

Tin_rename(Text original_name,Text new_name)
Name
Integer Tin_rename(Text original_name,Text new_name)

Description
Change the name of the Tin original_name to the new name new_name.
A function return value of zero indicates the rename was successful.

ID = 422

Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de)
Name
Integer Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de)

Description
Get the boundary polygons for the Tin tin. The polygons are returned in the Dynamic_Element
de with colour colour_for_strings.

A function return value of zero indicates the data was successfully returned.
ID = 476
Page 338 Tin Element

Chapter 5 12dPL Library Calls
Tin_delete(Tin tin)
Name
Integer Tin_delete(Tin tin)

Description
Delete the Tin tin from the project and the disk. Note: the function does not work on super tins
nor grid tins.
A function return value of zero indicates the tin was deleted successfully.

ID = 219

Tin_get_point(Tin tin,Integer np,Real &x,Real &y,Real &z)
Name
Integer Tin_get_point(Tin tin,Integer np,Real &x,Real &y,Real &z)

Description
Get the (x,y,z) coordinate of np’th point of the tin.
The x value is returned in Real x.
The y value is returned in Real y.

The z value is returned in Real z.
A function return value of zero indicates the coordinate of the point was successfully returned.
ID = 831

Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3)
Name
Integer Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3)

Description
Get the three points of nt’th triangle of the tin.
The first point value is returned in Integer p1.

The second point value is returned in Integer p2.
The third point value is returned in Integer p3.
The normal to a triangle in the tin is considered to be pointing "upwards". That is, the normal
points in the direction of what is considered the upper side of the tin. For example for a ground
tin, the normal points upward.

Looking onto the triangle from down the direction of the normal, the points p1, p2 and p3 are in a
clockwise order around the triangle. This is opposite to the right-hand screw rule.
Page 339Tin Element

12d Model Programming Language Manual
Note: this is the opposite to the order of points in a triangle in a trimesh. See 5.50 Trimesh
Element.
A function return value of zero indicates the points were successfully returned

ID = 832

Tin_get_triangle_neighbours(Tin tin,Integer nt,Integer &n1,Integer &n2, Integer
&n3)
Name
Integer Tin_get_triangle_neighbours(Tin tin,Integer nt,Integer &n1,Integer &n2,Integer &n3)

Description
Get the three neighbour triangles of the nt’th triangle of the tin.
The first triangle neighbour is returned in Integer n1.

The second triangle neighbour is returned in Integer n2.
The third triangle neighbour is returned in Integer n3.
A function return value of zero indicates the triangles were successfully returned.

ID = 833

Tin_get_point_from_point(Tin tin,Real x,Real y,Integer &np)
Name
Integer Tin_get_point_from_point(Tin tin,Real x,Real y,Integer &np)

Description
For the Tin tin and the coordinate (x,y), get the tin point number of the vertex of the triangle
closest to (x,y), and returned it in np.

A function return value of zero indicates the function was successful.
 ID = 1436

Tin_get_triangles_about_point(Tin tin,Integer n,Integer &no_triangles)
Name
Integer Tin_get_triangles_about_point(Tin tin,Integer n,Integer &no_triangles)

Description
For the Tin tin and the nth point of tin, get the number of triangles surrounding the point and
return the number in no_triangles. Those includes construction triangles.
A function return value of zero indicates the function was successful.

p1

p2

p3 normal pointing "up"
Page 340 Tin Element

Chapter 5 12dPL Library Calls
ID = 1628

Tin_get_triangles_about_point(Tin tin,Integer n,Integer max_triangles,Integer
&no_triangles,Integer triangles[],Integer points[],Integer status[])
Name
Integer Tin_get_triangles_about_point(Tin tin,Integer n,Integer max_triangles,Integer
&no_triangles,Integer triangles[],Integer points[],Integer status[])

Description
For the Tin tin and the nth point of tin,
 get the number of triangles surrounding the point and return it as no_triangles
 return the list of triangle numbers in triangles[]
 return the list of all the point numbers of vertices of the triangles that surround the point in
points[] (the number of these is the same as the number of triangle around the point)
 return the status of each triangle in triangles[]. status is 2 for normal visible triangles, 1 or 0 for
other triangles (including null triangles and construction triangles).

Note: max_triangles is the size of the arrays triangles[], points[] and status[]; and if
max_triangles is less than or equal to no_triangles the function will fail and return 12. The
number of triangles surrounding the nth point of a tin is given by Tin_get_triangles_about_point.
A function return value of zero indicates the function was successful.
ID = 1629

Tin_get_triangle_inside(Tin tin,Integer triangle,Integer &Inside)
Name
Integer Tin_get_triangle_inside(Tin tin,Integer triangle,Integer &Inside)

Description
Get the condition of the triangle number triangle of the tin tin.
If the value of the flag Inside is

0 not valid triangle.
1 null triangle or construction triangle.
2 the triangle is a non-null triangle.
So for a valid triangle, inside = 2.
A function return value of zero indicates the flag was successfully returned.

ID = 835

Tin_get_triangle(Tin tin,Integer triangle,Integer &p1,Integer &p2,Integer
&p3,Integer &n1,Integer &n2,Integer &n3,Real &x1,Real &y1,Real &z1,Real
&x2,Real &y2,Real &z2,Real &x3,Real &y3,Real &z3)
Name
Integer Tin_get_triangle(Tin tin,Integer triangle,Integer &p1,Integer &p2,Integer &p3,Integer
&n1,Integer &n2,Integer &n3,Real &x1,Real &y1,Real &z1,Real &x2,Real &y2,Real &z2,Real &x3,Real
&y3,Real &z3)

Description
Get the three points and their (x,y,z) data and three neighbour triangles of nth triangle of the tin.
Page 341Tin Element

12d Model Programming Language Manual
The first point is returned in Integer p1, the (x, y, z) value is returned in x1,y1,z1.
The second point is returned in Integer p2, the (x, y, z) value is returned in x2,y2,z2.
The third point is returned in Integer p3, the x, y, z values are returned in x3,y3,z3.

The first triangle neighbour is returned in Integer n1.
The second triangle neighbour is returned in Integer n2.
The third triangle neighbour is returned in Integer n3.

A function return value of zero indicates the data was successfully returned.
ID = 836

Tin_get_triangle_from_point(Tin tin,Real x,Real y,Integer &triangle)
Name
Integer Tin_get_triangle_from_point(Tin tin,Real x,Real y,Integer &triangle)

Description
Get the triangle of the Tin tin that contains the given coordinate (x,y).
The triangle number is returned in Integer triangle.
A function return value of zero indicates the triangle was successfully returned.

ID = 837

Draw_triangle(Tin tin,Integer tri,Integer c)
Name
 Integer Draw_triangle(Tin tin,Integer tri,Integer c)

Description
Draw the triangle tri with colour c inside the Tin tin.
A function return value of zero indicates the triangle was successfully drawn.
ID = 1433

Draw_triangles_about_point(Tin tin,Integer pt,Integer c)
Name
Integer Draw_triangles_about_point(Tin tin,Integer pt,Integer c)

Description
Draw the triangles about a point pt with colour c inside Tin tin.
A function return value of zero indicates the triangles were successfully drawn.

ID = 1434

Triangles_clip(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real x4,Real
y4,Real z4,Real x5,Real y5,Real z5,Real x6,Real y6,Real z6, Integer &npts_out,Real
xarray_out[],Real yarray_out[],Real zarray_out[])
Name
 Integer Triangles_clip(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real x4,Real y4,Real z4,Real
x5,Real y5,Real z5,Real x6,Real y6,Real z6,Integer &npts_out,Real xarray_out[],Real yarray_out[],Real
Page 342 Tin Element

Chapter 5 12dPL Library Calls
zarray_out[])

Description
The vertices of a 2d triangle is defined by the coordinates (x1,y1), (x2,y2) and (x3,y3).

The vertices of a 3d triangle is defined by the coordinates (x4,y4,z4), (x5,y5,z5) and (x6,y6,z6).
The Real arrays xarray_out[], yarray_out[], zarrary_out[] must exist and have dimensions at
least 9.
The function uses the 2d triangle to clip the 3d triangle and return the polygon of 3d clips points in
the arrays xarray_out[], yarray_out[], zarrar_out[]. The number of clips points is returned in
npts_out.
A function return value of zero indicates the function was successful.
ID = 1439

Retriangulate(Tin tin)
Name
 Integer Retriangulate(Tin tin)

Description
Retriangulate the Tin tin.
A function return value of zero indicates the Tin tin was successfully returned.

ID = 1429

Breakline(Tin tin,Integer p1,Integer p2)
Name
 Integer Breakline(Tin tin,Integer p1,Integer p2)

Description
Add breakline in Tin tin from point 1 p1 to point 2 p2.

A function return value of zero indicates the breakline was successfully added.
ID = 1430

Flip_triangles(Tin tin,Integer t1,Integer t2)
Name
 Integer Flip_triangles(Tin tin,Integer t1,Integer t2)

Description
From the triangles t1 and t2 in Tin tin.
A function return value of zero indicates the triangles were successfully flipped.
ID = 1431

Set_height(Tin tin,Integer pt,Real ht)
Name
 Integer Set_height(Tin tin,Integer pt,Real ht)

Description
Page 343Tin Element

12d Model Programming Language Manual
Set the height Real ht for the point pt on the Tin tin.
A function return value of zero indicates the height was successfully set.
ID = 1432

Tin_drop_point_3d(Tin tin,Real px,Real py,Real pz,Real &dx,Real &dy,Real
&dz,Real &distance,Integer &above_tin,Integer &triangle,Integer &status)
Name
Integer Tin_drop_point_3d(Tin tin,Real px,Real py,Real pz,Real &dx,Real &dy,Real &dz,Real
&distance,Integer &above_tin,Integer &triangle,Integer &status)

Description
Drop a point with xyz-coordinate px py pz to a Tin tin

to get the dropped xyz-coordinate dx dy dz, distance to the tin distance, point above tin check
above_tin 1 for true, triangle index triangle of dropped point, dropped status status
A return value of zero indicates the function call was successful.
ID = 3030

Supertin_number_of_tins(Tin supertin,Integer &ntins)
Name
Integer Supertin_number_of_tins(Tin supertin,Integer &ntins)

Description
Get the number of component tins of a supertin.

The number of component tins is returned in the Integer ntins.
A function return value of zero indicates the input is an actual supertin and the function call was
successful.
ID = 3217

Supertin_get_tin(Tin supertin,Integer pos,Text &name,Integer &mode,Integer
&active)
Name
Integer Supertin_get_tin(Tin supertin,Integer pos,Text &name,Integer &mode,Integer &active)

Description
Get the details of component tin number pos of a supertin.

The details includes:
name of the component tin.
mode of the component being a hole or not (1 true, 0 false).

active flag (1 true, 0 false).
A function return value of zero indicates the input is an actual supertin and the position is valid
and the function call was successful.
ID = 3218
Page 344 Tin Element

Chapter 5 12dPL Library Calls
5.36.3 Null Triangles
Null(Tin tin)
Name
Integer Null(Tin tin)

Description
Set the Tin handle tin to null. This does not affect the 12d Model tin that the handle pointed to.

A function return value of zero indicates tin was successfully nulled.
ID = 376

Null_triangles(Tin tin,Element poly,Integer mode)
Name
Integer Null_triangles(Tin tin,Element poly,Integer mode)

Description
Set any triangle whose centroid is inside or outside a given polygon to null.
tin is the tin to null and poly is the polygon which restricts the nulling.

If mode is
0 the inside of the polygon is nulled.
1 the outside is nulled.

A function return value of zero indicates there were no errors in the nulling calculations.
ID = 153

Reset_null_triangles(Tin tin,Element poly,Integer mode)
Name
Integer Reset_null_triangles(Tin tin,Element poly,Integer mode)

Description
Set any null triangle whose centroid is inside or outside a given polygon to be a valid triangle.
tin is the tin to reset and poly is the polygon which determines which triangles are to be reset
If mode is

0 the inside of the polygon is reset.
1 the outside is reset.
A function return value of zero indicates there were no errors in the reset calculations.

ID = 154

Reset_null_triangles(Tin tin)
Name
Integer Reset_null_triangles(Tin tin)

Description
Set all the triangles of the tin tin to be valid triangles.
A function return value of zero indicates there were no errors in the reset calculations.
Page 345Tin Element

12d Model Programming Language Manual
ID = 155

Null_by_angle_length(Tin tin,Real l1,Real a1,Real l2,Real a2)
Name
 Integer Null_by_angle_length(Tin tin,Real l1,Real a1,Real l2,Real a2)

Description
Null triangle of the tin tin based on:

length l2; - if a triangle has an external side (that is not a breakline) greater than l2, the triangle is
nulled
angle a2 in radian; - if a triangle has an external side (that is not a breakline) with an angle on it
less than a2, then the triangle is nulled.
combined length l1 and combined angle a1 in radian; - a triangle is nulled if it has an external
side (that is not a breakline) and the sum of the two angles on it is less than a1 and has an
external side (that is not a breakline) whose length is greater than l1.

See reference manual under Tins => Null => Null by Angle and Length for more details.
A function return value of zero indicates the triangle was nulled successfully.
ID = 1435

Tin_null_by_colour(Tin tin, Integer colour, Integer is_colour, Integer is_null)
Name
 Integer Tin_null_by_colour(Tin tin, Integer colour, Integer is_colour, Integer is_null)

Description
Reset or null triangles of the tin tin based on triangle colours:

colour to be compared to the triangle colours
is_colour 1 indicates only process the triangles with matching colour; 0 indicates only process
the triangles with non-matching colour.
is_null 0 indicates that the operation resets null triangles; 1 indicates that the operation set null
triangles.

A function return value of zero indicates the triangle was nulled successfully.
ID = 3219

Tin_null_by_colours(Tin tin, Dynamic_Integer colours, Integer in_colours_list,
Integer is_null)
Name
 Integer Tin_null_by_colours(Tin tin, Dynamic_Integer colours,Integer in_colours_list, Integer is_null)

Description
Reset or null triangles of the tin tin based on triangle colours:
List of colours to be compared to the triangle colours

in_colours_list 1 indicates only process the triangles with colours in the given list; 0 indicates
only process the triangles with colours not in the given list.
is_null 0 indicates that the operation resets null triangles; 1 indicates that the operation set null
triangles.
Page 346 Tin Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the triangle was nulled successfully.
ID = 3220
Page 347Tin Element

12d Model Programming Language Manual
5.36.4 Colour Triangles
Tin_get_triangle_colour(Tin tin,Integer triangle,Integer &colour)
Name
Integer Tin_get_triangle_colour(Tin tin,Integer triangle,Integer &colour)

Description
Get the colour of the nth triangle of the tin.

The colour value is returned in Integer colour.
Note 1: if the triangle is not a valid triangle, the return colour will be 0. Use the call
Tin_get_triangle_inside(tin, triangle, error) and compare error to 2 for checking the valid of the
triangle.
Note 2: if the triangle does not have its own colour (e.g. on plan view, the drawing will use the
common tin colour), the return colour also will be 0.

A function return value of zero indicates the colour were successfully returned.
ID = 834

Colour_triangles(Tin tin,Integer col_num,Element poly,Integer mode)
Name
Integer Colour_triangles(Tin tin,Integer colour,Element poly,Integer mode)

Description
Colour all the triangles in the Tin tin whose centroids are inside or outside a given polygon to a
specified colour.
The triangulation is tin, the polygon poly and the colour number col_num.

The value of mode determines whether the triangles whose centroids are inside or outside the
polygon are coloured.
If mode equals 0, the triangles inside the polygon are coloured.
If mode equals 1, the triangles outside the polygon are coloured.

A function return value of zero indicates there were no errors in the colour calculations.
ID = 156

Colour_triangle(Tin tin,Integer triangle_number,Integer colour)
Name
Integer Colour_triangle(Tin tin,Integer triangle_number,Integer colour)

Description
Colour one triangle of given index triangle_number in the Tin tin to a specified colour.
A function return value of zero indicates success.
ID = 3843

Colour_triangle(Tin tin,Dynamic_Integer triangle_numbers,Integer colour)
Name
Integer Colour_triangle(Tin tin,Dynamic_Integer triangle_numbers,Integer colour)
Page 348 Tin Element

Chapter 5 12dPL Library Calls
Description
Colour all triangles of given indices triangle_numbers in the Tin tin to a specified colour.
A function return value of zero indicates success.

ID = 3844

Reset_colour_triangles(Tin tin,Element poly,Integer mode)
Name
Integer Reset_colour_triangles(Tin tin,Element poly,Integer mode)

Description
Set any triangle in the Tin tin whose centroid is inside or outside a given polygon back to the
base tin colour.
The value of mode determines whether the triangles whose centroids are inside or outside the
polygon are set back to the base colour.
If mode equals 0, the triangles inside the polygon are set

If mode equals 1, the triangles outside the polygon are set
A function return value of zero indicates there were no errors in the colour reset calculations.
ID = 157

Reset_colour_triangles(Tin tin)
Name
Integer Reset_colour_triangles(Tin tin)

Description
Set all the triangles in the Tin tin back to the base tin colour.
A function return value of zero indicates success.

ID = 158
Page 349Tin Element

12d Model Programming Language Manual
5.37 Super String Element
The Super String is a very general string which was introduced to not only replace the string
types 2d, 3d, 4d, interface, face, pipe and polyline, but also to allow for combinations that were
never allowed in the old strings. For example, to have a polyline string but with a pipe diameter,
or a 2d string with text at each vertex.
Different strings to cover every possible combination would have required hundreds of different
string types. A better solution was to have one string type that has information to cover all of the
properties of the other strings, and the ability to more easily add other properties now and in the
future. This flexible string is the Super String.

Having all possible combinations defined for every Super String would be very inefficient for
computer storage and processing speed, so the Super String uses the concept of dimensions to
refer to the different types of information that could be stored in the Super String.
Each dimension is well defined and is also optional so that no unnecessary information is
required to be stored.
A Super String always has an (x,y) value for each vertex but what other information exists for a
particular Super String depends on what optional dimensions are defined for that Super String.

For example, there are two Height dimensions called Att_ZCoord_Value and Att_ZCoord_Array.
If Att_ZCoord_Value is set then the super string has a constant height value for the entire string
(2d super string), and if Att_ZCoord_Array is set, then there is a z value for each vertex (3d super
string). If both are set then Att_ZCoord_Array takes precedence
So the two Height dimensions cover the functionality of both the old 2d string (one height for the
entire string) and the old 3d string (different z value at each vertex). Plus the 2d super string only
requires the storage of one height like the old 2d string and not the additional storage required for
a z value at every vertex that the 3d string needs.

Please continue to 5.37.1 Super String Dimensions

5.37.1 Super String Dimensions
The super string supports over 50 different dimensions.
Each dimension has a unique number and also a unique name and either the unique name or
the dimension number can be used in calls requiring a super string dimension.

When creating a super string, the super string must be told that a particular dimension is to exist
(by setting the dimension on or off) and there are function calls to set each dimension
(Set_super_use calls) on or off.

For an existing super string, there are inquiry calls to check if a particular dimension is on or off
(Get_super_use calls). The Set_super_use and Get_super_use function calls are documented
after the documentation on dimensions.
Some dimensions are mutually exclusive (that is, only one of them can exist) and others can
exist together but one may take precedence over others.
In the definitions of the dimensions, where two dimensions are listed on the one line with an or
between them, then if both exist, the array dimension takes precedence over the value
dimension, and the super string may compress or remove the value dimension.

Although there are calls to set each of the dimensions individually, it is also possible to set more
than one dimension at once using flags that combine dimension values (see 5.37.1.1 Dimension
Combinations and Super String Flags)

The dimension definitions and the user function calls are not given in dimension number order
Page 350 Super String Element

Chapter 5 12dPL Library Calls
but for convenience are grouped together by common functionality.

Finally there are also general super string creation and data setting calls documented in the
sections 5.37.2 Basic Super String Functionsand 5.54 General Element Operations.

For information on each of the Super String Dimensions:
See Height Dimensions
See Segment Radius Dimension
See Interval Dimensions
See Pipe/Culvert Dimensions
See Vertex Text Dimensions
See Vertex Text Annotation Dimensions
See Segment Text Dimensions
See Segment Text Annotation Dimensions
See Point Id Dimension
See Vertex Symbol Dimensions
See Tinability Dimensions
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions
See Hole Dimension
See User Defined Vertex Attributes Dimensions
See User Defined Segment Attributes Dimensions
See Colour Dimension
See Vertex Image Dimensions
See Segment Geometry Dimension
See Visibility Dimensions
See Matrix Dimension
See UID Dimensions
See Database Point Dimensions
See Extrude Dimensions
See Null Levels Dimensions

For information on setting more than one dimension at once, see 5.37.1.1 Dimension
Combinations and Super String Flags

For information on the functions for creating super strings (with flags to set dimension) and for
loading and inquiring on the standard (x,y,z,radius,bulge) data, see 5.37.2 Basic Super String
Functions

For information on the Super String function calls for setting and inquiring on each particular
dimension, and calls for loading and inquiring on the particular data for that dimension:
See 5.37.3 Super String Height Functions
See 5.37.4 Super String Tinability Functions
See 5.37.5 Super String Segment Radius Functions
See 5.37.7 Super String Point Id Functions
See 5.37.8 Super String Vertex Symbol Functions
See 5.37.9 Super String Pipe/Culvert Functions
See 5.37.10 Super String Vertex Text and Annotation Functions
See 5.37.11 Super String Segment Text and Annotation Functions
See 5.37.12 Super String Fills - Hatch/Solid/Bitmap/Pattern/ACAD Pattern Functions
See 5.37.13 Super String Hole Functions
See 5.37.14 Super String Segment Colour Functions
See 5.37.15 Super String Segment Geometry Functions
See 5.37.16 Super String Extrude Functions
See 5.37.18 Super String Vertex Attributes Functions
See 5.37.19 Super String Segment Attributes Functions
Page 351Super String Element

12d Model Programming Language Manual
See 5.37.20 Super String Uid Functions
See 5.37.21 Super String Vertex Image Functions
See 5.37.22 Super String Visibility Functions

Height Dimensions
Att_ZCoord_Array 2 or only Att_ZCoord_Value 1

If Att_ZCoord_Array is set, then the super string has a z-value for each vertex.
If Att_ZCoord_Value is set and Att_ZCoord_Array not set, then the super string has one z-
value for the entire string.

If neither dimension exists, then the string with no height. That is, it is a string with null height.
See 5.37.3 Super String Height Functionsfor calls to set/inquire on these dimensions, and to load/
retrieve data for these dimensions.

Segment Radius Dimension
Att_Radius_Array 3
Att_Major_Array 4

If Att_Radius_Array is set, then the super string segments can be arcs, and there is an array
to record the radius of the arc for each segment.

If Att_Major_Array is set, then there is an array to record for each segment if the arc is a major
or minor arc. That is, the bulge value (bulge of segment b = 1 for major arc > 180 degrees, b
= 0 for minor arc < 180 degrees).

If neither dimension is set, then all the string segments are straight lines.

NOTE: In the current implementation, the Att_Major_Array is automatically set when
Att_Radius_Array is set.
See 5.37.5 Super String Segment Radius Functionsfor calls to set/inquire on these dimensions, and to
load/retrieve data for these dimensions.

Interval Dimensions
Att_Interval_Value 50

If Att_Interval_Value is set, then for triangulation purposes there is a Real interval_distance
used to add extra temporary vertices into the super string, and a chord_arc_distance which is
also used as a chord to arc tolerance for adding additional temporary vertices into the super
string.

See 5.37.17 Super String Interval Functionsfor calls to set/inquire on these dimensions, and to load/
retrieve data for these dimensions.

Point Id Dimension
Att_Point_Array 11 For a Point id at each vertex

If Att_Point_Array is set, then the super string can have a Point Id at each vertex.

See 5.37.7 Super String Point Id Functionsfor calls to set/inquire on this dimension, and to load/
retrieve data for this dimension.

Vertex Symbol Dimensions
Att_Symbol_Array 18 or only Att_Symbol_Value 17

If Att_Symbol_Array is set, then the super string can have symbols at each vertex.
If Att_Symbol_Value is set and Att_Symbol_Array not set, then the super string has the one
Page 352 Super String Element

Chapter 5 12dPL Library Calls
symbol for each vertex of the string.
See 5.37.8 Super String Vertex Symbol Functionsfor calls to set/inquire on these dimensions, and to
load/retrieve data for these dimensions.

Tinability Dimensions
Att_Contour_Array 3 This dimension applies for both vertex and segment tinability.
Att_Vertex_Tinable_Array 38 or only Att_Vertex_Tinable_Value 37

If Att_Vertex_Tinable_Array is set, then the super string can have a different tinability at each
vertex.

If Att_Vertex_Tinable_Value is set and Att_Vertex_Tinable_Array not set, then the super
string has the one tinability value to be used for all vertices of the string.

Att_Segment_Tinable_Value 39 or Att_Segment_Tinable_Array 40

If Att_Segment_Tinable_Array is set, then the super string can have a different tinability for
each segment.
If Att_Segment_Tinable_Value is set and Att_Segment_Tinable_Array not set, then the super
string has the one tinability value to be used for all segments of the string.

See 5.37.4 Super String Tinability Functionsfor calls to set/inquire on these dimensions, and to load/
retrieve data for these dimensions.

Pipe/Culvert Dimensions
Att_Pipe_Justify 23

If Att_Pipe_Justify is set, then the super string has a justification for the pipe or culvert.

Att_Diameter_Value 5 or Att_Diameter_Array 6
If Att_Diameter_Array is set, then the super string is a round pipe has a diameter and wall
thickness for each segment.
If Att_Diameter_Value is set and Att_Diameter_Array not set, then the super string is a round
pipe has one diameter and one wall thickness value for the entire string.

Att_Culvert_Value 24 or Att_Culvert_Array 25
If Att_Culvert_Array is set, then the super string is a rectangular pipe (culvert) and has a
width, height and top, bottom, left and right wall thicknesses for each segment.
If Att_Culvert_Value is set and Att_Culvert_Array not set, then the super string has one
width, height, and top, bottom, left and right wall thicknesses for the entire string.

If none of the Pipe/Culvert dimensions exist, then the string is infinitesimally thin. Note that you
cannot have both diameter dimensions and culvert dimensions.
Also having the Att_Pipe_Justify dimension by itself will do nothing. If Att_Pipe_Justify does not
exist, the pipe/culvert are centreline based.
See 5.37.9 Super String Pipe/Culvert Functionsfor calls to set/inquire on these dimensions, and to
load/retrieve data for these dimensions.

Vertex Text Dimensions
Att_Vertex_Text_Value 10 or Att_Vertex_Text_Array 7

If Att_Vertex_Text_Array is set, then the super string can have different text at each vertex.

If Att_Vertex_Text_Value is set and Att_Vertex_Array not set, then the super string has the
same text for each vertex of the string.

Note that it is possible to have text associated with a vertex but it is not visible on a plan view. To
be able to draw the text on a plan view, see Vertex Text Annotation Dimensions.
Page 353Super String Element

12d Model Programming Language Manual
See 5.37.10 Super String Vertex Text and Annotation Functionsfor calls to set/inquire on these
dimensions, and to load/retrieve data for these dimensions.

Vertex Text Annotation Dimensions
Att_Vertex_World_Annotate 30
Att_Vertex_Paper_Annotate 45

Att_Vertex_Annotate_Value 14 or Att_Vertex_Annotate_Array 15
If Att_Vertex_Annotate_Array is set, then the super string can have a different annotation for
the text at each vertex.
If Att_Vertex_Annotate_Value is set and Att_Vertex_Annotate_Array not set, then the super
string has the one annotation to be used for all text on all the vertices of the string.

If Att_Vertex_World_Annotate and Att_Vertex_Paper_Annotate do not exist, then the annotated
text is device.
See 5.37.10 Super String Vertex Text and Annotation Functionsfor calls to set/inquire on these
dimensions, and to load/retrieve data for these dimensions.

Segment Text Dimensions
Att_Segment_Text_Value 22 or Att_Segment_Text_Array 8

If Att_Segment_Array is set, then the super string can have text for each segment.
If Att_Segment_Value is set and Att_Segment_Array not set, then the super string has the
same text for each segment of the string.

Note that it is possible to have text associated with a segment but it is not visible. To be able to
draw the text, see Segment Text Annotation Dimensions.
See 5.37.11 Super String Segment Text and Annotation Functionsfor calls to set/inquire on these
dimensions, and to load/retrieve data for these dimensions.

Segment Text Annotation Dimensions
Att_Segment_World_Annotate 31
Att_Segment_Paper_Annotate 46

Att_Segment_Annotate_Value 20 or Att_Segment_Annotate_Array 21
If Att_Segment_Annotate_Array is set, then the super string can have a different annotation
for the text on each segment.
If Att_Segment_Annotate_Value is set and Att_Segment_Annotate_Array not set, then the
super string has the one annotation to be used for all text on all the segments of the string.

If Att_Segment_World_Annotate and Att_Segment_Paper_Annotate do not exist, then the
annotated text is device.
See 5.37.11 Super String Segment Text and Annotation Functionsfor calls to set/inquire on these
dimensions, and to load/retrieve data for these dimensions.

Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions
Att_Solid_Value 28

If Att_Solid_Value is set, then the super string can be filled with a solid colour.
Att_Bitmap_Value 29

If Att_Bitmap_Value is set, then the super string can be filled with a bitmap.
Att_Hatch_Value 27

If Att_Hatch_Value is set, then the super string can be filled with a hatch.
Page 354 Super String Element

Chapter 5 12dPL Library Calls
Att_Pattern_Value 33
If Att_Pattern_Value is set, then the super string can be filled with a 12d pattern.

Att_Autocad_Pattern_Value 54

If Att_Autocad_Pattern_Value is set, then the super string can be filled with an AutoCad
pattern.

Note that all the Solid/Bitmap/Hatch/Pattern/Autocad_Pattern dimensions can exist. They are
drawn in the order solid, bitmap, pattern, hatch and then Autocad pattern. Note that because the
bitmap allows for transparency, it is possible to use one bitmap with a variety of different
background colours.

See 5.37.12 Super String Fills - Hatch/Solid/Bitmap/Pattern/ACAD Pattern Functionsfor calls to
set/inquire on these dimensions, and to load/retrieve data for these dimensions.

Hole Dimension
Att_Hole_Value 26

If Att_Hole_Value is set, then the super string can have zero or more super strings as internal
holes.

So it is possible to have a solid object like a horse shoe where the holes for the nails exist so that
no filling occurs in the nail holes.

Note that the holes themselves may have their own solid/bitmap/hatch dimensions.
Warning, holes may not contain their own holes in the current implementation (that is, only one
level of holes is allowed).
See 5.37.13 Super String Hole Functionsfor calls to set/inquire on these dimensions, and to load/
retrieve data for these dimensions.

User Defined Vertex Attributes Dimensions
Att_Vertex_Attribute_Array 16

If Att_Vertex_Attribute_Array is set, then the super string can have a different Attributes at
each vertex.

See 5.37.18 Super String Vertex Attributes Functionsfor calls to set/inquire on these dimensions, and
to load/retrieve data for these dimensions.

User Defined Segment Attributes Dimensions
Att_Segment_Attribute_Array 19

If Att_Segment_Attribute_Array is set, then the super string can have a different Attributes on
each segment

See 5.37.19 Super String Segment Attributes Functionsfor calls to set/inquire on these dimensions,
and to load/retrieve data for these dimensions.

Colour Dimension
Att_Colour_Array 9 For a colour for each segment
See 5.37.14 Super String Segment Colour Functionsfor calls to set/inquire on these dimensions, and
to load/retrieve data for these dimensions.

Vertex Image Dimensions
Att_Vertex_Image_Value 51 For an image at each vertex
Att_Vertex_Image_Array 52 For many images at each vertex
Page 355Super String Element

12d Model Programming Language Manual
See 5.37.21 Super String Vertex Image Functionsfor calls to set/inquire on these dimensions, and to
load/retrieve data for these dimensions.

Segment Geometry Dimension
Att_Geom_Array 32 allow transitions for segments

If Att_Geom_Array is set, then each super string segment can be a line, arc, transition or
offset transition.

See 5.37.15 Super String Segment Geometry Functionsfor calls to set/inquire on this dimension, and
to load/retrieve data for this dimension.

Visibility Dimensions
Att_Visible_Array 12 This dimension applies for both vertex and segment visibility.
Att_Vertex_Visible_Value 41 or Att_Vertex_Visible_Array 42
Att_Segment_Visible_Value 43 or Att_Segment_Visible_Array 44

See 5.37.22 Super String Visibility Functionsfor calls to set/inquire on these dimensions, and to load/
retrieve data for these dimensions.

Segment Linestyle Dimension
Att_Segment_Linestyle_Array 56

If Att_Segment_Linestyle_Array is set, then the super string can have linestyle for each
segment.

See 5.37.6 Super String Segment Linestyle Functionsfor calls to set/inquire on these dimensions, and
to load/retrieve data for these dimensions.

Matrix Dimension
Att_Matrix_Value 53 ?

UID Dimensions
Att_Vertex_UID_Array 35

If Att_Vertex_Array is set, then the super string can have an Integer (referred to as a uid)
stored at each vertex. This is mainly used by programmers to store a number on each vertex.

Att_Segment_UID_Array 36
If Att_Segment_UID_Array is set, then the super string can have an Integer (referred to as a
uid) stored on each segment. This is mainly used by programmers to store a number on each
segment.

See 5.37.20 Super String Uid Functionsfor calls to set/inquire on these dimensions, and to load/retrieve
data for these dimensions.

Database Point Dimensions
Att_Database_Point_Array 47

Extrude Dimensions
Att_Extrude_Value 48

If Att_Extrude_Value is set, then the super string can have zero or more extrudes on the
string.

See 5.37.16 Super String Extrude Functionsfor calls to set/inquire on these dimensions, and to load/
Page 356 Super String Element

Chapter 5 12dPL Library Calls
retrieve data for these dimensions.

Null Levels Dimensions
// only used internally - not a normal dimension

 Att_Null_Levels_Value 55

For information on setting flags to set more than one dimension at see, see 5.37.1.1 Dimension
Combinations and Super String Flags.

For information on creating super string using the dimension flags, see 5.37.2 Basic Super String
Functions.
Page 357Super String Element

12d Model Programming Language Manual
5.37.1.1 Dimension Combinations and Super String Flags
There is a function call for each dimension to tell the super string to use that particular dimension
and if more than one dimension is required, then simply call each function to set each of the
required dimensions.

It is also possible to set one or many dimensions at once through one call by using a call with
Integer flags.
An Integer is actually made up of 32-bits and each bit can be taken to mean that if the bit is 1
then a particular dimension is to be set (that is used) and 0 if it is not to be set.
So for example, 0 = binary 0 would mean no dimensions are to be used.
 1 = binary 1 would mean only the first dimension is to be used
 2 = binary 10 would mean only the second dimension is used
 3 = binary 11 would mean the first and second dimensions only are used
 4 = binary 100 would mean that only the third dimensions is used

So for the nth dimension to be set, you simply add 2 raised to the power n-1 to the Integer flag.
Because an Integer is only 32-bits, one Integer can only be used for thirty two (32) dimensions.

A second Integer is required to specify the dimensions 33 to a maximum of 64.
Since there is currently under 64 dimensions, then two Integer flags (flag1, flag2) can be used to
set all the required dimensions on/off in the one call.

The following macros to help create the flags are defined in the include file “Setups.H”, as are all
the Att_ dimension values.
#define concat(a,b) a##b
#define String_Super_Bit(n) (1 << concat(Att_,n)) // for dimensions 1 to 32
#define String_Super_Bit_Ex(n) (1 << concat(Att_,n) - 32) // for dimensions 32 to 64

// So if flag1 holds dimensions 1 to 32 (i.e. from Att_ZCoord_Value to Att_Geom_Array)
then the definition

 Integer flag1 = String_Super_Bit(ZCoord_Value) | String_Super_Bit(Radius_Array);
means that flag1 represents having the two dimensions Att_ZCoord_Value and
Att_Radius_Array
// If flag2 holds dimensions 33 to 64 (i.e. from Att_Pattern_Value to last current dimension)

then the definition
 Integer flags2 = String_Super_Bit_Ex(Pattern_Value)
 |String_Super_Bit_Ex(Vertex_Tinable_Array);
means that flag2 represents having the two dimensions Att_Pattern_Value and
Att_Vertex_Tinable_Array

Note that when using the String_Super_Bit and String_Super_Bit_Ex that you leave off the Att_
before the dimension names. The Att_ is automatically added by the #define.

As a code example, the code below defines a super string with independent heights at each
vertex and the ability for arcs on each segment. This is the equivalent of the polyline string.

 Integer flag1 = String_Super_Bit(ZCoord_Array) | String_Super_Bit(Radius_Array);
 Integer flag2 = 0; // no dimensions greater than 32
 Integer npts = 100;
 Element super = Create_super(flag1,flag2,npts);

For information on creating super string using the dimension flags, see 5.37.2 Basic Super String
Functions.
Page 358 Super String Element

Chapter 5 12dPL Library Calls
5.37.2 Basic Super String Functions
The super string can have a variable number of dimensions but it must have at least (x,y) values
for every vertex.

There are functions to create a new super strings.
The create functions use dimension flags (or a seed super string) to specify how many vertices
and what dimensions are created (if any).
Some of the super string create functions will also load (x,y,z,radius,bulge) data into the super
string at creation time.

Once a super string is created, the other dimensions can be added using the use calls for that
dimension, and the extra data for that dimension can then be loaded in. These calls are grouped
together by super string dimension.
Also for an existing super string, there are calls to insert new vertices into the super string and to
delete existing vertices.

See 5.37.2.1 Super String Create Functions
See 5.37.2.2 Inserting and Deleting Vertices
See 5.37.2.3 Loading and Retrieving X, Y, Z, Radius and Bulge Data
See 5.37.2.4 Getting Forward and Backward Vertex Direction
See 5.37.2.5 Getting Super String Type and Type Like

For the calls for setting/inquiring for each dimension and for loading/retrieving data for each
dimension:

See 5.37.3 Super String Height Functions
See 5.37.14 Super String Segment Colour Functions
See 5.37.5 Super String Segment Radius Functions
See 5.37.9 Super String Pipe/Culvert Functions
See 5.37.9 Super String Pipe/Culvert Functions
See 5.37.8 Super String Vertex Symbol Functions
See 5.37.10 Super String Vertex Text and Annotation Functions
See 5.37.11 Super String Segment Text and Annotation Functions
See 5.37.4 Super String Tinability Functions
See 5.37.7 Super String Point Id Functions
See 5.37.12 Super String Fills - Hatch/Solid/Bitmap/Pattern/ACAD Pattern Functions
See 5.37.13 Super String Hole Functions
See 5.37.15 Super String Segment Geometry Functions
See 5.37.16 Super String Extrude Functions
See 5.37.18 Super String Vertex Attributes Functions
See 5.37.19 Super String Segment Attributes Functions
See 5.37.20 Super String Uid Functions
See 5.37.21 Super String Vertex Image Functions
See 5.37.22 Super String Visibility Functions
Page 359Super String Element

12d Model Programming Language Manual
5.37.2.1 Super String Create Functions

Create_super(Integer flag1,Integer num_pts)
Name
Element Create_super(Integer flag1,Integer num_pts)

Description
Create an Element of type Super with room for num_pts vertices and num_pts-1 segments if
the string is not closed or num_pts segments if the string is closed.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used. See 5.37.1
Super String Dimensions for the values that flag1 may take.
The actual values of the arrays are set by other function calls after the string is created.
The return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Note - if dimensions greater than 32 are required, then calls with two flags must be used.

For example Integer Create_super(Integer flag1, Integer flag2,Integer num_pts).

ID = 691

Create_super(Integer flag1,Integer flag2,Integer npts)
Name
Element Create_super(Integer flag1,Integer flag2,Integer npts)

Description
create super string with arrays set aside following flag1 and flag 2 (extended dimensions).
Create an Element of type Super with room for num_pts vertices and num_pts-1 segments if
the string is not closed or num_pts segments if the string is closed.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
flag2 is used to specify which of the dimensions from 33 to 64 are used/not used.
See 5.37.1 Super String Dimensions for the values that flag1 and flag2 may take.
The actual values of the arrays are set by other function calls after the string is created.

The return value is an Element handle to the created super string.
If the Super string could not be created, then the returned Element will be null.
ID = 1499

Create_super(Integer num_pts,Element seed)
Name
Element Create_super(Integer num_pts,Element seed)

Description
Create an Element of type Super with room for num_pts vertices and num_pts-1 segments if
the string is not closed or num_pts segments if the string is closed.
Set the colour, name, style, flags etc. of the new string to be the same as those from the Element
seed. Note that the seed string must also be a super string.

The actual values of the arrays are set after the string is created.
The return value is an Element handle to the created super string.
Page 360 Super String Element

Chapter 5 12dPL Library Calls
If the Super string could not be created, then the returned Element will be null.
ID = 692

Create_super(Integer flag1,Segment seg)
Name
Element Create_super(Integer flag1,Segment seg)

Description
Create an Element of type Super with two vertices if seg is a Line, Arc or Spiral, or one vertex if
seg is a Point. The co-ordinates for the one or two vertices are taken from seg.
flag1 is used to specify which of the dimensions from 1 to 32 are used/not used. See 5.37.1
Super String Dimensions for the values that flag1 may take.

LJG? if seg is an Arc or a Spiral, then what dimensions are set and what values are they given?
The return value is an Element handle to the created super string.
If the Super string could not be created, then the returned Element will be null.

Note - if dimensions greater than 32 are required, then calls with two flags must be used.
For example Integer Create_super(Integer flag1, Integer flag2,Segment seg).

ID = 693

Create_super(Integer flag1,Integer flag2,Segment seg)
Name
Element Create_super(Integer flag1,Integer flag2,Segment seg)

Description
Create an Element of type Super with two vertices if seg is a Line, Arc or Spiral, or one vertex if
seg is a Point. The co-ordinates for the one or two vertices are taken from seg.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
flag2 is used to specify which of the dimensions from 33 to 64 are used/not used.
See 5.37.1 Super String Dimensions for the values that flag1 and flag2 may take.
LJG? if seg is an Arc or a Spiral, then what dimensions are set and what values are they given?

The return value is an Element handle to the created super string.
If the Super string could not be created, then the returned Element will be null.
 ID = 1500

Create_super(Integer flag1,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_pts)
Name
Element Create_super(Integer flag1,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_pts)

Description
Create an Element of type Super with num_pts vertices.

The basic geometry for the super string is supplied by the arrays x (x values), y (y values), z (z
values), r (radius of segments), b (bulge of segment b = 1 for major arc > 180 degrees, b = 0 for
minor arc < 180 degrees).
flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
Page 361Super String Element

12d Model Programming Language Manual
Note that depending on the flag1 value, the z, r, b arrays may or may not be used, but the arrays
must still be supplied. See 5.37.1 Super String Dimensions for the values that flag1 may take.
The arrays must be of length num_pts or greater.
The function return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Note - if dimensions greater than 32 are required, then calls with two flags must be used.

For example Integer Create_super(Integer flag1, Integer flag2,Real x[],Real y[],Real z[],Real
r[],Integer b[],Integer num_pts).

ID = 690

Create_super(Integer flag1,Integer flag2,Real x[],Real y[],Real z[],Real r[],Integer
b[],Integer num_pts)
Name
Element Create_super(Integer flag1,Integer flag2,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_pts)

Description
Create an Element of type Super with num_pts vertices.
The basic geometry for the super string is supplied by the arrays x (x values), y (y values), z (z
values), r (radius of segments), b (bulge of segment b = 1 for major arc > 180 degrees, b = 0 for
minor arc < 180 degrees).
flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
flag2 is used to specify which of the dimensions from 33 to 64 are used/not used.
Note that depending on the flag1 value, the z, r, b arrays may or may not be used, but the arrays
must still be supplied. See 5.37.1 Super String Dimensions for the values that flag1 and flag2
may take.

The arrays must be of length num_pts or greater.
The function return value is an Element handle to the created super string.
If the Super string could not be created, then the returned Element will be null.

 ID = 1498
Page 362 Super String Element

Chapter 5 12dPL Library Calls
5.37.2.2 Inserting and Deleting Vertices

Super_insert_vertex(Element super,Integer where,Integer count)
Name
Integer Super_insert_vertex(Element super,Integer where,Integer count)

Description
For the super string super, insert count new vertices BEFORE vertex index where.

All the existing vertices from index position where onwards are move to after the new count
inserted vertices.
For example, Super_insert_vertex(super,1,10) will insert 10 new vertices before vertex index 1,
and all the existing vertices will be moved to after vertex index 10.

Note that if the string is a closed string then the closure applies to the new last vertex.
If the Element super is not of type Super, then the function return value is set to a non zero
value.
A return value of 0 indicates the function call was successful.

ID = 2168

Super_remove_vertex(Element super,Integer where,Integer count)
Name
Integer Super_remove_vertex(Element super,Integer where,Integer count)

Description
For the super string super, delete count existing vertices starting at vertex index where.

If there are not enough vertices to delete then the delete stops at the last vertex of the super
string.
Note that if the string is closed then the closure applies to the new last vertex.
If the Element super is not of type Super, then the function return value is set to a non zero
value.

A return value of 0 indicates the function call was successful.
ID = 2169
Page 363Super String Element

12d Model Programming Language Manual
5.37.2.3 Loading and Retrieving X, Y, Z, Radius and Bulge Data

Set_super_vertex_coord(Element super,Integer i,Real x,Real y,Real z)
Name
Integer Set_super_vertex_coord(Element super,Integer i,Real x,Real y,Real z)

Description
Set the coordinate data (x,y,z) for the i’th vertex (the vertex with index number i) of the super
Element super where

 the x value to set is in Real x.
 the y value to set is in Real y.
 the z value to set is in Real z.
If the Element super is not of type Super, then the function return value is set to a non zero
value.
A function return value of zero indicates the data was successfully set.

ID = 732

Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)
Name
Integer Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)

Description
Get the coordinate data (x,y,z) for the i’th vertex (the vertex with index number i) of the super
Element super.
The x coordinate is returned in Real x.
The y coordinate is returned in Real y.
The z coordinate is returned in Real z.
If the Element super is not of type Super, then the function return value is set to a non zero
value.

A return value of 0 indicates the function call was successful.
ID = 733

Set_super_data(Element super,Integer i,Real x,Real y,Real z,Real r,Integer b)
Name
 Integer Set_super_data(Element super,Integer i,Real x,Real y,Real z,Real r,Integer b)

Description
Set the (x,y,z,r,f) data for the i’th vertex of the super Element super where
 the x value to set is the Real x.
 the y value to set is the Real y.
 the z value to set is the Real z.
 the radius value to set is the Real r.
 the major/minor arc bulge value to set is the Integer b (0 for minor arc < 180 degrees, non zero
for major arc > 180 degrees).

If the Element super is not of type Super, then the function return value is set to a non zero
value.
A function return value of zero indicates the data was successfully set.
ID = 699
Page 364 Super String Element

Chapter 5 12dPL Library Calls
Get_super_data(Element super,Integer i,Real &x,Real &y,Real &z,Real &r,
Integer &b)
Name
Integer Get_super_data(Element super,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &b

Description
Get the (x,y,z,r,b data for the i’th vertex of the super string super.
The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.
The radius value is returned in Real r.
The major/minor arc bulge value is returned in Integer b.(bulge of segment b = 1 for major arc >
180 degrees, b = 0 for minor arc < 180 degrees).
If the Element super is not of type Super, then the function return value is set to a non zero
value.

A function return value of zero indicates the data was successfully returned.
ID = 696

Set_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],
Integer num_pts)
Name
Integer Set_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[], Integer num_pts)

Description
Set the (x,y,z,r,b) data for the first num_pts vertices of the string Element super.
This function allows the user to modify a large number of vertices of the string in one call.

The maximum number of vertices that can be set is given by the number of vertices in the string.
The (x,y,z,r,f) values for each string vertex are given in the Real arrays x[], y[],z[],r[] and Integer
array b[] where the (x,y,z) are coordinate, r the radius of the arc on the following segment and b
is the bulge to say whether the arc is a major or minor arc (bulge of segment b = 1 for major arc
> 180 degrees, b = 0 for minor arc < 180 degrees).

The number of vertices to be set is given by Integer num_pts
If the Element super is not of type Super, then nothing is modified and the function return value
is set to a non zero value.

Note: this function can not create new super Elements but only modify existing super Elements.
A function return value of zero indicates the data was set successfully.
ID = 697

Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer
b[],Integer max_pts,Integer &num_pts)
Name
Integer Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
max_pts,Integer &num_pts)

Description
Page 365Super String Element

12d Model Programming Language Manual
Get the (x,y,z,r,f) data for the first max_pts vertices of the super string Element super.
The (x,y,z,r,f) values at each string vertex are returned in the Real arrays x[], y[],z[],r[] and
Integer array b[] (the arrays are x values, y values, z values, radius of segments, b is bulge to
denote if the segment is major or minor arc (bulge of segment b = 1 for major arc > 180 degrees,
b = 0 for minor arc < 180 degrees).
The maximum number of vertices that can be returned is given by max_pts (usually the size of
the arrays).

The vertex data returned starts at the first vertex and goes up to the minimum of max_pts and the
number of vertices in the string.
The actual number of vertices returned is returned by Integer num_pts
 num_pts <= max_pts

If the Element super is not of type Super, then num_pts is returned as zero and the function
return value is set to a non-zero value.
A function return value of zero indicates the data was successfully returned.
ID = 694

Set_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_pts,Integer start_pt)
Name
Integer Set_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_pts,Integer start_pt)

Description
For the super Element super, set the (x,y,z,r,b) data for num_pts vertices, starting at vertex
number start_pt.
This function allows the user to modify a large number of vertices of the string in one call starting
at vertex
number start_pt rather than vertex one.

The maximum number of vertices that can be set is given by the difference between the number
of vertices in the string and the value of start_pt.
The (x,y,z,r,f) values for the string vertices are given in the Real arrays x[], y[],z[],r[] and b[]
where the (x,y,z) are coordinate, r the radius of the arc on the following segment and b is the
bulge to say whether the arc is a major or minor arc (bulge of segment b = 1 for major arc > 180
degrees, b = 0 for minor arc < 180 degrees).
The number of the first string vertex to be modified is start_pt.
The total number of vertices to be set is given by Integer num_pts
If the Element super is not of type Super, then nothing is modified and the function return value
is set to a non zero value.
A function return value of zero indicates the data was set successfully.

Notes
(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new super strings but only modify existing super strings.

ID = 698

Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],
Integer max_pts,Integer &num_pts,Integer start_pt)
Page 366 Super String Element

Chapter 5 12dPL Library Calls
Name
Integer Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[], Integer
max_pts,Integer &num_pts,Integer start_pt)

Description
For a super string Element super, get the (x,y,z,r,b) data for max_pts vertices starting at vertex
number start_pt (the arrays are x values, y values, z values, radius of segments, b is if segment
is major or minor arc).
This routine allows the user to return the data from a super string in user specified chunks. This
is necessary if the number of vertices in the string is greater than the size of the arrays available
to contain the information.
As in the previous function, the maximum number of vertices that can be returned is given by
max_pts (usually the size of the arrays).
However, for this function, the vertex data returned starts at vertex number start_pt rather than
vertex one.
The (x,y,z,r,b) values at each string vertex are returned in the Real arrays x[], y[],z[],r[] and
Integer array b[].
The actual number of vertices returned is given by Integer num_pts

num_pts <= max_pts
If the Element super is not of type Super, then num_pts is set to zero and the function return
value is set to a non zero value.

Note A start_pt of one gives the same result as for the previous function.
A function return value of zero indicates the data was successfully returned.
ID = 695
Page 367Super String Element

12d Model Programming Language Manual
5.37.2.4 Getting Forward and Backward Vertex Direction

Get_super_vertex_forward_direction(Element super,Integer vert,Real &ang)
Name
Integer Get_super_vertex_forward_direction(Element super,Integer vert,Real &ang)

Description
For the Element super of type Super, get the angle of the tangent at the beginning of the
segment leaving vertex number vert. That is, the segment going from vertex vert to vertex
vert+1. Return the angle in ang.

ang is in radians and is measured in a counterclockwise direction from the positive x-axis.

If the super string is closed, the angle will still be valid for the last vertex of the super string and it
is the angle of the closing segment between the last vertex and the first vertex.
If super string is open, the call fails for the last vertex and a non-zero return code is returned.

If the Element super is not of type Super, then a non-zero return code is returned
A function return value of zero indicates the angle was successfully returned.
ID = 1501

Get_super_vertex_backward_direction(Element super,Integer vert,Real &ang)
Name
Integer Get_super_vertex_backward_direction(Element super,Integer vert,Real &ang)

Description
For the Element super of type Super, get the angle of the tangent at the end of the segment
entering vertex number vert. That is, the segment going from vertex vert-1 to vertex vert. Return
the angle in ang.
ang is in radians and is measured in a counterclockwise direction from the positive x-axis.

vertex number vert forward angle

vertex number vert+1

forward angle vertex number vert

vertex number vert+1

tangent at beginning
of segment following
vertex number vert

vertex number vert

backward angle

vertex number vert-1

backward angle vertex number vert

vertex number vert-1

tangent at
end of segment
going into vertex
number vert
Page 368 Super String Element

Chapter 5 12dPL Library Calls
If the super string is closed, the angle will still be valid for the first vertex of the super string and it
is the angle of the closing segment between the first vertex and the last vertex.
If super string is open, the call fails for the first vertex and a non-zero return code is returned.
If the Element super is not of type Super, then a non-zero return code is returned

A function return value of zero indicates the angle was successfully returned.
ID = 1502
Page 369Super String Element

12d Model Programming Language Manual
5.37.2.5 Getting Super String Type and Type Like

Get_type_like(Element super,Integer &type)
Name
Integer Get_type_like(Element super,Integer &type)

Description
In earlier versions of 12d Model, there were a large number of string types but in later versions
of 12d Model, the super string was introduced which with its possible dimensions, could replace
many of the other strings.

However, for some applications it was important to know if the super string was like one of the
original strings. For example, some options required a string to be a contours string, the original
2d string. That is, the string has the one z-value (or height) for the entire string. So a super string
that has a constant dimension for height, behaves like a 2d string and in that case will return the
Type Like of 2d.
The Type Like’s can be referred to by a number (Integer) or by text (Text).
See 5.35.1 Types of Elements for the values of the Type Like numbers and Type Like text.

The Type Like for the super string is returned in type.
If the Element string is not a super string, then a non zero function return value is returned.
A function return value of zero indicates the Type Like was returned successfully.

ID = 2074

Get_type_like(Element elt,Text &type)
Name
Integer Get_type_like(Element elt,Text &type)

Description
In earlier versions of 12d Model, there were a large number of string types but in later versions
of 12d Model, the super string was introduced which with its possible dimensions, could replace
many of the other strings.
However, for some applications it was important to know if the super string was like one of the
original strings. For example, some options required a string to be a contours string, the original
2d string. That is, the string has the one z-value (or height) for the entire string. So a super string
that has a constant dimension for height, behaves like a 2d string and in that case will return the
Type Like of 2d.
The Type Like’s can be referred to by a number (Integer) or by text (Text).

See 5.35.1 Types of Elements for the values of the Type Like numbers and Type Like text.
The Text Type Like for the super string is returned in type.
If the Element string is not a super string, then a non zero function return value is returned.

A function return value of zero indicates the Type Like was returned successfully.
ID = 2075
Page 370 Super String Element

Chapter 5 12dPL Library Calls
5.37.3 Super String Height Functions
For definitions of the height dimensions, see Height Dimensions

See 5.37.3.1 Super String Use Height Functions
See 5.37.3.2 Setting Super String Height Values
Page 371Super String Element

12d Model Programming Language Manual
5.37.3.1 Super String Use Height Functions

Set_super_use_2d_level(Element super,Integer use)
Name
Integer Set_super_use_2d_level(Element super,Integer use)

Description
For the super string Element super, define whether the height dimension Att_ZCoord_Value is
used or removed.

See Height Dimensions for information on Height dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. If use is 0, the dimension Att_ZCoord_Value is removed.
Note that if the height dimension Att_ZCoord_Array exists, this call is ignored.

If the Element super is not a super string, then a non zero function return value is returned.
A return value of 0 indicates the function call was successful.
ID = 700

Get_super_use_2d_level(Element super,Integer &use)
Name
Integer Get_super_use_2d_level(Element super,Integer &use)

Description
Query whether the dimension height dimension Att_ZCoord_Value exists for the super string
super.
See Height Dimensions for information on Height dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists, or 0 if the dimension doesn’t exist.
If the Element super is not a super string, then a non zero function return value is returned.

A return value of 0 indicates the function call was successful.
ID = 701

Set_super_use_3d_level(Element super,Integer use)
Name
Integer Set_super_use_3d_level(Element super,Integer use)

Description
For the super string Element super, define whether the height dimension Att_ZCoord_Array is
used or removed.
See Height Dimensions for information on Height dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. If use is 0, the dimension Att_ZCoord_Array is removed.

If the Element super is not a super string, then a non zero function return value is returned.
A return value of 0 indicates the function call was successful.
ID = 730
Page 372 Super String Element

Chapter 5 12dPL Library Calls
Get_super_use_3d_level(Element super,Integer &use)
Name
Integer Get_super_use_3d_level(Element super,Integer &use)

Description
Query whether the height dimension Att_ZCoord_Array exists for the super string super.
See Height Dimensions for information on Height dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists, or 0 if the dimension doesn’t exist.
If the Element super is not a super string, then a non zero function return value is returned.

A return value of 0 indicates the function call was successful.
ID = 731

Super_vertex_level_value_to_array(Element super)
Name
Integer Super_vertex_level_value_to_array(Element super)

Description
If for the super string super the dimension Att_ZCoord_Value exists and the dimension
Att_ZCoord_Array does not exist then there will be one z value zval (height or level) for the entire
string.
In this case (when the dimension Att_ZCoord_Value exists and the dimension Att_ZCoord_Array
does not exist) this function sets the Att_ZCoord_Array dimension and creates a new z-value for
each vertex of super and it is given the value zval.
See Height Dimensions for information on the Height (ZCoord) dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 2174
Page 373Super String Element

12d Model Programming Language Manual
5.37.3.2 Setting Super String Height Values

Get_super_2d_level(Element elt,Real &level)
Name
Integer Get_super_2d_level(Element elt,Real &level)

Description
For the Element elt, if the height dimension Att_ZCoord_Value is set and Att_ZCoord_Array is
not set, then the z-value for the entire string is returned in level.
See Height Dimensions for information on Height dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
If the Element elt is not of type Super, or the dimension Att_ZCoord_Value is not set, this call
fails and a non zero return value is returned.
A return value of zero indicates the function call was successful.

ID = 703

Set_super_2d_level(Element elt,Real level)
Name
Integer Set_super_2d_level(Element elt,Real level)

Description
For the Element elt of type Super, if the dimension Att_ZCoord_Value is set and
Att_ZCoord_Array is not set, then the z-value for the entire string is set to level.
See Height Dimensions for information on Height dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
 If the Element elt is not of type Super, or the dimension Att_ZCoord_Value is not set, this call
fails and a non zero return value is returned.

A return value of zero indicates the function call was successful.
ID = 702
Page 374 Super String Element

Chapter 5 12dPL Library Calls
5.37.4 Super String Tinability Functions
For definitions of the Tinability dimension, see Tinability Dimensions

See 5.37.4.1 Super String Combined Tinability
See 5.37.4.2 Super String Vertex Tinability
See 5.37.4.3 Super String Segment Tinability
Page 375Super String Element

12d Model Programming Language Manual
5.37.4.1 Super String Combined Tinability

Set_super_use_tinability(Element super,Integer use)
Name
Integer Set_super_use_tinability(Element super,Integer use)

Description
Tell the super string whether to use the two dimensions Att_Vertex_Tinable_Array and
Att_Segment_Tinable_Array.

See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A value for use of 1 sets the dimensions and 0 removes them.
A return value of 0 indicates the function call was successful.

ID = 722

Get_super_use_tinability(Element super,Integer &use)
Name
Integer Get_super_use_tinability(Element super,Integer &use)

Description
Query whether at least one the two dimensions Att_Vertex_Tinable_Array or
Att_Segment_Tinable_Array exists for the super string.

See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

use is returned as 1 if at least one of the two dimensions exists.
use is returned as 0 if neither of the two dimensions exist.
A return value of 0 indicates the function call was successful.
 ID = 723
Page 376 Super String Element

Chapter 5 12dPL Library Calls
5.37.4.2 Super String Vertex Tinability

Set_super_use_vertex_tinability_value(Element super,Integer use)
Name
Integer Set_super_use_vertex_tinability_value(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Vertex_Tinable_Value is
used or removed.

If Att_Vertex_Tinable_Value is set and Att_Vertex_Tinability_Array is not set then the tinability is
the same for all vertices of super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

If use is 1, the dimension is set and the tinability is the same for all vertices.
If use is 0, the dimension is removed.
Note that if the dimension Att_Vertex_Tinable_Array exists, this call is ignored.
A return value of 0 indicates the function call was successful.

 ID = 1584

Get_super_use_vertex_tinability_value(Element super,Integer &use)
Name
Integer Get_super_use_vertex_tinability_value(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Tinable_Value exists for the super string super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.

 ID = 1585

Set_super_use_vertex_tinability_array(Element super,Integer use)
Name
Integer Set_super_use_vertex_tinability_array(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Vertex_Tinable_Array is
used.

If Att_Vertex_Tinable_Array is set then there can be a different tinability defined for each vertex
of super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
If use is 1, the dimension is set and the tinability is different for each vertex.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.
ID = 1586
Page 377Super String Element

12d Model Programming Language Manual
Get_super_use_vertex_tinability_array(Element super,Integer &use)
Name
Integer Get_super_use_vertex_tinability_array(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Tinable_Array exists for the super string super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 1587

Set_super_vertex_tinability(Element super,Integer vert,Integer tinability)
Name
Integer Set_super_vertex_tinability(Element super,Integer vert,Integer tinability)

Description
For the Element super (which must be of type Super), set the tinability value for vertex number
vert to the value tinability.

If tinability is 1, the vertex is tinable.
If tinability is 0, the vertex is not tinable.
If the Element super is not of type Super, or Att_Vertex_Tinable_Array is not set for super, then
a non-zero return code is returned.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A return value of 0 indicates the function call was successful.
ID = 736

Get_super_vertex_tinability(Element super,Integer vert,Integer &tinability)
Name
Integer Get_super_vertex_tinability(Element super,Integer vert,Integer &tinability)

Description
For the Element super (which must be of type Super), get the tinability value for vertex number
vert and return it in the Integer tinability.
If tinability is 1, the vertex is tinable.
If tinability is 0, the vertex is not tinable.
If the Element super is not of type Super, or Att_Vertex_Tinable_Array is not set for super, then
a non-zero return code is returned.

See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 737
Page 378 Super String Element

Chapter 5 12dPL Library Calls
5.37.4.3 Super String Segment Tinability

Set_super_use_segment_tinability_value(Element super,Integer use)
Name
Integer Set_super_use_segment_tinability_value(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Segment_Tinable_Value is
used or removed.

If Att_Segment_Tinable_Value is set and Att_Segment_Tinability_Array is not set then the
tinability is the same for all segments of super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

If use is 1, the dimension is set and the tinability is the same for all segments.
If use is 0, the dimension is removed.
Note that if the dimension Att_Segment_Tinable_Array exists, this call is ignored.
A return value of 0 indicates the function call was successful.

ID = 1592

Get_super_use_segment_tinability_value(Element super,Integer &use)
Name
Integer Get_super_use_segment_tinability_value(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Tinable_Value exists for the super string super.
If Att_Segment_Tinable_Value is set and Att_Segment_Tinability_Array is not set then the
tinability is the same for all segments of super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1593

Set_super_use_segment_tinability_array(Element super,Integer use)
Name
Integer Set_super_use_segment_tinability_array(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Segment_Tinable_Array is
set or removed.
If Att_Segment_Tinable_Array is set then there can be a different tinability defined for each
segment in super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

If use is 1, the dimension is set and the tinability is different for each segment.
If use is 0, the dimension is removed.
Page 379Super String Element

12d Model Programming Language Manual
A return value of 0 indicates the function call was successful.
ID = 1594

Get_super_use_segment_tinability_array(Element super,Integer &use)
Name
Integer Get_super_use_segment_tinability_array(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Tinable_Array exists for the super string super.
If Att_Segment_Tinable_Array is set then there can be a different tinability defined for each
segment in super.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 1595

Set_super_segment_tinability(Element super,Integer seg,Integer tinability)
Name
Integer Set_super_segment_tinability(Element super,Integer seg,Integer tinability)

Description
For the Element super (which must be of type Super), set the tinability value for segment
number seg to the value tinability.

If tinability is 1, the segment is tinable.
If tinability is 0, the segment is not tinable.
If the Element super is not of type Super, or Att_Segment_Tinable_Array is not set for super,
then a non-zero return code is returned.
See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A return value of 0 indicates the function call was successful.
ID = 724

Get_super_segment_tinability(Element super,Integer seg,Integer &tinability)
Name
Integer Get_super_segment_tinability(Element super,Integer seg,Integer &tinability)

Description
For the Element super (which must be of type Super), get the tinability value for segment
number seg and return it in the Integer tinability.
If tinability is 1, the segment is tinable.
If tinability is 0, the segment is not tinable.
If the Element super is not of type Super, or Att_Segment_Tinable_Array is not set for super,
then a non-zero return code is returned.

See Tinability Dimensions for information on the Tinability dimensions or 5.37.1 Super String
Page 380 Super String Element

Chapter 5 12dPL Library Calls
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 725
Page 381Super String Element

12d Model Programming Language Manual
5.37.5 Super String Segment Radius Functions
For definitions of the Segment Radius dimensions, see Segment Radius Dimension

Set_super_use_segment_radius(Element super,Integer use)
Name
Integer Set_super_use_segment_radius(Element super,Integer use)

Description
For the super string Element super, define whether the segment radius dimension
Att_Radius_Array is to be used or removed.
See Segment Radius Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the segments between vertices of the super can be
straights or arcs.

If use is 0, the dimension is removed. That is, the segments between vertices of the super can
only be straights.
Note that if the dimension Att_Radius_Array is set then the Att_Major_Array is also automatically
set.
A return value of 0 indicates the function call was successful.

ID = 708

Get_super_use_segment_radius(Element super,Integer &use)
Name
Integer Get_super_use_segment_radius(Element super,Integer &use)

Description
Query whether the segment radius dimension Att_Radius_Array exists for the super string.
use is returned as 1 if the dimension Att_Radius_Array exists, or 0 if the dimension doesn’t exist.
See Segment Radius Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.

A return value of 0 indicates the function call was successful.
ID = 709

Set_super_segment_radius(Element super,Integer seg,Real rad)
Name
Integer Set_super_segment_radius(Element super,Integer seg,Real rad)

Description
For the super string super, set the radius of segment number seg to the value rad.
See Segment Radius Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Radius_Array set.

A return value of 0 indicates the function call was successful.
ID = 710
Page 382 Super String Element

Chapter 5 12dPL Library Calls
Get_super_segment_radius(Element super,Integer seg,Real &rad)
Name
Integer Get_super_segment_radius(Element super,Integer seg,Real &rad)

Description
For the super string super, get the radius of segment number seg and return the radius in rad.

See Segment Radius Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Radius_Array set.
A return value of 0 indicates the function call was successful.

ID = 711

Set_super_segment_major(Element super,Integer seg,Integer bulge)
Name
Integer Set_super_segment_major(Element super,Integer seg,Integer bulge)

Description
For the super string super, set the major/minor arc value of segment number seg to the value
bulge. (bulge of segment b = 1 for major arc > 180 degrees, b = 0 for minor arc < 180 degrees)
See Segment Radius Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Major_Array set.

A return value of 0 indicates the function call was successful.
ID = 712

Get_super_segment_major(Element super,Integer seg,Integer &bulge)
Name
Integer Get_super_segment_major(Element super,Integer seg,Integer &major)

Description
For the super string super, get the major/minor arc bulge of segment number seg and return the
value in bulge (bulge of segment bulge = 1 for major arc > 180 degrees, bulge = 0 for minor arc
< 180 degrees).
See Segment Radius Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Major_Array set.

A return value of 0 indicates the function call was successful.
ID = 713
Page 383Super String Element

12d Model Programming Language Manual
5.37.6 Super String Segment Linestyle Functions
V12+ only feature. For definitions of the Segment Linestyle dimensions, see Segment Linestyle
Dimension

Set_super_use_segment_linestyle(Element super,Integer use)
Name
Integer Set_super_use_segment_linestyle(Element super,Integer use)

Description
For the super string Element super, define whether the segment linestyle dimension
Att_Segment_Linestyle_Array is to be used or removed.
See Segment Linestyle Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the segments of the super have of different linestyles.

If use is 0, the dimension is removed. That is, all the segments of the super use the string
linestyle.
A return value of 0 indicates the function call was successful.
ID = 3131

Get_super_use_segment_linestyle(Element super,Integer &use)
Name
Integer Get_super_use_segment_linestyle(Element super,Integer &use)

Description
Query whether the segment radius dimension Att_Segment_Linestyle_Array exists for the super
string.

use is returned as 1 if the dimension Att_Segment_Linestyle_Array exists, or 0 if the dimension
doesn’t exist.
See Segment Linestyle Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
A return value of 0 indicates the function call was successful.

ID = 3132

Set_super_segment_linestyle(Element super,Integer seg,Text linestyle_name)
Name
Integer Set_super_segment_linestyle(Element super,Integer seg,Text linestyle_name)

Description
For the super string super, set the segment linestyle for segment number seg to the one with
name linestyle_name.

See Segment Linestyle Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Linestyle_Array set.
A return value of 0 indicates the function call was successful.

ID = 3133
Page 384 Super String Element

Chapter 5 12dPL Library Calls
Get_super_segment_linestyle(Element super,Integer seg,Text &linestyle_name)
Name
Integer Get_super_segment_linestyle(Element super,Integer seg,Text &linestyle_name)

Description
For the super string super, get the segment linestyle for segment number seg and return its
name in linestyle_name.
See Segment Linestyle Dimension for information on the Segment Radius dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Linestyle_Array set.
A return value of 0 indicates the function call was successful.

ID = 3134
Page 385Super String Element

12d Model Programming Language Manual
5.37.7 Super String Point Id Functions
For definitions of the Point Id dimension, see Point Id Dimension

Set_super_use_vertex_point_number(Element super,Integer use)
Name
Integer Set_super_use_vertex_point_number(Element super,Integer use)

Description
Tell the super string whether to use, remove, the dimension Att_Point_Array.
If Att_Point_Array exists, the string can have a Point Id for each vertex.
If use is 1, the dimension is set and each vertex can have a Point Id.
If use is 0, the dimension is removed.

See Point Id Dimension for information on the Point Id dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 738

Get_super_use_vertex_point_number(Element super,Integer &use)
Name
Integer Get_super_use_vertex_point_number(Element super,Integer &use)

Description
Query whether the dimension Att_Point_Array exists for the super string.

If Att_Point_Array exists, the string can have a Point Id for each vertex.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
See Point Id Dimension for information on the Point Id dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A return value of 0 indicates the function call was successful.
ID = 739

Set_super_vertex_point_number(Element super,Integer vert,Integer
point_number)
Name
 Integer Set_super_vertex_point_number(Element super,Integer vert,Integer point_number)

Description
For the Element super which must be of type Super, set the Point Id for vertex number vert to
the have the text value of the integer point_number.
If the Element super is not of type Super, or the dimension Att_Point_Array is not set, then a
non-zero return code is returned.

See Point Id Dimension for information on the Point Id dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
Note - in earlier versions of 12d Model (pre v6), point id’s were only integers. This was extended
to being a text when surveying equipment allowed non-integer point ids.
A function return value of zero indicates the point id was successfully set.
Page 386 Super String Element

Chapter 5 12dPL Library Calls
ID = 740

Get_super_vertex_point_number(Element super,Integer vert,Integer
&point_number)
Name
Integer Get_super_vertex_point_number(Element super,Integer vert,Integer &point_number)

Description
This function should no longer be used because now Point Id’s do not have to be
integers.
From the Element super which must be of type Super, get the Point Id for vertex number vert
and return it in the Integer point_number.
If the Element super is not of type Super, or the dimension Att_Point_Array is not set for super,
then a non-zero return code is returned.
See Point Id Dimension for information on the Point Id dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
Note - in earlier versions of 12d Model (pre v6), Point Id’s were only integers. This was extended
to being a text when surveying equipment allowed non-integer Point Ids.

A function return value of zero indicates the point id was successfully returned.
ID = 741

Set_super_vertex_point_number(Element super,Integer vert,Text point_id
Name
Integer Set_super_vertex_point_number(Element super,Integer vert,Text point_id)

Description
For the Element super which must be of type Super, set the Point Id for vertex number vert to
the text point_id.
If the Element super is not of type Super, or the dimension Att_Point_Array is not set, then a
non-zero return code is returned.
See Point Id Dimension for information on the Point Id dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A function return value of zero indicates the point id was successfully set.
ID = 1625

Get_super_vertex_point_number(Element super,Integer vert,Text &point_id)
Name
Integer Get_super_vertex_point_number(Element super,Integer vert,Text &point_id)

Description
From the Element super which must be of type Super, get the Point Id for vertex number vert
and return it in the Text point_id.
If the Element super is not of type Super, or the dimension Att_Point_Array is not set for super,
then a non-zero return code is returned.

See Point Id Dimension for information on the Point Id dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
Page 387Super String Element

12d Model Programming Language Manual
A function return value of zero indicates the point id was successfully returned.
ID = 1626
Page 388 Super String Element

Chapter 5 12dPL Library Calls
5.37.8 Super String Vertex Symbol Functions
For definitions of the Vertex Symbols dimensions, see Vertex Symbol Dimensions

See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parameters
See 5.37.8.2 Super String Use Vertex Symbol Functions
See 5.37.8.3 Setting Super String Vertex Symbol Parameters
Page 389Super String Element

12d Model Programming Language Manual
5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parameters

Symbols can be placed on vertices of a super string.
The displayed symbol is defined by
(a) the position of the super string vertex

(b) the symbol name
(c) angle of rotation of the symbol
(d) defining what is known as the symbol justification point in relation to the vertex

For symbols, the symbol justification point and the angle of the symbol are defined by:
(a) the symbol justification point is given as an x offset and a y offset from the vertex

(b) the angle of the symbol is given as a counter clockwise angle of rotation (measured from
the x-axis) about the symbol justification point.

The vertex and justification point only coincide if the x offset and y offset values are both zero.

.position of

the position of the
symbol justification point

angle
x offset and y offset
from the vertex

super string
vertex

is defined by the

Symbol

x offset y
of

fs
et
Page 390 Super String Element

Chapter 5 12dPL Library Calls
5.37.8.2 Super String Use Vertex Symbol Functions

Set_super_use_symbol(Element super,Integer use)
Name
Integer Set_super_use_symbol(Element super,Integer use)

Description
For Element super of type Super, define whether the vertex symbol dimension
Att_Symbol_Value is used or removed.

See Vertex Symbol Dimensions for information on the Vertex Symbol dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the super string has one symbol for all vertices.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.
ID = 797

Get_super_use_symbol(Element super,Integer &use)
Name
Integer Get_super_use_symbol(Element super,Integer &use)

Description
Query whether the vertex symbol dimension Att_Symbol_Value exists for the Element super of
type Super.
See Vertex Symbol Dimensions for information on the Vertex Symbol dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists. That is, the super string has one symbol for all
vertices.

use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 798

Set_super_use_vertex_symbol(Element super,Integer use)
Name
Integer Set_super_use_vertex_symbol(Element super,Integer use)

Description
For Element super of type Super, define whether the vertex symbol dimension
Att_Symbol_Array is used or removed.
See Vertex Symbol Dimensions for information on the Vertex Symbol dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.

If use is 1, the dimension is set. That is, the super string has a different symbol on each vertex.
If use is 0, the dimension is removed.
A return value of 0 indicates the function call was successful.
ID = 799

Get_super_use_vertex_symbol(Element super,Integer &use)
Page 391Super String Element

12d Model Programming Language Manual
Name
Integer Get_super_use_vertex_symbol(Element super,Integer &use)

Description
Query whether the vertex symbol dimension Att_Symbol_Array exists for the super string.
See Vertex Symbol Dimensions for information on the Vertex Symbol dimensions or 5.37.1
Super String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists. That is, the super string has a different symbol on
each vertex.

use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 800

Super_vertex_symbol_value_to_array(Element super)
Name
Integer Super_vertex_symbol_value_to_array(Element super)

Description
If for the super string super the dimension Att_Symbol_Value exists and the dimension
Att_Symbol_Array does not exist then there will be one z value zval (height or level) for the entire
string.

In this case (when the dimension Att_Symbol_Value exists and the dimension Att_Symbol_Array
does not exist) this function sets the Att_Symbol_Array dimension and creates a new array for
symbol at each vertex of super.
See Vertex Symbol Dimensions for information on the Height (ZCoord) dimensions or 5.37.1
Super String Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 2175
Page 392 Super String Element

Chapter 5 12dPL Library Calls
5.37.8.3 Setting Super String Vertex Symbol Parameters

Set_super_vertex_symbol_style(Element super,Integer vert,Text sym)
Name
Integer Set_super_vertex_symbol_style(Element super,Integer vert,Text sym)

Description
For the super Element super, set the symbol on vertex number vert to be the symbol style
named sym.

If there is only the one Symbol for the entire string then the symbol name for that symbol is set to
sym regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 801

Get_super_vertex_symbol_style(Element super,Integer vert,Text &sym)
Name
Integer Get_super_vertex_symbol_style(Element super,Integer vert,Text &s)

Description
For the super Element super, return the name of the symbol on vertex number vert in Text sym.

If there is only the one Symbol for the entire string then the symbol name for that symbol is
returned in sym regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 802

Set_super_vertex_symbol_colour(Element super,Integer vert,Integer col)
Name
Integer Set_super_vertex_symbol_colour(Element super,Integer vert,Integer col)

Description
For the super Element super, set the colour number of the symbol from the vertex number vert
to be col.
If there is only the one Symbol for the entire string then the colour number of that symbol is set to
col regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 807

Get_super_vertex_symbol_colour(Element super,Integer vert,Integer &col)
Name
Integer Get_super_vertex_symbol_colour(Element super,Integer vert,Integer &col)

Description
For the super Element super, return as col the colour number of the symbol on vertex number
vert.
If there is only the one Symbol for the entire string then the colour number of that symbol is
returned in col regardless of the value of vert.
Page 393Super String Element

12d Model Programming Language Manual
A return value of 0 indicates the function call was successful.
ID = 808

Set_super_vertex_symbol_offset_width(Element super,Integer vert,Real x_offset)
Name
Integer Set_super_vertex_symbol_offset_width(Element super,Integer vert,Real x_offset)

Description
For the super Element super, set the x offset of the symbol from vertex number vert to be
x_offset.
If there is only the one Symbol for the entire string then the x offset of that symbol is set to
x_offset regardless of the value of vert.
See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parametersfor the
definition of x offset.

A return value of 0 indicates the function call was successful.
ID = 809

Get_super_vertex_symbol_offset_width(Element super,Integer vert,Real
&x_offset)
Name
 Integer Get_super_vertex_symbol_offset_width(Element super,Integer vert,Real &x_offset)

Description
For the super Element super, return as x_offset the x offset of the symbol from vertex number
vert.
If there is only the one Symbol for the entire string then the x offset of that Symbol is returned in
x_offset regardless of the value of vert.
See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parametersfor the
definition of x offset.
A return value of 0 indicates the function call was successful.

ID = 810

Set_super_vertex_symbol_offset_height(Element super,Integer vert,Real y_offset)
Name
Integer Set_super_vertex_symbol_offset_height(Element super,Integer vert,Real y_offset)

Description
For the super Element super, set the y offset of the symbol from the vertex number vert to be
y_offset.
If there is only the one Symbol for the entire string then the y offset of that symbol is set to
y_offset regardless of the value of vert.
See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parametersfor the
definition of y offset.
A return value of 0 indicates the function call was successful.

ID = 811
Page 394 Super String Element

Chapter 5 12dPL Library Calls
Get_super_vertex_symbol_offset_height(Element super,Integer vert,Real
&y_offset)
Name
Integer Get_super_vertex_symbol_offset_height(Element super,Integer vert,Real &y_offset)

Description
For the super Element super, return as y_offset the y offset of the symbol from the vertex
number vert.
If there is only the one Symbol for the entire string then the y offset of that Symbol is returned in
y_offset regardless of the value of vert.
See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parametersfor the
definition of y offset.
A return value of 0 indicates the function call was successful.
ID = 812

Set_super_vertex_symbol_rotation(Element super,Integer vert,Real ang)
Name
Integer Set_super_vertex_symbol_rotation(Element super,Integer vert,Real ang)

Description
For the super Element super, set the angle of rotation of the symbol on vertex number vert to
ang. ang is in radians and is measured counterclockwise from the x-axis.
angle is in radians and is measured counterclockwise from the x-axis.

If there is only the one Symbol for the entire string then the angle of rotation of that symbol is set
to ang regardless of the value of vert.
See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parametersfor the
definition of angle of rotation of the symbol.
A return value of 0 indicates the function call was successful.

ID = 803

Get_super_vertex_symbol_rotation(Element super,Integer vert,Real &angle)
Name
Integer Get_super_vertex_symbol_rotation(Element super,Integer vert,Real &angle)

Description
For the super Element super, return the angle of rotation in angle of the symbol on vertex
number vert.
angle is in radians and is measured counterclockwise from the x-axis.
If there is only the one angle of rotation for the entire string then the angle of rotation of that
Symbol is returned in ang regardless of the value of vert.
See 5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parametersfor the
definition of angle of rotation of the symbol.

A return value of 0 indicates the function call was successful.
ID = 804

Set_super_vertex_symbol_size(Element super,Integer vert,Real sz)
Page 395Super String Element

12d Model Programming Language Manual
Name
Integer Set_super_vertex_symbol_size(Element super,Integer vert,Real sz)

Description
For the super Element super, set the size of the symbol on vertex number vert to be sz.
If there is only the one Symbol for the entire string then the size of that symbol is set to sz
regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 805

Get_super_vertex_symbol_size(Element super,Integer vert,Real &sz)
Name
Integer Get_super_vertex_symbol_size(Element super,Integer vert,Real &sz)

Description
For the super Element super, return as s the size of the symbol on vertex number vert.
If there is only the one Symbol for the entire string then the size of that Symbol is returned in sz
regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 806
Page 396 Super String Element

Chapter 5 12dPL Library Calls
5.37.9 Super String Pipe/Culvert Functions
For definitions of the Pipe and Culvert dimensions, see Pipe/Culvert Dimensions

See 5.37.9.1 Definitions of Super String Pipe and Culvert Dimensions and Parameters
See 5.37.9.2 Super String Use Pipe Functions
See 5.37.9.3 Setting Super String Pipe/Culvert Parameters
Page 397Super String Element

12d Model Programming Language Manual
5.37.9.1 Definitions of Super String Pipe and Culvert Dimensions and Parameters
A super string can be super pipe string and the super pipe string can be either
(a) a round pipe with a diameter and a thickness
or
(b) or a rectangular pipe (culvert) with a width, height and four thicknesses (top, bottom, left

right).
As a round pipe string, it can have either one diameter and one wall thickness for all segments of
the string, or it can have different diameters and wall thicknesses for each segment of the string.

As a culvert string, it can have either one width, one height and four wall thicknesses (top,
bottom, left and right) for all segments of the string, or it can have different heights, widths and
four wall thicknesses (top, bottom, left and right) for each segment of the string.
The default value for wall thickness is zero.

external diameter of round pipe = internal diameter + 2 * thickness
external width of culvert = internal width + left thickness + right thickness
external height of culvert = height + top thickness + bottom thickness

The thickness(es) can be applied to either the inside or the outside of a pipe. In our macro call, it
is control by paremeter internal_diameter (for round pipe) or internal_width_height (for culvert).
For example, when internal_diameter is 1 (true), then the original diameter is the internal; hence
the thickness would be applied outside.
The centre of the culvert is defined to be the middle of the internal pipe if internal_width_height is
1 (true); and is defined to be the middle of the external pipe if internal_width_height is 0 (false).

In practise pipes and culverts may also have a nominal diameter, width and height but there is no
exact relationship between the nominal values and the interior or exterior values.

Pipe/Culvert Justification
Both the super pipe string and a super culvert string are defined in space by their (x,y,z) vertices
but depending on the justification value, the (x,y,z) can represent either:

 the invert of the pipe/culvert justification = 0
 the internal centre of the pipe/culvert justification = 1
 the obvert of the pipe/culvert justification = 2

invert

bottom

centre

obvert or soffit

pipe super string culvert super string

Section Through the Pipe/Culvert String

top

thickness

1/2 internal

1/2 internal widthinternal
diameter

top thickness

bottom thickness

right
thickness

left thickness

height

1/2 internal width
Page 398 Super String Element

Chapter 5 12dPL Library Calls
See Super String Use Pipe/Culvert Justify Dimensions
See 5.37.9.2 Super String Use Pipe Functions
See Setting Super String Culvert Width, Height and Thicknesses

See 5.37.10.1 Definitions of Super String Vertex Text Dimensions, Units and Annotation
Parameters
See 5.37.10.2 Super String Use Vertex Text Functions
See 5.37.10.3 Super String Use Vertex Annotation Functions
See 5.37.10.4 Setting Super String Vertex Text and Annotation Parameters

pipe super string culvert super string

Section Through the Pipe/Culvert String

justification = 0

justification = 1

justification = 2

invert

centre

obvert
Page 399Super String Element

12d Model Programming Language Manual
5.37.9.2 Super String Use Pipe Functions
Super pipes could have a diameter with an optional thickness (round pipe), or have a width and
height with an four optional thicknesses (rectangular pipe or culvert).

Super String Use Round Pipe Dimensions

Set_super_use_pipe(Element elt,Integer use) for V10 onwards

Set_super_use_diameter(Element elt,Integer use) for V9
Name
Integer Set_super_use_pipe(Element elt,Integer use)

Integer Set_super_use_diameter(Element elt,Integer use)

Description
For the super string Element elt, define whether the pipe/culvert dimension Att_Diameter_Value
is used or removed.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If use is 1, the dimension Att_Diameter_Value is set That is, the pipe has one diameter and one
thickness (V10) for the entire string (i.e. a constant pipe).
If use is 0, the dimension is removed.
Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), there is no change to
the super string and this calls return a non-zero value.

This function has the new name for V10 onwards. The old call will still work.
A return value of 0 indicates the function call was successful.

ID = 704

Get_super_use_pipe(Element elt,Integer &use) for V10 onwards

Get_super_use_diameter(Element elt,Integer &use) for V9
Name
Integer Get_super_use_pipe(Element elt,Integer &use)

Integer Get_super_use_diameter(Element elt,Integer &use)

Description
Query whether the pipe/culvert dimension Att_Diameter_Value exists for the super string elt.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists
use is returned as 0 if the dimension doesn’t exist, or if it is a variable pipe string (i.e. a
Att_Diameter_Array exists).

Note - if it is a constant pipe string (Att_Diameter_Value exists) and a variable pipe string
(Att_Diameter_Array exists) then the variable pipe takes precedence.
This function has the new name for V10 onwards. The old call will still work.
A return value of 0 indicates the function call was successful.

ID = 705

Set_super_use_segment_pipe(Element elt,Integer use) for V10 onwards
Page 400 Super String Element

Chapter 5 12dPL Library Calls
Set_super_use_segment_diameter(Element elt,Integer use) for V9
Name
Integer Set_super_use_segment_pipe(Element elt,Integer use)

Integer Set_super_use_segment_diameter(Element elt,Integer use)

Description
For the super string Element elt, define whether the pipe/culvert dimension Att_Diameter_Array
is used or removed.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If use is 1, the dimension Att_Diameter_Array is set. That is, each pipe segment can have a
different diameter and thickness (V10).
If use is 0, the dimension is removed.
Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), there is no change to
the super string and this calls return a non-zero value.
This function has the new name for V10 onwards. The old call will still work.

A return value of 0 indicates the function call was successful.
ID = 714

Get_super_use_segment_pipe(Element elt,Integer &use) for V10 onward

Get_super_use_segment_diameter(Element elt,Integer &use) for V9
Name
Integer Get_super_use_segment_pipe (Element elt,Integer &use)

Integer Get_super_use_segment_diameter (Element elt,Integer &use)

Description
Query whether the pipe/culvert dimension Att_Diameter_Array exists for the super string elt.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

This function has the new name for V10 onwards. The old call will still work.
A return value of 0 indicates the function call was successful.
ID = 715

Super String Use Culvert Dimensions

Set_super_use_culvert(Element super,Integer use)
Name
Integer Set_super_use_culvert(Element super,Integer use)

Description
Tell the super string whether to use or remove the pipe/culvert dimension Att_Culvert_Value.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
A value for use of 1 sets the dimension and 0 removes it.
Page 401Super String Element

12d Model Programming Language Manual
Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), there is no change to
the super string and this calls return a non-zero value.
A return value of 0 indicates the function call was successful.
ID = 1247

Get_super_use_culvert(Element super,Integer &use)
Name
Integer Get_super_use_culvert(Element super,Integer &use)

Description
Query whether the pipe/culvert dimension Att_Culvert_Value exists for the super string.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

use is returned as 1 if the dimension Att_Culvert_Value exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 1246

Set_super_use_segment_culvert(Element super,Integer use)
Name
Integer Set_super_use_segment_culvert(Element super,Integer use)

Description
Tell the super string whether to use or remove the pipe/culvert dimension Att_Culvert_Array.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
A value for use of 1 sets the dimension and 0 removes it.
Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), there is no change to
the super string and this calls return a non-zero value.

A return value of 0 indicates the function call was successful.
ID = 1251

Get_super_use_segment_culvert(Element super,Integer &use)
Name
Integer Get_super_use_segment_culvert(Element super,Integer &use)

Description
Query whether the pipe/culvert dimension Att_Culvert_Array exists for the super string.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension Att_Culvert_Array exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1250
Page 402 Super String Element

Chapter 5 12dPL Library Calls
Super String Use Pipe/Culvert Justify Dimensions

Set_super_use_pipe_justify(Element super,Integer use)
Name
Integer Set_super_use_pipe_justify(Element super,Integer use)

Description
For Element super of type Super, define whether the pipe/culvert dimension Att_Pipe_Justify is
used or removed.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the pipe or culvert super string has a justification
defined.

If use is 0, the dimension is removed.
Note: the same justification flag is used whether the super string is a round pipe or a culvert and
the justification applies for the entire string.
A return value of 0 indicates the function call was successful.

ID = 1255

Get_super_use_pipe_justify(Element super,Integer &use)
Name
Integer Get_super_use_pipe_justify(Element super,Integer &use)

Description
Query whether the pipe/culvert dimension Att_Pipe_Justify exists for the Element super of type
Super.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists
use is returned as 0 if the dimension doesn’t exist.
Note: the same justification flag is used whether the super string is a round pipe or a culvert and
the justification applies for the entire string.

A return value of 0 indicates the function call was successful.
ID = 1254
Page 403Super String Element

12d Model Programming Language Manual
5.37.9.3 Setting Super String Pipe/Culvert Parameters
See Setting Super String Pipe/Culvert Justification
See Setting Super String Round Pipe Diameter and Thickness
See Setting Super String Culvert Width, Height and Thicknesses

See Superseded Setting Super String Round Pipe Diameter
See Superseded Setting Super String Culvert Width, Height and Thicknesses

Setting Super String Pipe/Culvert Justification

Integer Set_super_pipe_justify(Element super,Integer justify)
Name
Integer Set_super_pipe_justify(Element super,Integer justify)

Description
For the Element super of type Super which is a pipe or culvert string (i.e. Att_Diameter_Value,
Att_Diameter_Array, Att_Culvert_Value or Att_Culvert_Array has been set), set the pipe/culvert
justification to justify.
The values for justify are given in Pipe/Culvert Justification

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or a correct dimension is not allocated, this call fails
and a non-zero function value is returned.

Note: the same justification flag is used whether the super string is a pipe or a culvert and the
justification applies for the entire string.
A return value of 0 indicates the function call was successful
ID = 1256

Get_super_pipe_justify(Element super,Integer &justify)
Name
Integer Get_super_pipe_justify(Element super,Integer &justify)

Description
For the Element super of type Super which is a pipe or culvert string (i.e. Att_Diameter_Value,
Att_Diameter_Array, Att_Culvert_Value or Att_Culvert_Array has been set), get the pipe/culvert
justification and return it in justify.
The values for justify are given in Pipe/Culvert Justification

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or a correct dimension is not allocated, this call fails
and a non-zero function value is returned.
Note: the same justification flag is used whether the super string is a pipe or a culvert and the
justification applies for the entire string.

A return value of 0 indicates the function call was successful
ID = 1257
Page 404 Super String Element

Chapter 5 12dPL Library Calls
Setting Super String Round Pipe Diameter and Thickness

Set_super_pipe(Element super,Real diameter,Real thickness,Integer
internal_diameter)
Name
Integer Set_super_pipe(Element super,Real diameter,Real thickness,Integer internal_diameter)

Description
For the Element super of type Super which is a constant diameter pipe string (i.e. the
dimension flag Att_Diameter_Value has been set and Att_Diameter_Array has not been set), set
the thickness to thickness and the internal diameter to diameter if internal_diameter = 1 or the
external diameter to diameter if internal_diameter is non zero.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

Note - Get_super_use_pipe can be called to make sure it is a constant diameter pipe string.
A return value of 0 indicates the function call was successful.
 ID = 2645

Get_super_pipe(Element super,Real &diameter,Real thickness,Integer
internal_diameter)
Name
Integer Get_super_pipe(Element super,Real &diameter,Real thickness,Integer internal_diameter)

Description
For the Element super of type Super which is a constant diameter round pipe string (i.e.
Att_Diameter_Value has been set and Att_Diameter_Array has not been set), get the pipe
thickness and return it in thickness and the internal diameter and return it in internal_diameter.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.
Note - Get_super_use_pipe can be called to make sure it is a constant diameter round pipe
string.

A return value of 0 indicates the function call was successful
ID = 2646

Set_super_segment_pipe(Element super,Integer seg,Real diameter, Real
thickness,Integer internal_diameter)
Name
Integer Set_super_segment_pipe(Element super,Integer seg,Real diameter,Real thickness,Integer
internal_diameter)

Description
For the super Element super and segment number seg, set the thickness to thickness and the
internal diameter to diameter if internal_diameter = 1 or the external diameter to diameter if
internal_diameter is non zero.
Page 405Super String Element

12d Model Programming Language Manual
If super is not a variable pipe string then a non zero return value is returned.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
A return value of 0 indicates the function call was successful

ID = 2649

Get_super_segment_pipe(Element super,Integer seg,Real &diameter, Real
&thickness,Integer &internal_diameter)
Name
Integer Get_super_segment_pipe(Element super,Integer seg,Real &diameter,Real &thickness,Integer
&internal_diameter)

Description
For the super Element super and for segment number seg, get the pipe thickness and return it in
thickness, and if the returned value of internal_diameter is 1 then return the internal diameter
in diameter otherwise return the external diameter in diameter.
If super is not a variable pipe string then a non zero return value is returned.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

ID = 2650
Page 406 Super String Element

Chapter 5 12dPL Library Calls
Setting Super String Culvert Width, Height and Thicknesses

Set_super_culvert(Element super,Real width,Real height,Real left_thickness,Real
right_thickness,Real top_thickness,Real bottom_thickness, Integer
internal_width_height)
Name
Integer Set_super_culvert(Element super,Real width,Real height,Real left_thickness,Real
right_thickness,Real top_thickness,Real bottom_thickness,Integer internal_width_height)

Description
For the Element super of type Super which is a constant width and height string (i.e.the pipe/
culvert dimension flag Att_Culvert_Value has been set and Att_Culvert_Array not set), then

if internal_width_height =1 then set the culvert internal width to w and the internal height to
h.

if internal_width_height is not 1 then set the culvert external width to w and the external
height to h.

Set the left thickness to left_thickness, right thickness to right_thickness, top thickness to
top_thickness and bottom thickness to bottom_thickness.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

If the Element super is not of type Super, or the dimension Att_Culvert_Value is not allocated,
this call fails and a non-zero function value is returned.
A return value of 0 indicates the function call was successful.
Note - Get_super_use_culvert can be called to make sure it is a constant culvert string.

ID = 2647

Get_super_culvert(Element super,Real &width,Real &height,Real
&left_thickness,Real &right_thickness,Real &top_thickness, Real
&bottom_thickness,Integer &internal_width_height)
Name
Integer Get_super_culvert(Element super,Real &width,Real &height,Real &left_thickness,Real
&right_thickness,Real &top_thickness,Real &bottom_thickness,Integer &internal_width_height)

Description
For the Element super of type Super which is a constant width and height string (i.e.the pipe/
culvert dimension flag Att_Culvert_Value has been set and Att_Culvert_Array not set), then

if internal_width_height is returned as 1 then the culvert internal width is returned in w and
the internal height returned in h.

if internal_width_height is not returned as 1 then the culvert external width is returned in w
and the external height returned in h.

The left thickness is returned in left_thickness, right thickness in right_thickness, top thickness
in top_thickness and bottom thickness in bottom_thickness.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.
A return value of 0 indicates the function call was successful

Note - Get_super_use_culvert can be called to make sure it is a constant culvert string.
Page 407Super String Element

12d Model Programming Language Manual
ID = 2648

Set_super_segment_culvert(Element super,Integer seg,Real width,Real height, Real
left_thickness,Real right_thickness,Real top_thickness, Real
bottom_thickness,Integer internal_width_height)
Name
Integer Set_super_segment_culvert(Element super,Integer seg,Real width,Real height,Real
left_thickness,Real right_thickness,Real top_thickness,Real bottom_thickness,Integer
internal_width_height)

Description
For the Element super of type Super which has culvert widths and heights for each segment
(i.e.the pipe/culvert dimension flag Att_Culvert_Array has been set), then for segment number
seg:

if internal_width_height =1 then set the culvert internal width to w and the internal height to
h.

if internal_width_height is not 1 then set the culvert external width to w and the external
height to h.

Set the left thickness to left_thickness, right thickness to right_thickness, top thickness to
top_thickness and bottom thickness to bottom_thickness.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

If the Element super is not of type Super, or the dimension Att_Culvert_Array is not allocated,
this call fails and a non-zero function value is returned.
A return value of 0 indicates the function call was successful.

Note - Get_super_use_segment_culvert can be called to make sure it is a variable segment
culvert string.
ID = 2651

Get_super_segment_culvert(Element super,Integer seg,Real &width,Real
&height,Real &left_thickness,Real &right_thickness,Real &top_thickness, Real
&bottom_thickness,Integer &internal_width_height) For V10 only
Name
Integer Get_super_segment_culvert(Element super,Integer seg,Real &width,Real &height,Real
&left_thickness,Real &right_thickness,Real &top_thickness,Real &bottom_thickness,Integer
&internal_width_height)

Description
For the Element super of type Super which has culvert width and heights for each segment
(i.e.the pipe/culvert dimension flag Att_Culvert_Array has been set), then for segment number
seg:

if internal_width_height is returned as 1 then the culvert internal width is returned in w and
the internal height returned in h.
if internal_width_height is not returned as 1 then the culvert external width is returned in w
and the external height returned in h.

The left thickness is returned in left_thickness, right thickness in right_thickness, top thickness
in top_thickness and bottom thickness in bottom_thickness.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
Page 408 Super String Element

Chapter 5 12dPL Library Calls
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.
A return value of 0 indicates the function call was successful

Note - Get_super_use_segment_culvert can be called to make sure it is a variable segment
culvert string.
ID = 2652
Page 409Super String Element

12d Model Programming Language Manual
Superseded Setting Super String Round Pipe Diameter
From V10 onwards, round pipe strings can have a wall thickness so the following calls that do
not return this extra value are now superseded and should not be used.

Set_super_pipe(Element super,Real diameter) for V10 and above

Set_super_diameter(Element super,Real diameter) for V9
Name
Integer Set_super_pipe (Element super,Real diameter)

Integer Set_super_diameter (Element super,Real diameter)

Description
For the Element super of type Super which is a constant diameter pipe string (i.e. the
dimension flag Att_Diameter_Value has been set and Att_Diameter_Array has not been set), set
the diameter to diameter.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.
Note - Get_super_use_pipe can be called to make sure it is constant diameter pipe string.
This function has the new name for V10 onwards. The old call will still work.

A return value of 0 indicates the function call was successful.
ID = 706

Get_super_pipe(Element super,Real &diameter) for V10 onwards

Get_super_diameter(Element super,Real &diameter) for V9
Name
Integer Get_super_pipe(Element super,Real &diameter)

Integer Get_super_diameter(Element super,Real &diameter)

Description
For the Element super of type Super which is a constant diameter round pipe string (i.e.
Att_Diameter_Value has been set and Att_Diameter_Array has not been set), get the pipe
diameter and return it in diameter.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.
This function has the new name for V10 onwards. The old call will still work.

Note - Get_super_use_pipe can be called to make sure it is a constant diameter pipe string.
A return value of 0 indicates the function call was successful
ID = 707

Set_super_segment_pipe(Element super,Integer seg,Real diameter) for V10
onwards
Page 410 Super String Element

Chapter 5 12dPL Library Calls
Set_super_segment_diameter(Element super,Integer seg,Real diameter) for V9
Name
Integer Set_super_segment_pipe(Element super,Integer seg,Real diameter)

Integer Set_super_segment_diameter(Element super,Integer seg,Real diameter)

Description
For the super Element super, set the pipe diameter for segment number seg to diameter.
For V10, if super is not a variable pipe string then a non zero return value is returned.
For V10,a return value of 0 indicates the function call was successful
For V9, the return code is always 0.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
Note - for V9, no error code is set if the string in not a variable pipe string. That needs to checked
using the Get_super_use_pipe calls.

This function has the new name for V10 onwards. The old call will still work.
A return value of 0 indicates the function call was successful
ID = 716

Get_super_segment_pipe(Element super,Integer seg,Real &diameter) for V10
onward

Get_super_segment_diameter(Element super,Integer seg,Real &diameter) for V9
Name
Integer Get_super_segment_pipe(Element super,Integer seg,Real &diameter)

Integer Get_super_segment_diameter(Element super,Integer seg,Real &diameter)

Description
This function has the new name for V10 onwards. The old call will still work.
For the super Element super, get the pipe diameter for segment number seg and return it in
diameter.
For V10, if super is not a variable pipe string then a non zero return value is returned.
For V10,a return value of 0 indicates the function call was successful

For V9, the return code is always 0.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
Note - for V9, no error code is set if the string in not a variable pipe string. That needs to checked
using the Get_super_use_pipe calls.

ID = 717
Page 411Super String Element

12d Model Programming Language Manual
Superseded Setting Super String Culvert Width, Height and Thicknesses
From V10 onwards, culvert strings can have four wall thicknesses (top, bottom, left and right) so
the following calls that do not return theses extra values are now superseded and should not be
used.

Set_super_culvert(Element super,Real w,Real h)
Name
Integer Set_super_culvert(Element super,Real w,Real h)

Description
For the Element super of type Super which is a constant width and height culvert string (i.e.the
pipe/culvert dimension flag Att_Culvert_Value has been set), set the culvert width to w and the
height to h.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension is not allocated Att_Culvert_Value,
this call fails and a non-zero function value is returned.
A return value of 0 indicates the function call was successful.

Note - Get_super_use_culvert can be called to make sure it is a constant culvert string.
ID = 1249

Get_super_culvert(Element super,Real &w,Real &h)
Name
Integer Get_super_culvert(Element super,Real &w,Real &h)

Description
For the Element super of type Super which is a constant width and height culvert string (i.e.the
pipe/culvert dimension flag Att_Culvert_Value has been set), get the culvert width and height and
return them in w and h respectively.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.
A return value of 0 indicates the function call was successful
Note - Get_super_use_culvert can be called to make sure it is a constant culvert string.

ID = 1248

Set_super_segment_culvert(Element super,Integer seg,Real w,Real h)
Name
Integer Set_super_segment_culvert(Element super,Integer seg,Real w,Real h)

Description
For the Element super of type Super which has culvert widths and heights for each
segment(i.e.the pipe/culvert dimension flag Att_Culvert_Array has been set), set the culvert
width and height for segment number seg to be w and h respectively.

See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension Att_Culvert_Array is not allocated,
Page 412 Super String Element

Chapter 5 12dPL Library Calls
this call fails and a non-zero function value is returned.
A return value of 0 indicates the function call was successful.
Note - Get_super_use_segment_culvert can be called to make sure it is variable segment
culvert string.

ID = 1253

Get_super_segment_culvert(Element super,Integer seg,Real &w,Real &h)
Name
Integer Get_super_segment_culvert(Element super,Integer seg,Real &w,Real &h)

Description
For the Element super of type Super which has culvert widths and heights for each
segment(i.e.the pipe/culvert dimension flag Att_Culvert_Array has been set), get the culvert
width and height for segment number seg and return them in w and h respectively.
See Pipe/Culvert Dimensions for information on the Pipe/Culvert dimensions or 5.37.1 Super
String Dimensionsfor information on all dimensions.
If the Element super is not of type Super, or the dimension Att_Culvert_Array is not allocated,
this call fails and a non-zero function value is returned.

A return value of 0 indicates the function call was successful.
Note - Get_super_use_segment_culvert can be called to make sure it is variable segment
culvert string.
ID = 1252
Page 413Super String Element

12d Model Programming Language Manual
5.37.10 Super String Vertex Text and Annotation Functions
See 5.37.10.1 Definitions of Super String Vertex Text Dimensions, Units and Annotation
Parameters
See 5.37.10.2 Super String Use Vertex Text Functions
See 5.37.10.3 Super String Use Vertex Annotation Functions
See 5.37.10.4 Setting Super String Vertex Text and Annotation Parameters
Page 414 Super String Element

Chapter 5 12dPL Library Calls
5.37.10.1 Definitions of Super String Vertex Text Dimensions, Units and Annotation
Parameters

Super String Vertex text refers to the text at a super string vertex.
If super string text is required then the dimension to set is either
(a) the most common case of having a different text at each vertex (dimension

Att_Vertex_Text_Array)
or
(b) the rare case of just the same text that is used for every vertex (dimension

Att_Vertex_Text_Value)

Although vertex text may be defined, it will not display in a plan view, or on a plan plot, unless a
Vertex Text Annotation dimension has been set. A Text Annotation controls the text size, colour,
rotation etc.

So if super string vertex text is required to be drawn on a plan view then the dimension to set is
either
(a) for the case of having a different text annotation at each vertex so that the annotation

attributes can be modified at each vertex then set dimension Att_Vertex_Annotate_Array
or
(b) if there is just the one Annotation and its parameters are used for drawing the text on every

vertex then set the dimension Att_Vertex_Annotate_Value (this is the case for the traditional
4d string).

For definitions of the Vertex Text dimensions see Vertex Text Dimensions and the Vertex Text Annotation
dimensions see Vertex Text Annotation Dimensions.

Vertex Text Annotation Definitions
For vertex text, the text justification point and the direction of the text are defined by:
(a) the direction of the text is given as a counter clockwise angle of rotation (measured from the

x-axis) about the vertex (default 0)

(b) the justification point is given as an offset from the vertex along the line through the vertex
with the direction of the text, and a perpendicular distance (called the raise) from that offset
point to the justification point (default 0).

The vertex and justification point only coincide if the offset and raise values are both zero.

Finally the text can be one of nine positions defined in relation to the (x,y) coordinates of the text
justification point:

top
3 6 9

Fred

.
position of
text vertex

the position of the
text justification
point for vertex text

angle

offset or offset width raise

angle, offset and raise
from the vertexor super string

vertex

is defined by the

Vertex Text

line giving the direction
of the text

or offset height
Page 415Super String Element

12d Model Programming Language Manual
left 2 5 8 right
1 4 7

bottom
For numbers with a decimal point, the position of the decimal point gives an addition point on the
bottom called decimal x and on the side called decimal y. So there are sixteen possible
justification for numbers.

This is usually an Integer called the justification with a default value of 1.

Vertex Text Annotation Units
The units for text size is specified by an Integer whose value is
(a) 0 (the default) for the units are screen/pixel/device units
(b) 1 for world units
(c) 2 for paper units (millimetres on a plot).
Regardless of whether there is one Vertex Text Annotation for the entire string or a different Text
Annotation for each vertex, there is only one units for text size used for all the Vertex Text of the
string.
The units for text are used for the size of the text, and the offsets and raises for the text.

For Information on all the super string vertex text and vertex text annotations:
See 5.37.10.2 Super String Use Vertex Text Functions
See 5.37.10.3 Super String Use Vertex Annotation Functions
See 5.37.10.4 Setting Super String Vertex Text and Annotation Parameters
Page 416 Super String Element

Chapter 5 12dPL Library Calls
5.37.10.2 Super String Use Vertex Text Functions
For definitions of the Vertex Text dimensions, see Vertex Text Dimensions

Set_super_use_vertex_text_value(Element super,Integer use)
Name
Integer Set_super_use_vertex_text_value(Element super,Integer use)

Description
Tell the super string super whether to use (set), or not use (remove), the dimension
Att_Vertex_Text_Value.
A value for use of 1 sets the dimension and 0 removes it.

If Att_Vertex_Text_Value is used, then the same text is attached to all the vertices of the super
string.
Note if the dimension Att_Vertex_Text_Array exists, this call is ignored.
See Vertex Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A return value of 0 indicates the function call was successful.
ID = 1237

Get_super_use_vertex_text_value(Element super,Integer &use)
Name
Integer Get_super_use_vertex_text_value(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Text_Value exists for the super string super.
use is returned as 1 if the dimension Att_Vertex_Text_Value exists.
use is returned as 0 if the dimension doesn’t exist.
If the dimension Att_Vertex_Text_Value exists then the string has the same text for every vertex
of the string.

See Vertex Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 1238

Set_super_use_vertex_text_array(Element super,Integer use)
Name
Integer Set_super_use_vertex_text_array(Element super,Integer use)

Description
Tell the super string whether to use (set), or not use (remove), the dimension
Att_Segment_Text_Array.
A value for use of 1 sets the dimension and 0 removes it.

If Att_Vertex_Text_Array is used, then there is different text at each vertex of the super string
super.
See Vertex Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
Page 417Super String Element

12d Model Programming Language Manual
A return value of 0 indicates the function call was successful.
ID = 742

Get_super_use_vertex_text_array(Element super,Integer &use)
Name
Integer Get_super_use_vertex_text_array(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Text_Array exists (is used) for the super string super.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
If Att_Vertex_Text_Array is used, then there is different text on each vertex of the of the string.

See Vertex Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 743

Super_vertex_text_value_to_array(Element super)
Name
Integer Super_vertex_text_value_to_array(Element super)

Description
If for the super string super the dimension Att_Vertex_Text_Value exists and the dimension
Att_Vertex_Text_Array does not exist then there will be one Vertex Text txt for the entire string.

In this case (when the dimension Att_Vertex_Text_Value exists and the dimension
Att_Vertex_Text_Array does not exist) this function sets the Att_Vertex_Text_Array dimension
and new vertex text created for each vertex of super and the new vertex text is given the value
txt.
See Vertex Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 2177
Page 418 Super String Element

Chapter 5 12dPL Library Calls
5.37.10.3 Super String Use Vertex Annotation Functions
For definitions of the Vertex Annotation dimensions, see Vertex Text Annotation Dimensions

Set_super_use_vertex_annotation_value(Element super,Integer use)
Name
Integer Set_super_use_vertex_annotation_value(Element super,Integer use)

Description
Tell the super string super whether to use, or not use, the dimension
Att_Vertex_Annotate_Value.
If the dimension Att_Vertex_Annotate_Value exists and the dimension
Att_Vertex_Annotate_Array doesn’t exist then the string has the one annotation which is used for
vertex text on any vertex of the string.

See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A value for use of 1 sets the dimension and 0 removes it.
Note if the dimension Att_Vertex_Annotate_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.
ID = 750

Get_super_use_vertex_annotation_value(Element super,Integer &use)
Name
Integer Get_super_use_vertex_annotation_value(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Annotate_Value exists for the super string super.
If the dimension Att_Vertex_Annotate_Value exists and the dimension
Att_Vertex_Annotate_Array doesn’t exist then the string has the one annotation which is used for
vertex text on any vertex of the string.
See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 751

Set_super_use_vertex_annotation_array(Element super,Integer use)
Name
Integer Set_super_use_vertex_annotation_array(Element super,Integer use)

Description
Tell the super string super whether to use, or not use, the dimension Att_Vertex_Annotate_Array.
If the dimension Att_Vertex_Annotate_Array exists then the string has a different annotation for
the vertex text on each vertex of the string.

See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A value for use of 1 sets the dimension and 0 removes it.
Page 419Super String Element

12d Model Programming Language Manual
A return value of 0 indicates the function call was successful.
ID = 752

Get_super_use_vertex_annotation_array(Element super,Integer &use)
Name
Integer Get_super_use_vertex_annotation_array(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Annotate_Array exists for the super string super.
If the dimension Att_Vertex_Annotate_Array exists then the string has a different annotation for
the vertex text on each vertex of the string.
See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 753

Super_vertex_annotate_value_to_array(Element elt)
Name
Integer Super_vertex_annotate_value_to_array(Element elt)

Description
If for the super string super the dimension Att_Vertex_Annotate_Value exists and the dimension
Att_Vertex_Annotate_Array does not exist then there will be one Annotation annot for the entire
string.

In this case (when the dimension Att_Vertex_Annotate_Value exists and the dimension
Att_Vertex_Annotate_Array does not exist), this function sets the Att_Vertex_Annotate_Array
dimension and new Annotations created for each vertex of super and the new Annotation is
given the value annot.
See Vertex Text Annotation Dimensions for information on the Text dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 2178
Page 420 Super String Element

Chapter 5 12dPL Library Calls
5.37.10.4 Setting Super String Vertex Text and Annotation Parameters

Set_super_vertex_text(Element super,Integer vert,Text txt)
Name
Integer Set_super_vertex_text(Element super,Integer vert,Text txt)

Description
For the super Element super, set the vertex text at vertex number vert to be txt.
If there is only one Vertex Text for all the vertices then the text for that one Vertex Text is set to txt
regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 744

Get_super_vertex_text(Element super,Integer vert,Text &txt)
Name
Integer Get_super_vertex_text(Element super,Integer vert,Text &txt)

Description
For the super string super, return in txt the vertex text on vertex number vert.
If there is only one Vertex Text for all the vertices then the text for that one Vertex Text will be
returned in txt regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 745

Set_super_vertex_world_text(Element super)
Name
Integer Set_super_vertex_world_text(Element)

Description
Set the units for vertex text for the super string super to World. See Vertex Text Annotation
Units.
A return value of 0 indicates the function call was successful.

ID = 747

Set_super_vertex_device_text(Element super)
Name
Integer Set_super_vertex_device_text(Element)

Description
Set the units for vertex text for the super string super to Screen (also known as Device or Pixel).
See Vertex Text Annotation Units.

A return value of 0 indicates the function call was successful.
ID = 746

Set_super_vertex_paper_text(Element super)
Page 421Super String Element

12d Model Programming Language Manual
Name
Integer Set_super_vertex_paper_text(Element super)

Description
For an Element super of type Super, set the text units for vertex text to be paper (that is
millimetres).
See Vertex Text Annotation Units for the definition of segment text units.
If there is Textstyle_Data for the vertex text then this will override the
Set_super_vertex_device_text call.

A return value of 0 indicates the function call was successful.
ID = 1633

Set_super_vertex_text_type(Element super,Integer type)
Name
Integer Set_super_vertex_text_type(Element super,Integer type)

Description
For the super Element super, set the vertex text units to be the value of type.
See Vertex Text Annotation Units for the definition of vertex text units.
A return value of 0 indicates the function call was successful.

ID = 748

Get_super_vertex_text_type(Element super,Integer &type)
Name
Integer Get_super_vertex_text_type(Element super,Integer &type)

Description
For the super Element super, return in type the value for the vertex text units for the vertex text
of the string.
See Vertex Text Annotation Units for the definition of vertex text units.
A return value of 0 indicates the function call was successful.

ID = 749

Set_super_vertex_text_justify(Element super,Integer vert,Integer just)
Name
Integer Set_super_vertex_text_justify(Element super,Integer vert,Integer just)

Description
For the super string super, set the justification of the text on vertex number vert to just.
See Vertex Text Annotation Definitions for the definition of justification.
If there is only one Vertex Text Annotation for all the Vertex Text then the justification for that one
Vertex Text Annotation is set to just regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 754
Page 422 Super String Element

Chapter 5 12dPL Library Calls
Get_super_vertex_text_justify(Element super,Integer vert,Integer &just)
Name
Integer Get_super_vertex_text_justify(Element super,Integer vert,Integer &just)

Description
For the super string super, return the justification of the vertex text on vertex number vert in just.
See Vertex Text Annotation Definitions for the definition of justification.
If there is only one Vertex Text Annotation for all the Vertex Text then the justification for that one
Vertex Text Annotation will be returned in just regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 755

Set_super_vertex_text_offset_width(Element super,Integer vert,Real offset)
Name
Integer Set_super_vertex_text_offset_width(Element super,Integer vert,Real offset)

Description
For the super string super, set the offset (offset width) of the vertex text from vertex number vert
to offset
See Vertex Text Annotation Definitions for the definition of offset (offset width).
If there is only one Vertex Text Annotation for all the Vertex Text then the offset width for that one
Vertex Text Annotation is set to offset regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 756

Get_super_vertex_text_offset_width(Element super,Integer vert,Real &offset)
Name
Integer Get_super_vertex_text_offset_width(Element super,Integer vert,Real &offset)

Description
For the super string super, return as offset the offset (offset width) of the vertex text from vertex
number vert.
See Vertex Text Annotation Definitions for the definition of offset (offset width).
If there is only one Vertex Text Annotation for all the Vertex Text then the offset width for that one
Vertex Text Annotation will be returned in offset regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 757

Set_super_vertex_text_offset_height(Element super,Integer vert,Real raise)
Name
Integer Set_super_vertex_text_offset_height(Element super,Integer vert,Real raise)

Description
For the super string super, set the raise (offset height) of the vertex text for vertex number vert to
raise.
See Vertex Text Annotation Definitions for the definition of raise (offset height)
Page 423Super String Element

12d Model Programming Language Manual
If there is only one Vertex Text Annotation for all the Vertex Text then the raise for that one Vertex
Text Annotation is set to raise regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 758

Get_super_vertex_text_offset_height(Element super,Integer vert,Real &raise)
Name
Integer Get_super_vertex_text_offset_height(Element super,Integer vert,Real &raise)

Description
For the super string super, return as raise the raise of the vertex text from vertex number vert.
See Vertex Text Annotation Definitions for the definition of raise (offset height)

If there is only one Vertex Text Annotation for all the Vertex Text then the raise for that one Vertex
Text Annotation will be returned in raise regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 759

Set_super_vertex_text_colour(Element super,Integer vert,Integer col)
Name
Integer Set_super_vertex_text_colour(Element super,Integer vert,Integer col)

Description
For the super string super, set the colour number of the vertex text on the vertex number vert to
be col.
If there is only one Vertex Text Annotation for all the Vertex Text then the colour number for that
one Vertex Text Annotation is set to col regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 1091

Get_super_vertex_text_colour(Element super,Integer vert,Integer &col)
Name
Integer Get_super_vertex_text_colour(Element super,Integer vert,Integer &col)

Description
For the super string super, return as col the colour number of the vertex text on vertex number
vert.
If there is only one Vertex Text Annotation for all the Vertex Text then the colour for that one
Vertex Text Annotation will be returned in col regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 1092

Set_super_vertex_text_angle(Element super,Integer vert,Real ang)
Name
Integer Set_super_vertex_text_angle(Element super,Integer vert,Real ang)
Page 424 Super String Element

Chapter 5 12dPL Library Calls
Description
For the super string super, set the angle of rotation of the vertex text on vertex number vert to
ang. ang is in radians and is measured counterclockwise from the x-axis.
See Vertex Text Annotation Definitions for the definition of angle.

If there is only one Vertex Text Annotation for all the Vertex Text then the angle for that one
Vertex Text Annotation is set to ang regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 760

Get_super_vertex_text_angle(Element super,Integer vert,Real &ang)
Name
Integer Get_super_vertex_text_angle(Element super,Integer vert,Real &ang)

Description
For the super string super, return the angle of rotation of the vertex text on vertex number vert in
ang. ang is measured in radians and is measured counterclockwise from the x-axis.

See Vertex Text Annotation Definitions for the definition of angle.
If there is only one Vertex Text Annotation for all the Vertex Text then the angle for that one
Vertex Text Annotation will be returned in ang regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 761

Set_super_vertex_text_angle2(Element super,Integer vert,Real ang)
Name
Integer Set_super_vertex_text_angle2(Element super,Integer vert,Real ang)

Description
For the super string super, set the 3D beta angle of the vertex text on vertex number vert to ang.
ang is in radians

If there is only one Vertex Text Annotation for all the Vertex Text then the angle for that one
Vertex Text Annotation is set to ang regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 3582

Get_super_vertex_text_angle2(Element super,Integer vert,Real &ang)
Name
Integer Get_super_vertex_text_angle2(Element super,Integer vert,Real &ang)

Description
For the super string super, return the 3D beta angle of the vertex text on vertex number vert in
ang. ang is measured in radians.
If there is only one Vertex Text Annotation for all the Vertex Text then the angle for that one
Vertex Text Annotation will be returned in ang regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 3583
Page 425Super String Element

12d Model Programming Language Manual
Set_super_vertex_text_angle3(Element super,Integer vert,Real ang)
Name
Integer Set_super_vertex_text_angle3(Element super,Integer vert,Real ang)

Description
For the super string super, set the 3D gamma angle of the vertex text on vertex number vert to
ang. ang is in radians
If there is only one Vertex Text Annotation for all the Vertex Text then the angle for that one
Vertex Text Annotation is set to ang regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 3584

Get_super_vertex_text_angle3(Element super,Integer vert,Real &ang)
Name
Integer Get_super_vertex_text_angle3(Element super,Integer vert,Real &ang)

Description
For the super string super, return the 3D gamma angle of the vertex text on vertex number vert
in ang. ang is measured in radians.
If there is only one Vertex Text Annotation for all the Vertex Text then the angle for that one
Vertex Text Annotation will be returned in ang regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 3585

Set_super_vertex_text_size(Element super,Integer vert,Real sz)
Name
Integer Set_super_vertex_text_size(Element super,Integer vert,Real sz)

Description
For the super Element super, set the size of the vertex text on vertex number vert to sz.
If there is only one Vertex Text Annotation for all the Vertex Text then the size for that one Vertex
Text Annotation is set to sz regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 762

Get_super_vertex_text_size(Element super,Integer vert,Real &sz)
Name
Integer Get_super_vertex_text_size(Element super,Integer vert,Real &sz)

Description
For the super string super, return the size of the vertex text on vertex number vert as sz.

If there is only one Vertex Text Annotation for all the Vertex Text then the size for that one Vertex
Text Annotation will be returned in sz regardless of the value of vert.
A return value of 0 indicates the function call was successful.
Page 426 Super String Element

Chapter 5 12dPL Library Calls
ID = 763

Set_super_vertex_text_x_factor(Element super,Integer vert,Real xf)
Name
Integer Set_super_vertex_text_x_factor(Element super,Integer vert,Real xf)

Description
For the super string super, set the x factor of the vertex text on vertex number vert to xf.
If there is only one Vertex Text Annotation for all the Vertex Text then the x factor for that one
Vertex Text Annotation is set to xf regardless of the value of vert.
A return value of 0 indicates the function call was successful.

ID = 764

Get_super_vertex_text_x_factor(Element super,Integer vert,Real &xf)
Name
Integer Get_super_vertex_text_x_factor(Element super,Integer vert,Real &x)

Description
For the super string super, return in xf the x factor of the vertex text on vertex number vert.
If there is only one Vertex Text Annotation for all the Vertex Text then the x factor for that one
Vertex Text Annotation will be returned in xf regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 765

Set_super_vertex_text_slant(Element super,Integer vert,Real sl)
Name
Integer Set_super_vertex_text_slant(Element super,Integer vert,Real sl)

Description
For the super string super, set the slant of the vertex text on vertex number vert to sl.
If there is only one Vertex Text Annotation for all the Vertex Text then the slant factor for that one
Vertex Text Annotation is set to sl regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 766

Get_super_vertex_text_slant(Element super,Integer vert,Real &sl)
Name
Integer Get_super_vertex_text_slant(Element super,Integer vert,Real &s)

Description
For the super string super, return as sl the slant of the vertex text on vertex number vert.
If there is only one Vertex Text Annotation for all the Vertex Text then the slant for that one Vertex
Text Annotation will be returned in sl regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 767
Page 427Super String Element

12d Model Programming Language Manual
Set_super_vertex_text_style(Element super,Integer vert,Text ts)
Name
Integer Set_super_vertex_text_style(Element super,Integer vert,Text ts)

Description
For the super string super, set the textstyle of the vertex text on vertex number vert to ts.
If there is only one Vertex Text Annotation for all the Vertex Text then the textstyle for that one
Vertex Text Annotation is set to ts regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 768

Get_super_vertex_text_style(Element super,Integer vert,Text &ts)
Name
Integer Get_super_vertex_text_style(Element super,Integer vert,Text &ts)

Description
For the super string super, return as ts the textstyle of the vertex text on vertex number vert.
If there is only one Vertex Text Annotation for all the Vertex Text then the textstyle for that one
Vertex Text Annotation will be returned in ts regardless of the value of vert.
A return value of 0 indicates the function call was successful.
ID = 769

Set_super_vertex_text_ttf_underline(Element super,Integer vert,Integer underline)
 Name
Integer Set_super_vertex_text_ttf_underline(Element super super,Integer vert,Integer underline)

Description
For the Element super of type Super, set the underline state for the vertex text on vertex number
vert to be underline.
If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.
If there is only one Vertex Text Annotation for all the Vertex Text then the underline state for that
one Vertex Text Annotation is set to underline regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates underline was successfully set.
ID = 2600

Get_super_vertex_text_ttf_underline(Element super,Integer vert,
 Integer &underline)
Name
Integer Get_super_vertex_text_ttf_underline(Element super,Integer vert,Integer &underline)

Description
Page 428 Super String Element

Chapter 5 12dPL Library Calls
For the Element super of type Super, get the underline state for the vertex text on vertex number
vert and return it as underline.
If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.
If there is only one Vertex Text Annotation for all the Vertex Text then the underline state for that
one Vertex Text Annotation will be returned in underline regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates underline was successfully returned.
 ID = 2601

Set_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer strikeout)
Name
Integer Set_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer strikeout)

Description
For the Element super of type Super, set the strikeout state for the vertex text on vertex number
vert to be strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
If there is only one Vertex Text Annotation for all the Vertex Text then the strikeout state for that
one Vertex Text Annotation is set to strikeout regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.

A function return value of zero indicates strikeout was successfully set.
ID = 2602

Get_super_vertex_text_ttf_strikeout(Element super,Integer vert,
 Integer &strikeout)
Name
Integer Get_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer &strikeout)

Description
For the Element super of type Super, get the strikeout state for the vertex text on vertex number
vert and return it as strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

If there is only one Vertex Text Annotation for all the Vertex Text then the strikeout state for that
one Vertex Text Annotation will be returned in strikeout regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates strikeout was successfully returned.

 ID = 2603

Set_super_vertex_text_ttf_italic(Element super,Integer vert,Integer italic)
Name
Page 429Super String Element

12d Model Programming Language Manual
Integer Set_super_vertex_text_ttf_italic(Element super,Integer vert,Integer italic)

Description
For the Element super of type Super, set the italic state for the vertex text on vertex number vert
to be italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
If there is only one Vertex Text Annotation for all the Vertex Text then the italic state for that one
Vertex Text Annotation is set to italic regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.

A function return value of zero indicates italic was successfully set.
ID = 2604

Get_super_vertex_text_ttf_italic(Element super,Integer vert,Integer &italic)
Name
Integer Get_super_vertex_text_ttf_italic(Element super,Integer vert,Integer &italic)

Description
For the Element super of type Super, get the italic state for the vertex text on vertex number vert
and return it as italic.
If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

If there is only one Vertex Text Annotation for all the Vertex Text then the italic state for that one
Vertex Text Annotation will be returned in italic regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates italic was successfully returned.

ID = 2605

Set_super_vertex_text_ttf_outline(Element elt,Integer vert,Integer outline)
Name
Integer Set_super_vertex_text_ttf_outline(Element elt,Integer vert,Integer outline)

Description
For the Element super of type Super, set the outline state for the vertex text on vertex number
vert to be outline.

If outline = 1, then for a true type font the text will be only shown in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.
If there is only one Vertex Text Annotation for all the Vertex Text then the outline state for that one
Vertex Text Annotation is set to outline regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates outline was successfully set.
ID = 2775
Page 430 Super String Element

Chapter 5 12dPL Library Calls
Get_super_vertex_text_ttf_outline(Element elt,Integer vert,Integer &outline)
Name
Integer Get_super_vertex_text_ttf_outline(Element elt,Integer vert,Integer &outline)

Description
For the Element super of type Super, get the outline state for the vertex text on vertex number
vert and return it as outline.

If outline = 1, then for a true type font the text will be shown only in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.
If there is only one Vertex Text Annotation for all the Vertex Text then the outline state for that one
Vertex Text Annotation will be returned in outline regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates outline was successfully returned.

ID = 2776

Set_super_vertex_text_ttf_weight(Element super,Integer vert,Integer weight)
Name
Integer Set_super_vertex_text_ttf_weight(Element super,Integer vert,Integer weight)

Description
For the Element super of type Super, set the weight for the vertex text on vertex number vert to
be weight.
For the list of allowable weights, go to Allowable Weights
If there is only one Vertex Text Annotation for all the Vertex Text then the weight for that one
Vertex Text Annotation is set to weight regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.

A function return value of zero indicates weight was successfully set.
ID = 2606

Get_super_vertex_text_ttf_weight(Element super,Integer vert,Integer &weight)
Name
Integer Get_super_vertex_text_ttf_weight(Element super,Integer vert,Integer &weight)

Description
For the Element super of type Super, get the weight for the vertex text on vertex number vert
and return it as weight.
For the list of allowable weights, go to Allowable Weights
If there is only one Vertex Text Annotation for all the Vertex Text then the weight for that one
Vertex Text Annotation will be returned in weight regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array or Att_Vertex_Value set.
A function return value of zero indicates weight was successfully returned.

ID = 2607
Page 431Super String Element

12d Model Programming Language Manual
Set_super_vertex_text_whiteout(Element superstring,Integer vert,Integer c)
Name
Integer Set_super_vertex_text_whiteout(Element superstring,Integer vert,Integer c)

Description
For vertex number vert of the Super String Element superstring, set the colour number of the
colour used for the whiteout box around the vertex text, to be colour.
If no text whiteout is required, then set the colour number to NO_COLOUR.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
If there is only one Vertex Text Annotation for all the Vertex Text then the colour number of the
colour used for the whiteout box around the vertex text for that one Vertex Text Annotation is set
to c regardless of the value of vert.
A function return value of zero indicates the colour number was successfully set.

ID = 2755

Get_super_vertex_text_whiteout(Element superstring,Integer vert,Integer &c)
Name
Integer Get_super_vertex_text_whiteout(Element superstring,Integer vert,Integer &c)

Description
For vertex number vert of the Super String Element superstring, get the colour number that is
used for the whiteout box around the vertex text. The whiteout colour is returned as Integer
colour.
NO_COLOUR is the returned as the colour number if whiteout is not being used.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

If there is only one Vertex Text Annotation for all the Vertex Text then the colour number that is
used for the whiteout box around the vertex text for that one Vertex Text Annotation will be
returned in c regardless of the value of vert.
A function return value of zero indicates the colour number was successfully returned.
ID = 2756

Set_super_vertex_text_border(Element superstring,Integer vert,Integer c)
Name
Integer Set_super_vertex_text_border(Element superstring,Integer vert,Integer c)

Description
For vertex number vert of the Super String Element superstring, set the colour number of the
colour used for the border of the whiteout box around the vertex text, to be c.
If no whiteout border is required, then set the colour number to NO_COLOUR.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
If there is only one Vertex Text Annotation for all the Vertex Text then the colour number of the
colour used for the border of the whiteout box around the vertex text for that one Vertex Text
Annotation is set to c regardless of the value of vert.
A function return value of zero indicates the colour number was successfully set.

ID = 2765
Page 432 Super String Element

Chapter 5 12dPL Library Calls
Get_super_vertex_text_border(Element superstring,Integer vert,Integer &c)
Name
Integer Get_super_vertex_text_border(Element superstring,Integer vert,Integer &c)

Description
For vertex number vert of the Super String Element superstring, get the colour number that is
used for the border of the whiteout box around the vertex text. The whiteout border colour is
returned as Integer c.
NO_COLOUR is the returned as the colour number if there is no whiteout border.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
If there is only one Vertex Text Annotation for all the Vertex Text then the colour number that is
used for the border of the whiteout box around the vertex text for that one Vertex Text Annotation
will be returned in c regardless of the value of vert.
A function return value of zero indicates the colour number was successfully returned.
ID = 2766

Set_super_vertex_text_border_style(Element superstring,Integer vert,Integer s)
Name
Integer Set_super_vertex_text_border_style(Element superstring,Integer vert,Integer s)

Description
For vertex number vert of the Super String Element superstring, set the style for the border of
the whiteout box around the vertex text, according to Integer s.
Rectangle 1
Circle 2

Capsule 3
Bevel 4
If there is only one Vertex Text Annotation for all the Vertex Text then the style for the border of
the whiteout box around the vertex text for that one Vertex Text Annotation is set to s regardless
of the value of vert.
A function return value of zero indicates the colour number was successfully set.
ID = 3586

Get_super_vertex_text_border_style(Element superstring,Integer vert,Integer &s)
Name
Integer Get_super_vertex_text_border_style(Element superstring,Integer vert,Integer &s)

Description
For vertex number vert of the Super String Element superstring, get the style for the border of
the whiteout box around the vertex text. The value is returned as Integer s.
Rectangle 1
Circle 2

Capsule 3
Bevel 4
Page 433Super String Element

12d Model Programming Language Manual
If there is only one Vertex Text Annotation for all the Vertex Text then the style that is used for the
border of the whiteout box around the vertex text for that one Vertex Text Annotation will be
returned in s regardless of the value of vert.
A function return value of zero indicates the colour number was successfully returned.
ID = 3587

Set_super_vertex_textstyle_data(Element super,Integer vert,Textstyle_Data d)
Name
Integer Set_super_vertex_textstyle_data(Element super,Integer vert,Textstyle_Data d)

Description
For the Element super of type Super, set the Textstyle_Data for the vertex text on vertex number
vert to be d.
Setting a Textstyle_Data means that all the individual values that are contained in the
Textstyle_Data are set rather than having to set each one individually.

If the value is blank in the Textstyle_Data d then the existing value is already set for the vertex
text will be left alone.
If there is only one Vertex Text Annotation for all the Vertex Text then the Textstyle_Data for that
one Vertex Text Annotation is set to d regardless of the value of vert.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Value set.

A function return value of zero indicates the Textstyle_Data was successfully set.
ID = 1663

Get_super_vertex_textstyle_data(Element elt,Integer vert,Textstyle_Data &d)
Name
Integer Get_super_vertex_textstyle_data(Element elt,Integer vert,Textstyle_Data &d)

Description
For the Element super of type Super, get the Textstyle_Data for the vertex text on vertex number
vert and return it as d.
Note that the function does not concern that the vertex text exists or not.

A non-zero function return value is returned if super is not of type Super.
if super does not have the dimension Att_Vertex_Text_Value set the function returns zero, but d
remains unchanged.
If there is only one Vertex Text Annotation for all the Vertex Text then the Textstyle_Data for that
one Vertex Text Annotation will be returned in d regardless of the value of vert.
A function return value of zero indicates the Textstyle_Data was successfully returned.
ID = 1664
Page 434 Super String Element

Chapter 5 12dPL Library Calls
5.37.11 Super String Segment Text and Annotation Functions
See 5.37.11.1 Definitions of Super String Segment Text Dimensions, Units and Annotation
Parameters
See 5.37.11.2 Super String Use Segment Text Functions
See 5.37.11.3 Super String Use Segment Annotation Functions
See 5.37.11.4 Setting Super String Segment Text and Annotation Parameters
Page 435Super String Element

12d Model Programming Language Manual
5.37.11.1 Definitions of Super String Segment Text Dimensions, Units and Annotation
Parameters

Super string Segment text is a special type of text that can only be placed on the segment of a
super string. Unlike text at a vertex, the segment for segment text has a direction and the
segment text is required to be parallel, or related to the segment direction.
If super string segment text is required then the dimension to set is either
(a) the most common case of having a different text on each segment (dimension

Att_Segment_Text_Array)
or
(b) the rare case of just the same text that is used for every segment (dimension

Att_Segment_Text_Value)

Although segment text may be defined, it will not display in a plan view, or on a plan plot, unless
a Segment Text Annotation dimension has been set. A Text Annotation controls the text size,
colour, rotation etc.
So if super string segment text is required to be drawn on a plan view then the dimension to set
is either

(a) for the case of having a different text annotation for each segment so that the annotation
attributes can be modified for each segment then set dimension
Att_Segment_Annotate_Array

or

(b) if there is just the one Annotation and its parameters are used for drawing the text on every
segment then set the dimension Att_Segment_Annotate_Value.

For definitions of the Vertex Text dimensions see Segment Text Dimensions and the Vertex Text
Annotation dimensions see Segment Text Annotation Dimensions.

Segment Text Annotation Definitions
For segment text, the text justification point and the direction of the text are defined by:
(a) the direction of the text is given as a counter clockwise angle of rotation, measured from the

segment, about the centre of the segment

(b) the justification point is given as an offset from the centre of the segment along the line
through the centre of the segment with the direction of the text, and a perpendicular
distance (called the raise) from that offset point to the justification point.

The direction of the text is parallel to the segment if the angle is zero.
Note that these definitions are relative to the segment and if the vertex segment in any way, then

.

super string vertices

angleoffse
t of offse

t w
idth

raise
 or o

ffse
t height

. .
.
. the position of the

text justification
point for segment text

angle, offset and raise
from the centre of

is defined by the

the super string segment

centre of the segment

Segment Text

Fred

line giving the direction
of the text
Page 436 Super String Element

Chapter 5 12dPL Library Calls
the text also moves with it.
The vertex and justification point only coincide if the offset and raise values are both zero.
Finally the text can be one of nine positions defined in relation to the (x,y) coordinates of the text
justification point:

top
3 6 9

left 2 5 8 right
1 4 7

bottom
For numbers with a decimal point, the position of the decimal point gives an addition point on the
bottom called decimal x and on the side called decimal y. So there are sixteen possible
justification for numbers.
This is usually an Integer called the justification with a default value of 1.

Segment Text Annotation Units
The units for text size is specified by an Integer whose value is

(a) 0 (the default) for the units are screen/pixel/device units
(b) 1 for world units
(c) 2 for paper units (millimetres on a plot).
Regardless of whether there is one Segment Text Annotation for the entire string or a different
Text Annotation for each segment, there is only one units for text size used for all the Segment
Text of the string.
The units for text are used for the size of the text, and the offsets and raises for the text.

For Information on all the super string segment text and segment text annotations:
See 5.37.11.2 Super String Use Segment Text Functions
See 5.37.11.3 Super String Use Segment Annotation Functions
See 5.37.11.4 Setting Super String Segment Text and Annotation Parameters
Page 437Super String Element

12d Model Programming Language Manual
5.37.11.2 Super String Use Segment Text Functions
For definitions of the Segment Text dimensions see Segment Text Dimensions

Set_super_use_segment_text_value(Element super,Integer use)
Name
Integer Set_super_use_segment_text_value(Element super,Integer use)

Description
Tell the super string super whether to use (set), or not use (remove) the dimension
Att_Segment_Text_Value.
A value for use of 1 sets the dimension and 0 removes it.
If Att_Segment_Text_Value is used, then the same text is on all the segments of the super string.

Note if the dimension Att_Segment_Text_Array exists, this call is ignored.
See Vertex Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 1239

Get_super_use_segment_text_value(Element super,Integer &use)
Name
Integer Get_super_use_segment_text_value(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Text_Value exists for the super string.
use is returned as 1 if the dimension Att_Segment_Text_Value exists.
use is returned as 0 if the dimension doesn’t exist.
If the dimension Att_Segment_Text_Value exists then the string has the same text for every
segment of the string.

See Segment Text Dimensions for information on the Segment Text dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 1240

Set_super_use_segment_text_array(Element super,Integer use)
Name
Integer Set_super_use_segment_text_array(Element super,Integer use)

Description
Tell the super string super whether to use (set), or not use (remove), the dimension
Att_Segment_Text_Array.
A value for use of 1 sets the dimension and 0 removes it.

If Att_Segment_Text_Array is used, then there is different text on each segment of the of the
string.
See Segment Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
Page 438 Super String Element

Chapter 5 12dPL Library Calls
ID = 1189

Get_super_use_segment_text_array(Element super,Integer &use)
Name
Integer Get_super_use_segment_text_array(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Text_Array exists for the super string super.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
If Att_Segment_Text_Array is used, then there is different text on each segment of the of the
string.

See Segment Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 1190

Super_segment_text_value_to_array(Element super)
Name
Integer Super_segment_text_value_to_array(Element super)

Description
If for the super string super the dimension Att_Segment_Text_Value exists and the dimension
Att_Segment_Text_Array does not exist then there will be one Segment Text txt for the entire
string.
In this case (when the dimension Att_Segment_Text_Value exists and the dimension
Att_Segment_Text_Array does not exist) this function sets the Att_Segment_Text_Array
dimension and new segment text created for each segment of super and the new segment text
is given the value txt.
See Segment Text Dimensions for information on the Text dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 2179
Page 439Super String Element

12d Model Programming Language Manual
5.37.11.3 Super String Use Segment Annotation Functions
For definitions of the Segment Text dimensions see Segment Text Annotation Dimensions

Set_super_use_segment_annotation_value(Element super,Integer use)
Name
Integer Set_super_use_segment_annotation_value(Element super,Integer use)

Description
Tell the super string whether to use or remove, the dimension Att_Segment_Annotate_Value.
If the dimension Att_Segment_Annotate_Value exists and the dimension
Att_Segment_Annotate_Array doesn’t exist then the string has the one annotation which is used
for segment text on any segment of the string.
See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A value for use of 1 sets the dimension and 0 removes it.
Note if the dimension Att_Segment_Annotate_Array exists, this call is ignored.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1193

Get_super_use_segment_annotation_value(Element super,Integer &use)
Name
Integer Get_super_use_segment_annotation_value(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Annotate_Value exists for the super string.
If the dimension Att_Segment_Annotate_Value exists and the dimension
Att_Segment_Annotate_Array doesn’t exist then the string has the one annotation which is used
for segment text on any segment of the string.

See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1194

Set_super_use_segment_annotation_array(Element super,Integer use)
Name
Integer Set_super_use_segment_annotation_array(Element super,Integer use)

Description
Tell the super string whether to use or remove the dimension Att_Segment_Annotate_Array.
If the dimension Att_Segment_Annotate_Array exists then the string has a different annotation
for the segment text on each segment of the string.
See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
Page 440 Super String Element

Chapter 5 12dPL Library Calls
5.37.1 Super String Dimensions for information on all the dimensions.
A value for use of 1 sets the dimension and 0 removes it.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1195

Get_super_use_segment_annotation_array(Element super,Integer &use)
Name
 Integer Get_super_use_segment_annotation_array(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Annotate_Array exists for the super string.
If the dimension Att_Segment_Annotate_Array exists then the string has a different annotation
for the segment text on each segment of the string.

See Vertex Text Annotation Dimensions for information on the Text Annotation dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1196

Super_segment_annotate_value_to_array(Element super)
Name
Integer Super_segment_annotate_value_to_array(Element super)

Description
If for the super string super the dimension Att_Segment_Annotate_Value exists and the
dimension Att_Segment_Annotate_Array does not exist then there will be one Segment Text
Annotate annot for the entire string.
In this case (when the dimension Att_Segment_Annotate_Value exists and the dimension
Att_Segment_Annotate_Array does not exist) this function sets the
Att_Segment_Annotate_Array dimension and new segment Annotates created for each segment
of super and the new segment text Annotate is given the value annot
See Segment Text Annotation Dimensions for information on the Text dimensions or 5.37.1
Super String Dimensions for information on all the dimensions.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 2180
Page 441Super String Element

12d Model Programming Language Manual
5.37.11.4 Setting Super String Segment Text and Annotation Parameters

Set_super_segment_text(Element super,Integer seg,Text text)
Name
Integer Set_super_segment_text(Element super,Integer seg,Text text)

Description
For the super Element super, set the segment text at segment number seg to be txt.
If there is only one Segment Text for all the segments then the text for that one Segment Text is
set to txt regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1191

Get_super_segment_text(Element super,Integer seg,Text &text)
Name
Integer Get_super_segment_text(Element super,Integer seg,Text &text)

Description
For the super Element super, return in txt the segment text on segment number seg.

If there is only one Segment Text for all the segments then the text for that one Segment Text will
be returned in txt regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1192

Set_super_segment_world_text(Element super)
Name
Integer Set_super_segment_world_text(Element super)

Description
For an Element super of type Super, set the text unit for segment text to be world text.
See Segment Text Annotation Units for the definition of segment text units.
If there is Textstyle_Data for the segment text then this will override the
Set_super_segment_world_text call.

A return value of 0 indicates the function call was successful.
ID = 1233

Set_super_segment_device_text(Element super)
Name
Integer Set_super_segment_device_text(Element super)

Description
For an Element super of type Super, set the text unit for segment text to be pixels (also known
as device text or screen text).
See Segment Text Annotation Units for the definition of segment text units.
Page 442 Super String Element

Chapter 5 12dPL Library Calls
If there is Textstyle_Data for the segment text then this will override the
Set_super_segment_device_text call.
A return value of 0 indicates the function call was successful.
ID = 1232

Set_super_segment_paper_text(Element super)
Name
Integer Set_super_segment_paper_text(Element super)

Description
For an Element super of type Super, set the text units for segment text to be paper (that is
millimetres).

See Segment Text Annotation Units for the definition of segment text units.
If there is Textstyle_Data for the segment text then this will override the
Set_super_segment_device_text call.
A return value of 0 indicates the function call was successful.

ID = 1634

Set_super_segment_text_type(Element super,Integer type)
Name
Integer Set_super_segment_text_type(Element super,Integer type)

Description
For the super Element super, set the segment text units to the value type.

See Segment Text Annotation Units for the definition of segment text units.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1234

Get_super_segment_text_type(Element super,Integer &type)
Name
Integer Get_super_segment_text_type(Element super,Integer &type)

Description
For the super Element super, return in type the value of the segment text units.

See Segment Text Annotation Units for the definition of vertex text units.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1235

Set_super_segment_text_justify(Element super,Integer seg,Integer just)
Name
Integer Set_super_segment_text_justify(Element super,Integer seg,Integer just)
Page 443Super String Element

12d Model Programming Language Manual
Description
For the super string super, set the justification of the segment text on segment number seg to
just.
See Segment Text Annotation Definitions for the definition of justification.

If there is only one Segment Text Annotation for all the Segment Text then the justification for that
one Segment Text Annotation is set to just regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1197

Get_super_segment_text_justify(Element super,Integer seg,Integer &just)
Name
Integer Get_super_segment_text_justify(Element super,Integer seg,Integer &just)

Description
For the super string super, return the justification of the segment text on segment number seg in
just.
See Segment Text Annotation Definitions for the definition of justification.
If there is only one Segment Text Annotation for all the Segment Text then the justification for that
one Segment Text Annotation will be returned in just regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1198

Set_super_segment_text_offset_width(Element super,Integer seg,Real off)
Name
Integer Set_super_segment_text_offset_width(Element super,Integer seg,Real o)ff

Description
For the super string super, set the offset (offset width) of the segment text on segment number
seg to off.
See Segment Text Annotation Definitions for the definition of offset.

If there is only one Segment Text Annotation for all the Segment Text then the offset for that one
Segment Text Annotation is set to off regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1199

Get_super_segment_text_offset_width(Element super,Integer seg,Real &off)
Name
Integer Get_super_segment_text_offset_width(Element super,Integer seg,Real &off)

Description
For the super string super, return the offset (offset width) of the segment text on segment
number seg in off.
Page 444 Super String Element

Chapter 5 12dPL Library Calls
See Segment Text Annotation Definitions for the definition of offset.
If there is only one Segment Text Annotation for all the Segment Text then the offset for that one
Segment Text Annotation will be returned in off regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1200

Set_super_segment_text_offset_height(Element super,Integer seg,Real raise)
Name
Integer Set_super_segment_text_offset_height(Element super,Integer seg,Real raise)

Description
For the super string super, set the raise (offset height) of the segment text on segment number
seg to raise.
See Segment Text Annotation Definitions for the definition of raise.

If there is only one Segment Text Annotation for all the Segment Text then the raise for that one
Segment Text Annotation is set to raise regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1201

Get_super_segment_text_offset_height(Element super,Integer seg,Real &raise)
Name
Integer Get_super_segment_text_offset_height(Element super,Integer seg,Real &raise)

Description
For the super string super, return the raise (offset height) of the segment text on segment
number seg in raise.

See Segment Text Annotation Definitions for the definition of raise.
If there is only one Segment Text Annotation for all the Segment Text then the raise for that one
Segment Text Annotation will be returned in raise regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1202

Set_super_segment_text_colour(Element super,Integer seg,Integer col)
Name
Integer Set_super_segment_text_colour(Element super,Integer seg,Integer col)

Description
For the super string super, set the colour number of the segment text on segment number seg to
col.
If there is only one Segment Text Annotation for all the Segment Text then the colour number for
that one Segment Text Annotation is set to col regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
Page 445Super String Element

12d Model Programming Language Manual
A return value of 0 indicates the function call was successful.
ID = 1213

Get_super_segment_text_colour(Element super,Integer seg,Integer &col)
Name
Integer Get_super_segment_text_colour(Element super,Integer seg,Integer &col)

Description
For the super string super, return the colour number of the segment text on segment number
seg in col.
If there is only one Segment Text Annotation for all the Segment Text then the colour number for
that one Segment Text Annotation will be returned in col regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1214

Set_super_segment_text_angle(Element super,Integer seg,Real ang)
Name
Integer Set_super_segment_text_angle(Element super,Integer seg,Real ang)

Description
For the super string super, set the angle of rotation of the segment text on segment number seg
to ang.
See Segment Text Annotation Definitions for the definition of angle. ang is measured in radians
and is measured counterclockwise from the direction of the segment.

If there is only one Segment Text Annotation for all the Segment Text then the angle for that one
Segment Text Annotation is set to angle regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.

ID = 1203

Get_super_segment_text_angle(Element super,Integer seg,Real &ang)
Name
Integer Get_super_segment_text_angle(Element super,Integer seg,Real &ang)

Description
For the super string super, return the angle of rotation of the segment text on segment number
seg in ang.

See Segment Text Annotation Definitions for the definition of angle. ang is measured in radians
and is measured counterclockwise from the direction of the segment.
If there is only one Segment Text Annotation for all the Segment Text then angle for that one
Segment Text Annotation will be returned in ang regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1204
Page 446 Super String Element

Chapter 5 12dPL Library Calls
Set_super_segment_text_angle2(Element super,Integer seg,Real ang)
Name
Integer Set_super_segment_text_angle2(Element super,Integer seg,Real ang)

Description
For the super string super, set the 3D beta angle of the segment text on segment number seg to
ang. ang is in radians
If there is only one Segment Text Annotation for all the Segment Text then the angle for that one
Segment Text Annotation is set to ang regardless of the value of seg.

A return value of 0 indicates the function call was successful.
ID = 3588

Get_super_segment_text_angle2(Element super,Integer seg,Real &ang)
Name
Integer Get_super_segment_text_angle2(Element super,Integer seg,Real &ang)

Description
For the super string super, return the 3D beta angle of the segment text on segment number seg
in ang. ang is measured in radians.
If there is only one Segment Text Annotation for all the Segment Text then the angle for that one
Segment Text Annotation will be returned in ang regardless of the value of seg.

A return value of 0 indicates the function call was successful.
ID = 3589

Set_super_segment_text_angle3(Element super,Integer seg,Real ang)
Name
Integer Set_super_segment_text_angle3(Element super,Integer seg,Real ang)

Description
For the super string super, set the 3D gamma angle of the segment text on segment number
seg to ang. ang is in radians
If there is only one Segment Text Annotation for all the Segment Text then the angle for that one
Segment Text Annotation is set to ang regardless of the value of seg.
A return value of 0 indicates the function call was successful.

ID = 3590

Get_super_segment_text_angle3(Element super,Integer seg,Real &ang)
Name
Integer Get_super_segment_text_angle3(Element super,Integer seg,Real &ang)

Description
For the super string super, return the 3D gamma angle of the segment text on segment number
seg in ang. ang is measured in radians.
If there is only one Segment Text Annotation for all the Segment Text then the angle for that one
Segment Text Annotation will be returned in ang regardless of the value of seg.
Page 447Super String Element

12d Model Programming Language Manual
A return value of 0 indicates the function call was successful.
ID = 3591

Set_super_segment_text_size(Element super,Integer seg,Real sz)
Name
Integer Set_super_segment_text_size(Element super,Integer seg,Real sz)

Description
For the super string super, set the size of the segment text on segment number seg to sz.
If there is only one Segment Text Annotation for all the Segment Text then the size for that one
Segment Text Annotation is set to sz regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1205

Get_super_segment_text_size(Element super,Integer seg,Real &sz)
Name
Integer Get_super_segment_text_size(Element super,Integer seg,Real &sz)

Description
For the super string super, return the size of the segment text on segment number seg in sz.
If there is only one Segment Text Annotation for all the Segment Text then size for that one
Segment Text Annotation will be returned in sz regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1206

Set_super_segment_text_x_factor(Element super,Integer seg,Real xf)
Name
Integer Set_super_segment_text_x_factor(Element super,Integer seg,Real xf)

Description
For the super string super, set the x factor of the segment text on segment number seg to xf.
If there is only one Segment Text Annotation for all the Segment Text then the x factor for that
one Segment Text Annotation is set to xf regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1207

Get_super_segment_text_x_factor(Element super,Integer seg,Real &xf)
Name
Integer Get_super_segment_text_x_factor(Element super,Integer seg,Real &xf)

Description
Page 448 Super String Element

Chapter 5 12dPL Library Calls
For the super string super, return the x factor of the segment text on segment number seg in xf.
If there is only one Segment Text Annotation for all the Segment Text then the x factor for that
one Segment Text Annotation will be returned in xf regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1208

Set_super_segment_text_slant(Element super,Integer seg,Real sl)
Name
Integer Set_super_segment_text_slant(Element super,Integer seg,Real sl)

Description
For the super string super, set the slant of the segment text on segment number seg to sl.
If there is only one Segment Text Annotation for all the Segment Text then the slant for that one
Segment Text Annotation is set to sl regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1209

Get_super_segment_text_slant(Element super,Integer seg,Real &sl)
Name
Integer Get_super_segment_text_slant(Element super,Integer seg,Real &sl)

Description
For the super string super, return the slant of the segment text on segment number seg in sl.
If there is only one Segment Text Annotation for all the Segment Text then the slant for that one
Segment Text Annotation will be returned in sl regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1210

Set_super_segment_text_style(Element super,Integer seg,Text ts)
Name
Integer Set_super_segment_text_style(Element super,Integer seg,Text ts)

Description
For the super string super, set the textstyle of the segment text on segment number seg to ts.
If there is only one Segment Text Annotation for all the Segment Text then the textstyle for that
one Segment Text Annotation is set to ts regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1211

Get_super_segment_text_style(Element super,Integer seg,Text &ts)
Page 449Super String Element

12d Model Programming Language Manual
Name
Integer Get_super_segment_text_style(Element super,Integer seg,Text &ts)

Description
For the super string super, return the textstyle of the segment text on segment number seg in ts.
If there is only one Segment Text Annotation for all the Segment Text then the textstyle for that
one Segment Text Annotation will be returned in ts regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A return value of 0 indicates the function call was successful.
ID = 1212

Set_super_segment_text_ttf_underline(Element super,Integer seg,
 Integer underline)
Name
Integer Set_super_segment_text_ttf_underline(Element super,Integer seg,Integer underline)

Description
For the super string super, set the underline state of the segment text on segment number seg
to underline.
If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

For a diagram, see 5.9 Textstyle Data.
If there is only one Segment Text Annotation for all the Segment Text then the underline state for
that one Segment Text Annotation is set to underline regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates underline was successfully set.
ID = 2608

Get_super_segment_text_ttf_underline(Element super,Integer seg,
 Integer &underline)
Name
Integer Get_super_segment_text_ttf_underline(Element super,Integer seg,Integer &underline)

Description
For the super string super, return the underline state of the segment text on segment number
seg in underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.
For a diagram, see 5.9 Textstyle Data.
If there is only one Segment Text Annotation for all the Segment Text then the underline state for
that one Segment Text Annotation will be returned in underline regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates underline was successfully returned.
ID = 2609
Page 450 Super String Element

Chapter 5 12dPL Library Calls
Set_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer strikeout)
Name
Integer Set_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer strikeout)

Description
For the super string super, set the strikeout state of the segment text on segment number seg to
strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
For a diagram, see 5.9 Textstyle Data.
If there is only one Segment Text Annotation for all the Segment Text then the strikeout state for
that one Segment Text Annotation is set to strikeout regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates strikeout was successfully set.

ID = 2610

Get_super_segment_text_ttf_strikeout(Element super,Integer seg,
 Integer &strikeout)
Name
Integer Get_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer &strikeout)

Description
For the super string super, return the strikeout state of the segment text on segment number seg
in strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
For a diagram, see 5.9 Textstyle Data.

If there is only one Segment Text Annotation for all the Segment Text then the strikeout state for
that one Segment Text Annotation will be returned in strikeout regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates strikeout was successfully returned.

ID = 2611

Set_super_segment_text_ttf_italic(Element super,Integer seg,Integer italic)
Name
Integer Set_super_segment_text_ttf_italic(Element super,Integer seg,Integer italic)

Description
For the super string super, set the italic state of the segment text on segment number seg to
italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.
If there is only one Segment Text Annotation for all the Segment Text then the italic state for that
one Segment Text Annotation is set to italic regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
Page 451Super String Element

12d Model Programming Language Manual
A function return value of zero indicates italic was successfully set.
ID = 2612

Get_super_segment_text_ttf_italic(Element super,Integer seg,Integer &italic)
Name
Integer Get_super_segment_text_ttf_italic(Element super,Integer seg,Integer &italic)

Description
For the super string super, return the italic state of the segment text on segment number seg in
italic.
If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.

If there is only one Segment Text Annotation for all the Segment Text then the italic state for that
one Segment Text Annotation will be returned in italic regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates italic was successfully returned.

ID = 2613

Set_super_segment_text_ttf_outline(Element elt,Integer seg,Integer outline)
Name
Integer Set_super_segment_text_ttf_outline(Element elt,Integer seg,Integer outline)

Description
For the super string super, set the outline state of the segment text on segment number seg to
outline.
If outline = 1, then for a true type font the text will be only shown in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.

If there is only one Segment Text Annotation for all the Segment Text then the outline state for
that one Segment Text Annotation is set to outline regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates outline was successfully set.

ID = 2777

Get_super_segment_text_ttf_outline(Element elt,Integer seg,Integer &outline)
Name
Integer Get_super_segment_text_ttf_outline(Element elt,Integer seg,Integer &outline)

Description
For the super string super, return the outline state of the segment text on segment number seg
in outline.

If outline = 1, then for a true type font the text will be shown only in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.
Page 452 Super String Element

Chapter 5 12dPL Library Calls
If there is only one Segment Text Annotation for all the Segment Text then the outline state for
that one Segment Text Annotation will be returned in outline regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates outline was successfully returned.

ID = 2778

Set_super_segment_text_ttf_weight(Element super,Integer seg,Integer weight)
Name
Integer Set_super_segment_text_ttf_weight(Element super,Integer seg,Integer weight)

Description
For the super string super, set the weight of the segment text on segment number seg to
weight.
If there is only one Segment Text Annotation for all the Segment Text then the weight for that one
Segment Text Annotation is set to weight regardless of the value of seg.
For the list of allowable weights, go to Allowable Weights
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates weight was successfully set.
ID = 2614

Get_super_segment_text_ttf_weight(Element super,Integer seg,Integer &weight)
Name
Integer Get_super_segment_text_ttf_weight(Element super,Integer seg,Integer &weight)

Description
For the super string super, return the weight of the segment text on segment number seg in
weight.
For the list of allowable weights, go to Allowable Weights
If there is only one Segment Text Annotation for all the Segment Text then the weight for that one
Segment Text Annotation will be returned in weight regardless of the value of seg.

A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates weight was successfully returned.
ID = 2615

Set_super_segment_text_whiteout(Element superstring,Integer seg,Integer c)
Name
Integer Set_super_segment_text_whiteout(Element superstring,Integer seg,Integer c)

Description
For the super string super, set the colour number of the colour used for the whiteout box around
the segment text on segment number seg to c.
If no text whiteout is required, then set the colour number to NO_COLOUR.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.

If there is only one Segment Text Annotation for all the Segment Text then the colour number of
the colour used for the whiteout box around the segment text for that one Segment Text
Page 453Super String Element

12d Model Programming Language Manual
Annotation is set to c regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates the colour number was successfully set.

ID = 2757

Get_super_segment_text_whiteout(Element superstring,Integer seg,Integer &c)
Name
Integer Get_super_segment_text_whiteout(Element superstring,Integer seg,Integer &c)

Description
For the super string super, return the colour number that is used for the whiteout box around the
segment text on segment number seg in c.

NO_COLOUR is the returned as the colour number if whiteout is not being used.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.

If there is only one Segment Text Annotation for all the Segment Text then the colour number that
is used for the whiteout box around the segment text for that one Segment Text Annotation will
be returned in c regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates the colour number was successfully returned.

ID = 2758

Set_super_segment_text_border(Element superstring,Integer seg,Integer c)
Name
Integer Set_super_segment_text_border(Element superstring,Integer seg,Integer c)

Description
For the super string super, set the colour number of the colour used for the border of the
whiteout box around the segment text on segment number seg to c.
If no text whiteout border is required, then set the colour number to NO_COLOUR.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

For a diagram, see 5.9 Textstyle Data.
If there is only one Segment Text Annotation for all the Segment Text then the colour number of
the colour used for border of the whiteout box around the segment text for that one Segment Text
Annotation is set to c regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates the colour number was successfully set.
ID = 2767

Get_super_segment_text_border(Element superstring,Integer seg,Integer &c)
Name
Integer Get_super_segment_text_border(Element superstring,Integer seg,Integer &c)

Description
For the super string super, return the colour number that is used as the border of the whiteout
Page 454 Super String Element

Chapter 5 12dPL Library Calls
box around the segment text on segment number seg in c.
NO_COLOUR is the returned as the colour number if whiteout is not being used.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

For a diagram, see 5.9 Textstyle Data.
If there is only one Segment Text Annotation for all the Segment Text then the colour number that
is used for the border around the whiteout box around the segment text for that one Segment
Text Annotation will be returned in c regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates the colour number was successfully returned.
ID = 2768

Set_super_segment_text_border_style(Element superstring,Integer seg,Integer s)
Name
Integer Set_super_segment_text_border_style(Element superstring,Integer seg,Integer s)

Description
For segment number seg of the Super String Element superstring, set the style for the border of
the whiteout box around the segment text, according to Integer s.
Rectangle 1

Circle 2
Capsule 3
Bevel 4

If there is only one Segment Text Annotation for all the Segment Text then the style for the border
of the whiteout box around the segment text for that one Segment Text Annotation is set to s
regardless of the value of seg.
A function return value of zero indicates the colour number was successfully set.
ID = 3592

Get_super_segment_text_border_style(Element superstring,Integer seg,Integer
&s)
Name
Integer Get_super_segment_text_border_style(Element superstring,Integer seg,Integer &s)

Description
For segment number seg of the Super String Element superstring, get the style for the border of
the whiteout box around the segment text. The value is returned as Integer s.

Rectangle 1
Circle 2
Capsule 3

Bevel 4
If there is only one Segment Text Annotation for all the Segment Text then the style that is used
for the border of the whiteout box around the segment text for that one Segment Text Annotation
will be returned in s regardless of the value of seg.

A function return value of zero indicates the colour number was successfully returned.
ID = 3593
Page 455Super String Element

12d Model Programming Language Manual
Set_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data d)
Name
Integer Set_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data d)

Description
For the super string super, set the Textstyle_Data of the segment text on segment number seg
to d.
Setting a Textstyle_Data means that all the individual values that are contained in the
Textstyle_Data are set rather than having to set each one individually.

If the value is blank in the Textstyle_Data d then the value for the segment text would be left
alone.
If there is only one Segment Text Annotation for all the Segment Text then the Textstyle_Data for
that one Segment Text Annotation is set to d regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates the Textstyle_Data was successfully set.
ID = 1665

Get_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data &d)
Name
Integer Get_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data &d)

Description
For the super string super, return the Textstyle_Data for the segment text on segment number
seg in d.
Using a Textstyle_Data means that all the individual values for the Segment Text Annotation are
returned in the Textstyle_Data rather than getting each one individually.

Note that the function does not concern that the segment text exists or not.
If there is only one Segment Text Annotation for all the Segment Text then the Textstyle_Data for
that one Segment Text Annotation will be returned in d regardless of the value of seg.
A non-zero function return value is returned if super is not of type Super.
A function return value of zero indicates the Textstyle_Data was successfully returned.
ID = 1666
Page 456 Super String Element

Chapter 5 12dPL Library Calls
5.37.12 Super String Fills - Hatch/Solid/Bitmap/Pattern/
ACAD Pattern Functions

For definitions of the Solid, Bitmap, Hatch and Fill dimensions, see Solid/Bitmap/Hatch/ Fill/Pattern/
ACAD Pattern Dimensions

See 5.37.12.1 Super String Hatch Functions
See 5.37.12.2 Super String Solid Fill Functions
See 5.37.12.3 Super String Bitmap Functions
See 5.37.12.4 Super String Patterns Functions
See 5.37.12.5 Super String ACAD Patterns Functions
Page 457Super String Element

12d Model Programming Language Manual
5.37.12.1 Super String Hatch Functions

Set_super_use_hatch(Element super,Integer use)
Name
Integer Set_super_use_hatch(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Hatch_Value is used or
removed.

See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the super string can have 2 angle hatching.
If use is 0, the dimension is removed. If the string had hatching then the hatching will be
removed.
A return value of 0 indicates the function call was successful.

 ID = 1464

Get_super_use_hatch(Element super,Integer &use)
Name
Integer Get_super_use_hatch(Element super,Integer &use)

Description
Query whether the dimension Att_Hatch_Value exists for the super string super.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists and hatching is enabled for the string.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1465

Set_super_hatch_colour(Element super,Integer col_1,Integer col_2)
Name
Integer Set_super_hatch_colour(Element super,Integer col_1,Integer col_2)

Description
For the super Element super, set the colour of the first hatch lines to the Integer colour col_1and
the colour of the second hatch lines to the Integer colour col_2.

If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1466

Get_super_hatch_colour(Element super,Integer &col_1,Integer &col_2)
Name
Integer Get_super_hatch_colour(Element super,Integer &col_1,Integer &col_2)

Description
For the super Element super, return the colour of the first hatch lines as col_1 and the colour of
the second hatch lines as col_2.
Page 458 Super String Element

Chapter 5 12dPL Library Calls
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1467

Set_super_hatch_angle(Element super,Real ang_1,Real ang_2)
Name
Integer Set_super_hatch_angle(Element super,Real ang_1,Real ang_2)

Description
For the super Element super, set the angle of the first hatch lines to the angle ang_1 and the
angle of the second hatch lines to the angle ang_2. The angles are in radians and measured
counterclockwise from the x-axis.

If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
 ID = 1468

Get_super_hatch_angle(Element super,Real &ang_1,Real &ang_2)
Name
Integer Get_super_hatch_angle(Element super,Real &ang_1,Real &ang_2)

Description
For the super Element super, return the angle of the first hatch lines as ang_1 and the angle of
the second hatch lines as ang_2. The angles are in radians and measured counterclockwise
from the x-axis.
If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1469

Set_super_hatch_spacing(Element super,Real dist_1,Real dist_2)
Name
Integer Set_super_hatch_spacing(Element super,Real dist_1,Real dist_2)

Description
For the super Element super, set the distance between the first hatch lines to the dist_1 and the
distance between the second hatch lines of dist_2. The units for dist_1 and dist_2 are given by
other calls.
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

ID = 1470

Get_super_hatch_spacing(Element super,Real &dist_1,Real &dist_2)
Name
Integer Get_super_hatch_spacing(Element super,Real &dist_1,Real &dist_2)

Description
Page 459Super String Element

12d Model Programming Language Manual
For the super Element super, return the distance of the first hatch lines as dist_1 and the
distance of the second hatch lines as dist_2. The units for dist_1 and dist_2 are given by other
calls.
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

ID = 1471

Set_super_hatch_plot_spacing(Element super,Real dist_1,Real dist_2)
Name
Integer Set_super_hatch_plot_spacing(Element super,Real dist_1,Real dist_2)

Description
For the super Element super, set the plotting distance between the first hatch lines to the dist_1
and the plotting distance between the second hatch lines of dist_2. The units for dist_1 and
dist_2 are given by other calls.

If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1544

Get_super_hatch_plot_spacing(Element super,Real &dist_1,Real &dist_2)
Name
Integer Get_super_hatch_plot_spacing(Element super,Real &dist_1,Real &dist_2)

Description
For the super Element super, return the plotting distance of the first hatch lines as dist_1 and the
plotting distance of the second hatch lines as dist_2. The units for dist_1 and dist_2 are given
by other calls.

If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1545

Set_super_hatch_origin(Element super,Real x,Real y)
Name
Integer Set_super_hatch_origin(Element super,Real x,Real y)

Description
For the super Element super, both sets of hatch lines go through the point (x,y). The units for x
and y are given by other calls.
If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1472

Get_super_hatch_origin(Element super,Real &x,Real &y)
Name
Integer Get_super_hatch_origin(Element super,Real &x,Real &y)
Page 460 Super String Element

Chapter 5 12dPL Library Calls
Description
For the super Element super, return the origin that both sets of hatch lines go through as (x,y).
The units for x and y are given by other calls.
If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1473

Set_super_hatch_device(Element super)
Name
Integer Set_super_hatch_device(Element super)

Description
For the super Element super, set the units for the hatch spacing and the hatch origin to be
device units.
If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
 ID = 1474

Set_super_hatch_world(Element super)
Name
Integer Set_super_hatch_world(Element super)

Description
For the super Element super, set the units for the hatch spacing and the hatch origin to be world
units.
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

 ID = 1475

Set_super_hatch_type(Element super,Integer type)
Name
Integer Set_super_hatch_type(Element super,Integer type)

Description
For the super Element super, set the units for the hatch spacing and the hatch origin to be:

 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

ID = 1476

Get_super_hatch_type(Element super,Integer &type)
Name
Page 461Super String Element

12d Model Programming Language Manual
Integer Get_super_hatch_type(Element super,Integer &type)

Description
For the super Element super, get the units for the hatch spacing and the hatch origin. The units
are returned as type and the values are:

 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

 ID = 1477

Set_super_hatch_view_angle(Element super,Integer is_relative)
Name
Integer Set_super_hatch_view_angle(Element super,Integer is_relative)

Description
For the super Element super, set the field controls whether the Angle is relative to the x axis or to
the plotting x axis.

if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.
If is_relative is 0, Angle is always absolute to the world x axis.

If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 3444

Get_super_hatch_view_angle(Element super,Integer &is_relative)
Name
Integer Get_super_hatch_view_angle(Element super,Integer &is_relative)

Description
For the super Element super, get the field controls whether the Angle is relative to the x axis or
to the plotting x axis. The field is returned as is_relative with the meaning:
if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.

If is_relative is 0, Angle is always absolute to the world x axis.
If hatching is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

 ID = 3445
Page 462 Super String Element

Chapter 5 12dPL Library Calls
5.37.12.2 Super String Solid Fill Functions

Set_super_use_solid(Element super,Integer use)
Name
Integer Set_super_use_solid(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Solid_Value is used or
removed.

See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the super string can have solid fill.
If use is 0, the dimension is removed. If the string had solid fill then the solid fill will be removed.

A return value of zero indicates the function call was successful.
ID = 1478

Get_super_use_solid(Element super,Integer &use)
Name
Integer Get_super_use_solid(Element super,Integer &use)

Description
Query whether the dimension Att_Solid_Value exists for the super string super.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists and solid fill is enabled for the string.
use is returned as 0 if the dimension doesn’t exist.

A return value of zero indicates the function call was successful.
 ID = 1479

Set_super_solid_colour(Element super,Integer colour)
Name
Integer Set_super_solid_colour(Element super,Integer colour)

Description
For the super Element super, set the colour of the solid fill to the colour number colour.
If solid fill is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 1480

Get_super_solid_colour(Element super,Integer &colour)
Name
Integer Get_super_solid_colour(Element super,Integer &colour)

Description
For the super Element super, get the colour number of the solid fill and return it in colour.
If solid fill is not enabled for super, then a non-zero return code is returned.
Page 463Super String Element

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 1481

Set_super_solid_blend(Element super,Real blend)
Name
Integer Set_super_solid_blend(Element super,Real blend)

Description
For the super Element super, set the blend of the solid fill to the blend.
If solid fill is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 2165

Get_super_solid_blend(Element super,Real &blend)
Name
Integer Get_super_solid_blend(Element super,Real &blend)

Description
For the super Element super, get the blend value of the solid fill and return it in blend.
blend will have a value between 0.0 for showing no colour fill, and 1.0 for showing full colour fill.
If solid fill is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 2166
Page 464 Super String Element

Chapter 5 12dPL Library Calls
5.37.12.3 Super String Bitmap Functions

Set_super_use_bitmap(Element super,Integer use)
Name
Integer Set_super_use_bitmap(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Bitmap_Value is used or
removed.

See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the super string can have bitmap fill.
If use is 0, the dimension is removed. If the string had a bitmap fill then the bitmap fill will be
removed.

A return value of zero indicates the function call was successful.
ID = 1482

Get_super_use_bitmap(Element super,Integer &use)
Name
Integer Get_super_use_bitmap(Element super,Integer &use)

Description
Query whether the dimension Att_Bitmap_Value exists for the super string super.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists and bitmap fill is enabled for the string.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
 ID = 1483

Set_super_bitmap(Element super,Text filename)
Name
Integer Set_super_bitmap(Element super,Text filename)

Description
For the super Element super, set the bitmap to be the image in the file of name filename.
The image can be bmps or ?.
If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1484

Get_super_bitmap(Element super,Text &filename)
Name
Integer Get_super_bitmap(Element super,Text &filename)

Description
Page 465Super String Element

12d Model Programming Language Manual
For the super Element super, get the file name of the bitmap fill and return it in filename.
If bitmap fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

ID = 1485

Set_super_bitmap_origin(Element super,Real x,Real y)
Name
Integer Set_super_bitmap_origin(Element super,Real x,Real y)

Description
For the super Element super, the left hand corner of the bitmap is placed at the point (x,y). The
units for x and y are given in other functions.

If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
 ID = 1486

Get_super_bitmap_origin(Element super,Real &x,Real &y)
Name
Integer Get_super_bitmap_origin(Element super,Real &x,Real &y)

Description
For the super Element super, return the (x,y) point of the left hand corner of the bitmap. The
units for x and y are given in other functions.

If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
 ID = 1487

Set_super_bitmap_transparent(Element super,Integer colour)
Name
Integer Set_super_bitmap_transparent(Element super,Integer colour)

Description
For the super Element super, set the colour with colour number colour to be transparent in the
bitmap.
If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1488

Get_super_bitmap_transparent(Element super,Integer &colour)
Name
Integer Get_super_bitmap_transparent(Element super,Integer &colour)

Description
For the super Element super, get the transparency colour and return it in colour.
Page 466 Super String Element

Chapter 5 12dPL Library Calls
If bitmap fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1489

Set_super_bitmap_device(Element super)
Name
Integer Set_super_bitmap_device(Element super)

Description
For the super Element super, set the units for the bitmap width and height to be device units.

If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
 ID = 1490

Set_super_bitmap_world(Element super)
Name
Integer Set_super_bitmap_world(Element super)

Description
For the super Element super, set the units for the width and height of the bitmap to be world
units.
If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1491

Set_super_bitmap_type(Element super,Integer type)
Name
Integer Set_super_bitmap_type(Element super,Integer type)

Description
For the super Element super, set the units for the width and height of the bitmap to be:
 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units
If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1492

Get_super_bitmap_type(Element super,Integer &type)
Name
Integer Get_super_bitmap_type(Element super,Integer &type)

Description
For the super Element super, get the units for width and height of the bitmap. The units are
returned as type and the values are:
Page 467Super String Element

12d Model Programming Language Manual
 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units
If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

ID = 1493

Set_super_bitmap_angle(Element super,Real ang)
Name
Integer Set_super_bitmap_angle(Element super,Real ang)

Description
For the super Element super, set the angle to rotate the bitmap to be ang. The angle is in
radians and measured counterclockwise from the x-axis

If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1494

Get_super_bitmap_angle(Element super,Real &ang)
Name
Integer Get_super_bitmap_angle(Element super,Real &ang)

Description
For the super Element super, get the angle of rotation of bitmap and return it in ang. The angle is
in radians and measured counterclockwise from the x-axis

If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 1495

Set_super_bitmap_size(Element super,Real w,Real h)
Name
Integer Set_super_bitmap_size(Element super,Real w,Real h)

Description
For the super Element super, scale the bitmap to have the width w and height h in the units set
in other bitmap calls.
If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 1496

Get_super_bitmap_size(Element super,Real &w,Real &h)
Name
Integer Get_super_bitmap_size(Element super,Real &w,Real &h)

Description
Page 468 Super String Element

Chapter 5 12dPL Library Calls
For the super Element super, get the width and height that the bitmap was scaled to. The width
is returned in w and the height in h. The units have been set in other bitmap calls.
If bitmap is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

ID = 1497

Set_super_bitmap_space(Element super,Real x,Real y)
Name
Integer Set_super_bitmap_space(Element super,Real x,Real y)

Description
For the super Element super, set the spacing between adjacent bitmap patterns to be x in the x-
direction and y in the y-direction. The units for x and y are given in other bitmap calls.
If bitmap pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 1744

Get_super_bitmap_space(Element super,Real &x,Real &y)
Name
Integer Get_super_bitmap_space(Element super,Real &x,Real &y)

Description
For the super Element super, return the spacing between adjacent bitmap patterns as x in the x-
direction and y in the y-direction. The units for x and y are given in other bitmap calls.

If bitmap pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1745

Set_super_bitmap_stagger(Element super,Real stagger)
Name
Integer Set_super_bitmap_stagger(Element super,Real stagger)

Description
For the super Element super, set the stagger between alternate bitmap pattern rows to be
stagger. The unit for stagger is given in other bitmap calls.

If bitmap pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1746

Get_super_bitmap_stagger(Element super,Real &stagger)
Name
Integer Get_super_bitmap_stagger(Element super,Real &stagger)

Description
For the super Element super, return the stagger between alternate bitmap pattern rows as
Page 469Super String Element

12d Model Programming Language Manual
stagger. The unit for stagger is given in other bitmap calls.
If bitmap pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 1747

Set_super_bitmap_paper(Element super)
Name
Integer Set_super_bitmap_paper(Element super)

Description
For the super Element super, set the units for the width, height, spacing and stagger of the
bitmap pattern to be paper unit.

If bitmap pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1748

Set_super_bitmap_view_angle(Element super,Integer is_relative)
Name
Integer Set_super_bitmap_view_angle(Element super,Integer is_relative)

Description
For the super Element super, set the field controls whether the Angle is relative to the x axis or to
the plotting x axis.

if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.
If is_relative is 0, Angle is always absolute to the world x axis.
If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
ID = 3458

Get_super_bitmap_view_angle(Element super,Integer &is_relative)
Name
Integer Get_super_bitmap_view_angle(Element super,Integer &is_relative)

Description
For the super Element super, get the field controls whether the Angle is relative to the x axis or
to the plotting x axis. The field is returned as is_relative with the meaning:
if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.
If is_relative is 0, Angle is always absolute to the world x axis.

If bitmap fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
 ID = 3459
Page 470 Super String Element

Chapter 5 12dPL Library Calls
5.37.12.4 Super String Patterns Functions
For definitions of the Pattern dimension, see Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern
Dimensions

Set_super_use_pattern(Element super,Integer use)
Name
Integer Set_super_use_pattern(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Pattern_Value is used or
removed.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.

If use is 1, the dimension is set. That is, the super string can have a pattern.
If use is 0, the dimension is removed. If the string had a pattern then the pattern will be removed.
A return value of 0 indicates the function call was successful.

ID = 1686

Get_super_use_pattern(Element super,Integer &use)
Name
Integer Get_super_use_pattern(Element super,Integer &use)

Description
Query whether the dimension Att_Pattern_Value exists for the super string super.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.

ID = 1693

Set_super_pattern(Element super,Text name)
Name
Integer Set_super_pattern(Element super,Text name)

Description
For the super Element super, set the fill pattern name to be the Text name.

If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1687

Get_super_pattern(Element super,Text &name)
Name
Integer Get_super_pattern(Element super,Text &name)

Description
Page 471Super String Element

12d Model Programming Language Manual
For the super Element super, get the fill pattern name and return it in name.
If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 1694

Set_super_pattern_colour(Element super,Integer colour)
Name
Integer Set_super_pattern_colour(Element super,Integer colour)

Description
For the super Element super, set the colour of the fill pattern to the colour number colour.
If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1688

Get_super_pattern_colour(Element super,Integer &colour)
Name
Integer Get_super_pattern_colour(Element super,Integer &colour)

Description
For the super Element super, get the colour number of the fill pattern and return it in colour.
If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1695

Set_super_pattern_angle(Element super,Real angle)
Name
Integer Set_super_pattern_angle(Element super,Real angle)

Description
For the super Element super, set the angle of the fill pattern to the angle. The angle is in radian
and measured counterclockwise from the x-axis.
If fill pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 1689

Get_super_pattern_angle(Element super,Real &angle)
Name
Integer Get_super_pattern_angle(Element super,Real &angle)

Description
For the super Element super, return the angle of the fill pattern as angle. The angle is in radian
and measured counterclockwise from the x-axis.
If fill pattern is not enabled for super, then a non-zero return code is returned.
Page 472 Super String Element

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.
ID = 1696

Set_super_pattern_size(Element super,Real size)
Name
Integer Set_super_pattern_size(Element super,Real size)

Description
For the super Element super, set the size of the fill pattern to the Real size.
If fill pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 1690

Get_super_pattern_size(Element super,Real &size)
Name
Integer Get_super_pattern_size(Element super,Real &size)

Description
For the super Element super, return the size of the fill pattern as size.
If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 1697

Set_super_pattern_plot_size(Element super,Real size)
Name
Integer Set_super_pattern_plot_size(Element super,Real size)

Description
For the super Element super, set the plotting size of the fill pattern to the Real size.

If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1691

Get_super_pattern_plot_size(Element super,Real &s)
Name
Integer Get_super_pattern_plot_size(Element super,Real &s)

Description
For the super Element super, return the plotting size of the fill pattern as size.
If fill pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 1698
Page 473Super String Element

12d Model Programming Language Manual
Set_super_pattern_origin(Element super,Real x,Real y)
Name
Integer Set_super_pattern_origin(Element super,Real x,Real y)

Description
For the super Element super, set the x-y coordinate of the origin the fill pattern to x, y.

If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 1692

Get_super_pattern_origin(Element super,Real &x,Real &y)
Name
Integer Get_super_pattern_origin(Element super,Real &x,Real &y)

Description
For the super Element super, return the x-y coordinate of the origin the fill pattern as x, y.
If fill pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 1699

Set_super_pattern_type(Element super,Integer type)
Name
Integer Set_super_pattern_type(Element super,Integer type)

Description
For the super Element super, set the units for the pattern fill size, spacing and stagger to be:
 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units

If pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 3446

Get_super_pattern_type(Element super,Integer &type)
Name
Integer Get_super_pattern_type(Element super,Integer &type)

Description
For the super Element super, get the units for the pattern fill size, spacing and stagger. The units
are returned as type and the values are:
 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units

If pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
Page 474 Super String Element

Chapter 5 12dPL Library Calls
 ID = 3447

Set_super_pattern_view_angle(Element super,Integer is_relative)
Name
Integer Set_super_pattern_view_angle(Element super,Integer is_relative)

Description
For the super Element super, set the field controls whether the Angle is relative to the x axis or to
the plotting x axis.

if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.
If is_relative is 0, Angle is always absolute to the world x axis.

If pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 3448

Get_super_pattern_view_angle(Element super,Integer &is_relative)
Name
Integer Get_super_pattern_view_angle(Element super,Integer &is_relative)

Description
For the super Element super, get the field controls whether the Angle is relative to the x axis or
to the plotting x axis. The field is returned as is_relative with the meaning:
if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.

If is_relative is 0, Angle is always absolute to the world x axis.
If pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

 ID = 3449

Set_super_pattern_stagger(Element super,Real stagger)
Name
Integer Set_super_pattern_stagger(Element super,Real stagger)

Description
For the super Element super, set the stagger between alternate pattern fill rows to be stagger.
The unit for stagger is given in other pattern fill calls.

If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 3450

Get_super_pattern_stagger(Element super,Real &stagger)
Name
Integer Get_super_pattern_stagger(Element super,Real &stagger)

Description
Page 475Super String Element

12d Model Programming Language Manual
For the super Element super, return the stagger between alternate bitmap pattern rows as
stagger. The unit for stagger is given in other pattern fill calls.
If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 3451

Set_super_pattern_space(Element super,Real xspace,Real yspace)
Name
Integer Set_super_pattern_space(Element super,Real xspace,Real yspace)

Description
For the super Element super, set the x-y spaces of the fill pattern to xspace, yspace. The unit
for the spaces is given in other pattern fill calls.

If pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 3452

Get_super_pattern_space(Element super,Real &xspace,Real &yspace)
Name
Integer Get_super_pattern_space(Element super,Real &xspace,Real &yspace)

Description
For the super Element super, return the x-y spaces of the fill pattern as xspace, yspace. The
unit for the spaces is given in other pattern fill calls.

If pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 3453

Set_super_pattern_solid_colour(Element super,Integer colour)
Name
Integer Set_super_pattern_solid_colour(Element super,Integer colour)

Description
For the super Element super, set the solid colour of the fill pattern to the colour number colour.
If fill pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 3454

Get_super_pattern_solid_colour(Element super,Integer &colour)
Name
Integer Get_super_pattern_solid_colour(Element super,Integer &colour)

Description
For the super Element super, get the solid colour number of the fill pattern and return it in
colour.
Page 476 Super String Element

Chapter 5 12dPL Library Calls
If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 3455

Set_super_pattern_blend(Element super,Real blend)
Name
Integer Set_super_pattern_blend(Element super,Real blend)

Description
For the super Element super, set the solid fill blend factor of the fill pattern to the blend.

If fill pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 3456

Get_super_pattern_blend(Element super,Real &blend)
Name
Integer Get_super_pattern_blend(Element super,Real &blend)

Description
For the super Element super, return the solid fill blend of the fill pattern as blend.
If fill pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 3457
Page 477Super String Element

12d Model Programming Language Manual
5.37.12.5 Super String ACAD Patterns Functions
For definitions of the ACAD Pattern dimension, see Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern
Dimensions

Set_super_use_acad_pattern(Element super,Integer use)
Name
Integer Set_super_use_acad_pattern(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Autocad_Pattern_Value is
used or removed.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.
If use is 1, the dimension is set. That is, the super string can have an Autocad pattern.
If use is 0, the dimension is removed. If the string had an Autocad pattern then the Autocad
pattern will be removed.

A return value of 0 indicates the function call was successful.
ID = 2141

Get_super_use_acad_pattern(Element super,Integer &use)
Name
Integer Get_super_use_acad_pattern(Element super,Integer &use)

Description
Query whether the dimension Att_Autocad_Pattern_Value exists for the super string super.
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions for information on this
dimension or 5.37.1 Super String Dimensionsfor information on all dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 2142

Set_super_acad_pattern(Element super,Text name)
Name
Integer Set_super_acad_pattern(Element super,Text name)

Description
For the super Element super, set the Autocad pattern name to be the Text name.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 2143

Get_super_acad_pattern(Element super,Text &name)
Name
Integer Get_super_acad_pattern(Element super,Text &name)
Page 478 Super String Element

Chapter 5 12dPL Library Calls
Description
For the super Element super, get the Autocad pattern name and return it in name.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 2144

Set_super_acad_pattern_colour(Element super,Integer colour)
Name
Integer Set_super_acad_pattern_colour(Element super,Integer colour)

Description
For the super Element super, set the colour of the Autocad pattern to the colour number colour.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 2145

Get_super_acad_pattern_colour(Element super,Integer &colour)
Name
Integer Get_super_acad_pattern_colour(Element super,Integer &colour)

Description
For the super Element super, get the colour number of the Autocad pattern and return it in
colour.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 2146

Set_super_acad_pattern_angle(Element super,Real angle)
Name
Integer Set_super_acad_pattern_angle(Element super,Real angle)

Description
For the super Element super, set the angle of the Autocad pattern to the Real angle. The angle
is in radian and measured counterclockwise from the x-axis.

If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 2147

Get_super_acad_pattern_angle(Element super,Real &angle)
Name
Integer Get_super_acad_pattern_angle(Element super,Real &angle)

Description
For the super Element super, return the angle of the Autocad pattern as angle. The angle is in
Page 479Super String Element

12d Model Programming Language Manual
radian and measured counterclockwise from the x-axis.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 2148

Set_super_acad_pattern_size(Element super,Real size)
Name
Integer Set_super_acad_pattern_size(Element super,Real size)

Description
For the super Element super, set the size of the Autocad pattern to the Real size.

If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 2149

Get_super_acad_pattern_size(Element super,Real &size)
Name
Integer Get_super_acad_pattern_size(Element super,Real &size)

Description
For the super Element super, return the size of the Autocad pattern as size.

If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 2150

Set_super_acad_pattern_device(Element super)
Name
Integer Set_super_acad_pattern_device(Element super)

Description
For the super Element super, set the unit for the Autocad pattern to be device unit.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 2151

Set_super_acad_pattern_world(Element super)
Name
Integer Set_super_acad_pattern_world(Element super)

Description
For the super Element super, set the unit for the Autocad pattern to be world unit.
If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
Page 480 Super String Element

Chapter 5 12dPL Library Calls
ID = 2152

Set_super_acad_pattern_paper(Element super)
Name
Integer Set_super_acad_pattern_paper(Element super)

Description
For the super Element super, set the unit for the Autocad pattern to be paper unit.

If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.

ID = 2153

Set_super_acad_pattern_type(Element super,Integer type)
Name
Integer Set_super_acad_pattern_type(Element super,Integer type)

Description
For the super Element super, set the unit for the Autocad pattern to be:

if type = 0 then device unit
if type = 1 then world unit
if type = 2 then paper unit

If Autocad pattern is not enabled for super, then a non-zero return code is returned.
A return value of zero indicates the function call was successful.
ID = 2154

Get_super_acad_pattern_type(Element super,Integer &type)
Name
Integer Get_super_acad_pattern_type(Element super,Integer &type)

Description
For the super Element super, get the unit for the Autocad pattern. The unit is returned as super
and the value is:

if type = 0 then device unit

if type = 1 then world unit
if type = 2 then paper unit

If Autocad pattern is not enabled for super, then a non-zero return code is returned.

A return value of zero indicates the function call was successful.
ID = 2155

Set_super_acad_pattern_view_angle(Element super,Integer is_relative)
Name
Integer Set_super_acad_pattern_view_angle(Element super,Integer is_relative)

Description
Page 481Super String Element

12d Model Programming Language Manual
For the super Element super, set the field controls whether the Angle is relative to the x axis or to
the plotting x axis.
if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.
If is_relative is 0, Angle is always absolute to the world x axis.

If acad pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.
ID = 3460

Get_super_acad_pattern_view_angle(Element super,Integer &is_relative)
Name
Integer Get_super_acad_pattern_view_angle(Element super,Integer &is_relative)

Description
For the super Element super, get the field controls whether the Angle is relative to the x axis or
to the plotting x axis. The field is returned as is_relative with the meaning:
if is_relative is 1 and we are plotting, Angle is measured relative to the x axis of the plot rotation.

If is_relative is 0, Angle is always absolute to the world x axis.
If acad pattern fill is not enabled for super, then a non-zero return code is returned.
A return value of 0 indicates the function call was successful.

 ID = 3461
Page 482 Super String Element

Chapter 5 12dPL Library Calls
5.37.13 Super String Hole Functions
For definitions of the Hole dimension, see Hole Dimension

Set_super_use_hole(Element super,Integer use)
Name
Integer Set_super_use_hole(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Hole_Value is used or
removed.
See Hole Dimension for information on the hole dimension or 5.37.1 Super String Dimensionsfor
information on all dimensions.

If use is 1, the dimension is set. That is, the super string can have holes.
If use is 0, the dimension is removed. If the string had holes then the holes will be removed.
A return value of 0 indicates the function call was successful.
ID = 1456

Get_super_use_hole(Element super,Integer &use)
Name
Integer Get_super_use_hole(Element super,Integer &use)

Description
Query whether the dimension Att_Hole_Value exists for the super string super.
See Hole Dimension for information on hole dimensions or 5.37.1 Super String Dimensionsfor
information on all dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
 ID = 1457

Super_add_hole(Element super,Element hole)
Name
Integer Super_add_hole (Element super,Element hole)

Description
Add the Element hole as a hole to the super Element super.
The operation will fail if super already belongs to a model and a non-zero return value returned.
So if an existing string in a model is to be used as a hole, the string must be copied and the copy
used as the hole.

A return value of zero indicates the function call was successful.
ID = 1460

Get_super_holes(Element super,Integer &numberless)
Name
Integer Get_super_holes(Element super,Integer &numberless)
Page 483Super String Element

12d Model Programming Language Manual
Description
For the Element super of type Super, the number of holes for the super string is returned as
no_holes.
If holes are not enabled for the super string then a non-zero return code is returned and
no_holes is set to 0.

A return value of 0 indicates the function call was successful.
ID = 1458

Super_get_hole(Element super,Integer hole_no,Element &hole)
Name
Integer Super_get_hole(Element super,Integer hole_no,Element &hole)

Description
For the Element super of type Super, the holes number hole_no is returned as the super
Element hole.
If hole needs to be used in 12d Model and added to a model, then the Element hole must be
copied and added to the model.
If hole_no is less than zero or greater than the number of holes in super, then a non-zero return
code is returned. The Element hole is then undefined.

A return value of 0 indicates the function call was successful.
ID = 1459

Super_delete_hole(Element super,Element hole)
Name
Integer Super_delete_hole(Element super,Element hole)

Description
If Super_get_hole is used to get the hole hole from the Element super then this option can be
used to delete hole from super.
A return value of zero indicates the function call was successful.

ID = 1461

Super_delete_hole(Element super,Integer hole_no)
Name
Integer Super_delete_hole(Element super,Integer hole_no)

Description
Delete the hole number hole_no from the Element super.
 If there is no hole hole_no, the operation will fail and a non-zero return value is returned.
A return value of zero indicates the function call was successful.
 ID = 1462

Super_delete_all_holes(Element super)
Name
Page 484 Super String Element

Chapter 5 12dPL Library Calls
Integer Super_delete_all_holes(Element super)

Description
Delete all the holes from the Element super.
A return value of 0 indicates the function call was successful.
ID = 1463
Page 485Super String Element

12d Model Programming Language Manual
5.37.14 Super String Segment Colour Functions
For definitions of the Colour dimension, see Colour Dimension

Set_super_use_segment_colour(Element super,Integer use)
Name
Integer Set_super_use_segment_colour(Element super,Integer use)

Description
Tell the super string whether to use or remove the colour dimension Att_Colour_Array.
A value for use of 1 sets the dimension and 0 removes it.
See Colour Dimension for information on Colour dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.

A return value of 0 indicates the function call was successful.
ID = 726

Get_super_use_segment_colour(Element super,Integer &use)
Name
Integer Get_super_use_segment_colour(Element super,Integer &use)

Description
Query whether the colour dimension Att_Colour_Array exists for the super string.
use is returned as 1 if the dimension Att_Colour_Array exists, or 0 if the dimension doesn’t exist.

See Colour Dimension for information on Colour dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
A return value of 0 indicates the function call was successful.
ID = 727

Set_super_segment_colour(Element super,Integer seg,Integer colour)
Name
Integer Set_super_segment_colour(Element super,Integer seg,Integer colour)

Description
For the Element super of type Super, set the colour number for the segment number seg to be
colour.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the colour dimension Att_Colour_Array set.

See Colour Dimension for information on Colour dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
A function return value of zero indicates colour was successfully set.
ID = 728

Get_super_segment_colour(Element super,Integer seg,Integer &colour)
Name
Integer Get_super_segment_colour(Element super,Integer seg,Integer &colour)
Page 486 Super String Element

Chapter 5 12dPL Library Calls
Description
For the Element super of type Super, get the colour number for the segment number seg and
return it as colour.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the colour dimension Att_Colour_Array set.

See Colour Dimension for information on Colour dimensions or 5.37.1 Super String
Dimensionsfor information on all dimensions.
A function return value of zero indicates colour was successfully returned.
ID = 729
Page 487Super String Element

12d Model Programming Language Manual
5.37.15 Super String Segment Geometry Functions
For definitions of the Segment Geometry dimension, see Segment Geometry Dimension

To allow transitions to be used between vertices of a super string, the use of a Segment between
vertices was introduced for super strings (see 5.24 Segments).

Set_super_use_segment_geometry(Element super,Integer use)
Name
Integer Set_super_use_segment_geometry(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Geom_Array is used or
removed.
If Att_Geom_Array exists, the string can have Segments (which can be straights, arcs or
transitions) between the vertices of the super string.

See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
If use is 1, the dimension is set. That is, the segments of the super string are not just straights
but of type Segments (which can be straights, arcs or transitions).
If use is 0, the dimension is removed. If the string had Segments for segments then they will be
removed.

A return value of 0 indicates the function call was successful.
ID = 1838

Get_super_use_segment_geometry(Element super,Integer &use)
Name
Integer Get_super_use_segment_geometry(Element super,Integer &use)

Description
Query whether the dimension Att_Geom_Array exists for the super string super.
If Att_Geom_Array exists, the string can have Segments (which can be straights, arcs or
transitions) between the vertices of the super string.

See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
 use is returned as 1 if the dimension exists. That is, the segments of the super string are not
just straights but of type Segments (which can be straights, arcs or transitions).
 use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1839

Set_super_segment_spiral(Element elt,Integer seg,Spiral trans)
Name
Integer Set_super_segment_spiral(Element elt,Integer seg,Spiral trans)

Description
For the Element super of type Super, set the segment number seg to be the transition trans.
A non-zero function return value is returned if super is not of type Super, or if super does not
Page 488 Super String Element

Chapter 5 12dPL Library Calls
have the dimension Att_Geom_Array set.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the transition was successfully set.

ID = 1840

Get_super_segment_spiral(Element elt,Integer seg,Spiral &trans)
Name
Integer Get_super_segment_spiral(Element elt,Integer seg,Spiral &trans)

Description
For the Element super of type Super, get the Spiral for the segment number seg and return it as
trans.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set, or if the segment is not a Spiral.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A function return value of zero indicates the Spiral was successfully returned.
ID = 1841

Set_super_segment_spiral(Element elt,Integer seg,Real l1,Real r1,Real a1,Real
l2,Real r2,Real a2,Integer leading,Integer type)
Name
Integer Set_super_segment_spiral(Element elt,Integer seg,Real l1,Real r1,Real a1,Real l2,Real r2,Real
a2,Integer leading,Integer type)

Description
For the Element super of type Super, set the segment number seg to be the transition of given
input components.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.

See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the transition was successfully set.
ID = 1842

Get_super_segment_spiral(Element elt,Integer seg,Real &l1,Real &r1,Real
&a1,Real &l2,Real &r2,Real &a2,Integer &leading,Integer &type)
Name
Integer Get_super_segment_spiral(Element elt,Integer seg,Real &l1,Real &r1,Real &a1,Real &l2,Real
&r2,Real &a2,Integer &leading,Integer &type)

Description
For the Element super of type Super, get the Spiral for the segment number seg and return its
components.
A non-zero function return value is returned if super is not of type Super, or if super does not
Page 489Super String Element

12d Model Programming Language Manual
have the dimension Att_Geom_Array set, or if the segment is not a Spiral.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the Spiral was successfully returned.

ID = 1843

Set_super_segment_geometry(Element elt,Integer seg,Segment geom)
Name
Integer Set_super_segment_geometry(Element elt,Integer seg,Segment geom)

Description
For the Element super of type Super, set the segment number seg to be the Segment geom.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the segment was successfully set.

 ID = 1844

Get_super_segment_geometry(Element elt,Integer seg,Segment &geom)
Name
Integer Get_super_segment_geometry(Element elt,Integer seg,Segment &geom)

Description
For the Element super of type Super, get the Segment for the segment number seg and return it
as geom.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A function return value of zero indicates the Spiral was successfully returned.
ID = 1845

Set_super_segment_geometry(Element elt,Integer seg)
Name
Integer Set_super_segment_geometry(Element elt,Integer seg)

Description
Clears segment number seg back to line.
A function return value of zero indicates the segment was successfully set.
 ID = 1846

Set_super_segment_curve(Element,Integer seg,Curve curve)
Name
Page 490 Super String Element

Chapter 5 12dPL Library Calls
Integer Set_super_segment_curve(Element super,Integer seg,Curve curve)

Description
For the super string super, set the geometry of segment number seg to the Curve curve.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A return value of zero indicates the function call was successful.

ID = 3820

Get_super_segment_curve(Element,Integer seg,Curve &curve)
Name
Integer Get_super_segment_curve(Element,Integer seg,Curve &curve)

Description
For the super string super, get the Curve curve of segment number seg.
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.
See Segment Geometry Dimension for information on the Segment Geometry dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A return value of zero indicates the function call was successful.
ID = 3819
Page 491Super String Element

12d Model Programming Language Manual
5.37.16 Super String Extrude Functions
For definitions of the Extrude dimensions, see Extrude Dimensions

Extruded an Element shape along a string means to take the (x,y) profile of shape and sweeping
the (x,y) profile perpendicularly along the string.

A super string can have a list of Elements that are all to be extruded along the string. The
Elements in the list are extruded in the order that they are in the list.
Note: the extrudes can be added as an Element where the (x,y) or the extrudes can come from
the extrudes.4d file. The ones from the extrudes.4d can be more complex than just a simple
profile swept along the string and include interval extrudes.

Set_super_use_extrude(Element super,Integer use)
Name
Integer Set_super_use_extrude(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Extrude_Value is used or
removed.
If Att_Extrude_Value is set then an extrusion is allowed on the super string.

See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
If use is 1, the dimension is set and an extrusion is allowed.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.
ID = 1679

Get_super_use_extrude(Element super,Integer &use)
Name
Integer Get_super_use_extrude(Element super,Integer &use)

Description
Query whether the dimension Att_Extrude_Value exists for the super string super.
If Att_Extrude_Value is set then an extrusion is allowed on the super string.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.
ID = 1680

Super_append_string_extrude(Element super,Element shape)
Name
Integer Super_append_string_extrude(Element super,Element shape)

Description
Page 492 Super String Element

Chapter 5 12dPL Library Calls
For the Element super of type Super which has the dimension Att_Extrude_Value set, add the
Element shape to the list of Elements that are extruded along super. Note: shape must also be
of type Super.
A non-zero function return value is returned if super or shape is not of type Super, or if the
Dimension Att_Extrude_Value is not set.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A function return value of zero indicates the shape was successfully added to the list.
ID = 2643

Super_append_extrude(Element super,Text extrude_name)
Name
Integer Super_append_extrude(Element super,Text extrude_name)

Description
For the Element super of type Super, get the shape called extrude_name from the file
extrudes.4d and append it to the list of extrudes for super.
Note: the extrudes in the extrudes.4d file can be more complex than just a simple profile swept
along the string. It also included interval extrudes.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set, or if there is no extrude_name in extrudes.4d.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 1923

Super_append_string_extrude(Element string,Element shape,Integer
use_string_colour,Integer shape_mirror,Real start_chainage,Real final_chainage)
Name
Integer Super_append_string_extrude(Element string,Element shape,Integer use_string_colour,Integer
shape_mirror,Real start_chainage,Real final_chainage)

Description
what is shape_mirror 0/1
use_string_colour 1 use the shape string colour, 0 use string colour colour
<no description>

ID = 2644

Get_super_extrudes(Element super,Integer &num_extrudes)
Name
Integer Get_super_extrudes(Element super,Integer &num_extrudes)

Description
For the Element super of type Super and has the dimension Att_Extrude_Value set, get the
number of Element that are in the list of extrudes for super and return it in num_extrudes.
A non-zero function return value is returned if super is not of type Super, or if the Dimension
Page 493Super String Element

12d Model Programming Language Manual
Att_Extrude_Value is not set.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 1921

Super_insert_extrude(Element super,Text extrude_name,Integer where)
Name
Integer Super_insert_extrude(Element super,Text extrude_name,Integer where)

Description
For the Element super of type Super, get the shape called extrude_name from the file
extrudes.4d and insert into the list of extrudes at position number where. The existing extrudes
from position number where upwards are all moved up one position in the list.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set, or if there is no extrude_name in extrudes.4d.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 1922

Super_delete_extrude(Element super,Integer extrude_num)
Name
Integer Super_delete_extrude(Element super,Integer extrude_num)

Description
For the Element super of type Super, delete the extrude in position number extrude_num from
the list of extrusions for super.
A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A return value of 0 indicates the function call was successful.
ID = 1924

Super_delete_all_extrudes(Element super)
Name
Integer Super_delete_all_extrudes(Element super)

Description
Delete all extrudes.
For the Element super of type Super, delete all the extrudes from the list of extrusions for super.
A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set.

See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
Page 494 Super String Element

Chapter 5 12dPL Library Calls
A return value of 0 indicates the function call was successful.
ID = 1925

Set_super_extrude(Element super,Element shape)
Name
Integer Set_super_extrude(Element super,Element shape)

Description
LEGACY FUNCTION - DO NOT USE

Many moons ago there was only one profile that could be extruded along the string.
Later that was modified and there is now a list of profiles that are extruded.
This call is from before there was a list and will behave as if there is no list and will delete the list.
Hence this option should not be used.

For the Element super of type Super which has the dimension Att_Extrude_Value set, set
shape to be the Element that is extruded along super.
Note: shape must also be of type Super.
WARNING: If this function is called and there is a list of extrudes, the entire list will be
deleted.

A non-zero function return value is returned if super or shape is not of type Super, or if the
Dimension Att_Extrude_Value is not set.
See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A function return value of zero indicates the shape was successfully set.

ID = 1681

Get_super_extrude(Element super,Element &shape)
Name
Integer Get_super_extrude(Element super,Element &shape)

Description
LEGACY FUNCTION - DO NOT USE
Many moons ago there was only one profile that could be extruded along the string.
Later that was modified and there is now a list of profiles that are extruded.
This call will only return one profile. Hence this option should not be used.

For the Element super of type Super and has the dimension Att_Extrude_Value set, get the
Element shape that defines the 2d profile that is extruded along super.
Note: shape will be of type Super.
A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set.

See Extrude Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A function return value of zero indicates the shape was successfully returned.

ID = 1682
Page 495Super String Element

12d Model Programming Language Manual
5.37.17 Super String Interval Functions
For definitions of the Interval dimensions, see Interval Dimensions

If Att_Interval_Value is set, then there is a Real interval_distance and a Real chord_arc_distance
for the super string

if the plan length of a segment is greater than interval_distance then for triangulation purposes,
extra temporary vertices are added into the super string so that the plan distance between each
vertex is less than interval_distance. The z-value for the temporary vertices is interpolated from
the z-values of the adjacent real vertices of the super string. If interval_distance is equal to zero,
then no extra temporary vertices are added.
 Also for each segment that is an arc, if the plan chord distance between the end points of the arc
is greater than the chord_arc_distance then for triangulation purposes extra temporary vertices
are added into the super string until the chord distance for each arc is less than
chord_arc_distance. The z-value for the temporary vertices is interpolated from the z-values of
the adjacent real vertices of the super string. If chord_arc_distance is equal to zero, then no extra
temporary vertices are added

Set_super_use_interval(Element super,Integer use)
Name
Integer Set_super_use_interval(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Interval_Value is used or
removed.
If Att_Interval_Value is set then there is a Real interval_distance and a Real chord_arc_distance
stored for the super string.

See Interval Dimensions for information on the Interval dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
If use is 1, the dimension is set and the two intervals are stored.
If use is 0, the dimension is removed.
A return value of 0 indicates the function call was successful.

ID = 1702

Get_super_use_interval(Element super,Integer &use)
Name
Integer Get_super_use_interval(Element super,Integer &use)

Description
Query whether the dimension Att_Interval_Value exists for the super string super.
If Att_Interval_Value is set then there is a Real interval_distance and a Real chord_arc_distance
stored for the super string.
See Interval Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1705
Page 496 Super String Element

Chapter 5 12dPL Library Calls
Set_super_interval_distance(Element super,Real value)
Name
Integer Set_super_interval_distance(Element super,Real value)

Description
For the Element super of type Super which has the dimension Att_Interval_Value set, set the
interval_distance to value.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Interval_Value is not set.
See Interval Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A function return value of zero indicates the interval_distance was successfully set.
 ID = 1704

Get_super_interval_distance(Element super,Real &value)
Name
Integer Get_super_interval_distance(Element super,Real &value)

Description
For the Element super of type Super and has the dimension Att_Interval_Value set, get the
interval_distance for super and return it in value.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Interval_Value is not set.
See Interval Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A function return value of zero indicates the interval_distance was successfully returned.
ID = 1707

Set_super_interval_chord_arc(Element super,Real value)
Name
Integer Set_super_interval_chord_arc(Element super,Real value)

Description
Description
For the Element super of type Super which has the dimension Att_Interval_Value set, set the
chord_arc_distance to value.
A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Interval_Value is not set.

See Interval Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A function return value of zero indicates the chord_arc_distance was successfully set.
ID = 1703

Get_super_interval_chord_arc(Element super,Real &value)
Name
Integer Get_super_interval_chord_arc(Element super,Real &value)
Page 497Super String Element

12d Model Programming Language Manual
Description
For the Element super of type Super and has the dimension Att_Interval_Value set, get the
chord_arc_distance for super and return it in value.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Interval_Value is not set.

See Interval Dimensions for information on the Extrude dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A function return value of zero indicates the chord_arc_distance was successfully returned.
ID = 1706
Page 498 Super String Element

Chapter 5 12dPL Library Calls
5.37.18 Super String Vertex Attributes Functions
For definitions of the Vertex Attributes dimensions, see User Defined Vertex Attributes Dimensions

Set_super_use_vertex_attribute(Element super,Integer use)
Name
Integer Set_super_use_vertex_attribute(Element super,Integer use)

Description
Tell the super string whether to use. or remove, the dimension Att_Vertex_Attribute_Array.
If Att_Vertex_Attribute_Array exists then there can be a type Attributes for each vertex.

See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
If use is 1, the dimension is set and an Attributes is allowed on each vertex.
If use is 0, the dimension is removed.
A return value of 0 indicates the function call was successful.

ID = 770

Get_super_use_vertex_attribute(Element super,Integer &use)
Name
Integer Get_super_use_vertex_attribute(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Attribute_Array exists for the super string.

If Att_Vertex_Attribute_Array exists then there can be a type Attributes for each vertex.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 771

Set_super_vertex_attributes(Element super,Integer vert,Attributes att)
Name
Integer Set_super_vertex_attributes(Element super,Integer vert,Attributes att)

Description
For the Element super, set the Attributes for the vertex number vert to att.
If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, then a
non-zero return value is returned.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A function return value of zero indicates the attribute is successfully set.
ID = 2003

Get_super_vertex_attributes(Element super,Integer vert,Attributes &att)
Page 499Super String Element

12d Model Programming Language Manual
Name
Integer Get_super_vertex_attributes(Element super,Integer vert,Attributes &att)

Description
For the Element super, return the Attributes for the vertex number vert as att.
If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, or the
vertex number vert has no Attributes, then a non-zero return value is returned.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A function return value of zero indicates the attribute is successfully returned.
ID = 2002

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Uid &uid)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Uid &uid)

Description
For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in uid. The attribute must be of type Uid.
If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, or the
attribute is not of type Uid then a non-zero return value is returned.

See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

 ID = 2004

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Attributes
&att)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Attributes &att)

Description
For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, or the
attribute is not of type Attributes then a non-zero return value is returned.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2005

Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid &uid)
Name
Integer Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid &uid)
Page 500 Super String Element

Chapter 5 12dPL Library Calls
Description
For the Element super, get the attribute with number att_no for the vertex number vert and
return the attribute value in uid. The attribute must be of type Uid.
If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, or the
attribute is not of type Uid then a non-zero return value is returned.

See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 2006

Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes
&att)
Name
Integer Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes &att)

Description
For the Element super, get the attribute with number att_no for the vertex number vert and
return the attribute value in att. The attribute must be of type Attributes.
If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, or the
attribute is not of type Attributes then a non-zero return value is returned.

See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 2007

Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Uid uid)
Name
Integer Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Uid uid)

Description
For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2008

Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Attributes att)
Name
Page 501Super String Element

12d Model Programming Language Manual
Integer Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Attributes att)

Description
For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2009

Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid uid)
Name
Integer Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid uid)

Description
For the Element super and on the vertex number vert, if the attribute number att_no exists and
it is of type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 2010

Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes att)
Name
Integer Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes att)

Description
For the Element super and on the vertex number vert, if the attribute number att_no exists and
it is of type Attributes, then its value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2011

Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name,Integer
&num)
Name
Integer Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name,Integer &num)
Page 502 Super String Element

Chapter 5 12dPL Library Calls
Description
Checks to see if for vertex number vert, an attribute of name att_name exists, and if it does,
return the number of the attribute as num.
A non-zero function return value indicates the attribute exists and its number was successfully
returned.

A zero function return value indicates the attribute does not exist, or the number was not
successfully returned.
Warning - this is the opposite to most 12dPL function return values
ID = 773

Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name)
Name
Integer Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name)

Description
Checks to see if for vertex number vert, an attribute of name att_name exists.

A non-zero function return value indicates the attribute exists.
A zero function return value indicates the attribute does not exist.
Warning - this is the opposite to most 12dPL function return values

ID = 772

Super_vertex_attribute_delete(Element super,Integer vert,Integer att_no)
Name
Integer Super_vertex_attribute_delete(Element super,Integer vert,Integer att_no)

Description
For the Element super, delete the attribute with attribute number att_no for vertex number vert.
If the Element super is not of type Super or super has no vertex number vert, then a non-zero
return code is returned.
A function return value of zero indicates the attribute was deleted.
ID = 775

Super_vertex_attribute_delete(Element super,Integer vert,Text att_name)
Name
Integer Super_vertex_attribute_delete(Element super,Integer vert,Text att_name)

Description
For the Element super, delete the attribute with the name att_name for vertex number vert.
If the Element super is not of type Super or super has vertex number vert, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.
ID = 774

Super_vertex_attribute_delete_all(Element super,Integer vert)
Page 503Super String Element

12d Model Programming Language Manual
Name
Integer Super_vertex_attribute_delete_all(Element super,Integer vert)

Description
Delete all the attributes of vertex number vert of the super string super.
A function return value of zero indicates the function was successful.
ID = 776

Super_vertex_attribute_dump(Element super,Integer vert)
Name
Integer Super_vertex_attribute_dump(Element super,Integer vert)

Description
Write out information to the Output Window about the vertex attributes for vertex number vert of
the super string super.
A function return value of zero indicates the function was successful.

 ID = 777

Super_vertex_attribute_debug(Element super,Integer vert)
Name
Integer Super_vertex_attribute_debug(Element super,Integer vert)

Description
Write out even more information to the Output Window about the vertex attributes for vertex
number vert of the super string super.
A function return value of zero indicates the function was successful.
ID = 778

Get_super_vertex_number_of_attributes(Element super,Integer vert,Integer
&no_atts)
Name
Integer Get_super_vertex_number_of_attributes(Element super,Integer vert,Integer &no_atts)

Description
Get the total number of attributes for vertex number vert of the Element super.
The total number of attributes is returned in Integer no_atts.
A function return value of zero indicates the number of attributes was successfully returned.
ID = 779

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Text &txt)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Text &txt)

Description
For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in txt. The attribute must be of type Text.
Page 504 Super String Element

Chapter 5 12dPL Library Calls
If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 780

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer
&int)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer &int)

Description
For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in int. The attribute must be of type Integer.
If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 781

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Real &real)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Real &real)

Description
For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in real. The attribute must be of type Real.
If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 782

Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text &txt)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text &txt)

Description
For the Element super, get the attribute number att_no for the vertex number vert and return the
attribute value in txt. The attribute must be of type Text.
If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

 ID = 783
Page 505Super String Element

12d Model Programming Language Manual
Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer
&int)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer &int)

Description
For the Element super, get the attribute number att_no for the vertex number vert and return the
attribute value in int. The attribute must be of type Integer.
If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 784

Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real &real)
Name
Integer Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real &real)

Description
For the Element super, get the attribute number att_no for the vertex number vert and return the
attribute value in real. The attribute must be of type Real.
If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 785

Get_super_vertex_attribute_name(Element super,Integer vert,Integer att_no,Text
&txt)
Name
Integer Get_super_vertex_attribute_name(Element super,Integer vert,Integer att_no,Text &txt)

Description
For vertex number vert of the Element super, get the name of the attribute number att_no. The
attribute name is returned in txt.
A function return value of zero indicates the attribute name was successfully returned.

ID = 786

Get_super_vertex_attribute_length(Element super,Integer vert,Text
att_name,Integer &att_len)
Name
Integer Get_super_vertex_attribute_length(Element super,Integer vert,Text att_name,Integer &att_len)

Description
Page 506 Super String Element

Chapter 5 12dPL Library Calls
For vertex number vert of the Element super, get the length (in bytes) of the attribute with the
name att_name. The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.
Note - the length is useful for user attributes of type Text and Binary.

 ID = 789

Get_super_vertex_attribute_length(Element super,Integer vert,Integer
att_no,Integer &att_len)
Name
Integer Get_super_vertex_attribute_length(Element super,Integer vert,Integer att_no,Integer &att_len)

Description
For vertex number vert of the Element super, get the length (in bytes) of the attribute number
att_no. The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for attributes of type Text and Binary.
ID = 790

Get_super_vertex_attribute_type(Element super,Integer vert,Text
att_name,Integer &att_type)
Name
 Integer Get_super_vertex_attribute_type(Element super,Integer vert,Text att_name,Integer &att_type)

Description
For vertex number vert of the Element super, get the type of the attribute with name att_name.
The attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.

ID = 787

Get_super_vertex_attribute_type(Element super,Integer vert,Integer
att_no,Integer &att_type)
Name
 Integer Get_super_vertex_attribute_type(Element super,Integer vert,Integer att_no,Integer &att_type)

Description
For vertex number vert of the Element super, get the type of the attribute with attribute number
att_no. The attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.
ID = 788

Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Text txt)
Name
Integer Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Text txt)

Description
Page 507Super String Element

12d Model Programming Language Manual
For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 791

Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer int)
Name
Integer Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer int)

Description
For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 792

Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Real real)
Name
Integer Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Real real)

Description
For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 793

Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text txt)
Name
Integer Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text txt)

Description
For the Element super and on the vertex number vert,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text, then set its value to txt.
Page 508 Super String Element

Chapter 5 12dPL Library Calls
If the attribute exists and is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

 ID = 794

Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer int)
Name
Integer Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer int)

Description
For the Element super and on the vertex number vert,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.
 ID = 795

Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real real)
Name
Integer Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real real)

Description
For the Element super and on the vertex number vert,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.
ID = 796
Page 509Super String Element

12d Model Programming Language Manual
5.37.19 Super String Segment Attributes Functions
For definitions of the Segment Attributes dimensions, see User Defined Vertex Attributes Dimensions

Set_super_use_segment_attribute(Element super,Integer use)
Name
Integer Set_super_use_segment_attribute(Element super,Integer use)

Description
Tell the super string whether to use or remove the dimension Att_Segment_Attribute_Array.
If the dimension Att_Segment_Attribute_Array exists then there can be an Attributes on each
segment.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A value for use of 1 sets the dimension and 0 removes it.
A return value of 0 indicates the function call was successful.
ID = 1060

Get_super_use_segment_attribute(Element super,Integer &use)
Name
Integer Get_super_use_segment_attribute(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Attribute_Array exists for the super string.

If the dimension Att_Segment_Attribute_Array exists then there can be an Attributes on each
segment.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1061

Get_super_segment_attributes(Element elt,Integer seg,Attributes &att)
Name
Integer Get_super_segment_attributes(Element elt,Integer seg,Attributes &att)

Description
For the Element super, return the Attributes for the segment number seg as att.
If the Element is not of type Super, or Att_Segment_Attribute_Array dimension is not set, or the
segment number seg has no attribute then a non-zero return value is returned.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.

A function return value of zero indicates the attribute is successfully returned.
ID = 2012
Page 510 Super String Element

Chapter 5 12dPL Library Calls
Set_super_segment_attributes(Element elt,Integer seg,Attributes att)
Name
Integer Set_super_segment_attributes(Element elt,Integer seg,Attributes att)

Description
For the Element super, set the Attributes for the segment number seg to att.
If the Element is not of type Super, or Att_Segment_Attribute_Array dimension is not set, then a
non-zero return value is returned.
See User Defined Vertex Attributes Dimensions for information on the Attributes dimensions or
5.37.1 Super String Dimensions for information on all the dimensions.
A function return value of zero indicates the attribute is successfully set.

ID = 2013

Get_super_segment_attribute(Element super,Integer seg,Text att_name,Uid &uid)
Name
Integer Get_super_segment_attribute(Element super,Integer seg,Text att_name,Uid &uid)

Description
For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in uid. The attribute must be of type Uid.
If the Element is not of type Super or the attribute is not of type Uid then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2014

Get_super_segment_attribute(Element super,Integer seg,Text att_name,
Attributes &att)
Name
Integer Get_super_segment_attribute(Element super,Integer seg,Text att_name,Attributes &att)

Description
For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in att. The attribute must be of type Attributes.
If the Element is not of type Super or the attribute is not of type Attributes then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2015

Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid &uid)
Name
Integer Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid &uid)

Description
For the Element super, get the attribute with number att_no for the segment number seg and
Page 511Super String Element

12d Model Programming Language Manual
return the attribute value in uid. The attribute must be of type Uid.
If the Element is not of type Super or the attribute is not of type Uid then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 2016

Get_super_segment_attribute(Element super,Integer seg,Integer att_no,
 Attributes &att)
Name
Integer Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes &att)

Description
For the Element super, get the attribute with number att_no for the segment number seg and
return the attribute value in att. The attribute must be of type Attributes.
If the Element is not of type Super or the attribute is not of type Attributes then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 2017

Set_super_segment_attribute(Element super,Integer seg,Text att_name,Uid uid)
Name
Integer Set_super_segment_attribute(Element super,Integer seg,Text att_name,Uid uid)

Description
For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2018

Set_super_segment_attribute(Element super,Integer seg,Text att_name,
 Attributes att)
Name
Integer Set_super_segment_attribute(Element super,Integer seg,Text att_name,Attributes att)

Description
For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
Page 512 Super String Element

Chapter 5 12dPL Library Calls
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2019

Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid uid)
Name
Integer Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid uid)

Description
For the Element super and on the segment number seg, if the attribute number att_no exists
and it is of type Uid, then its value is set to uid.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2020

Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes
att)
Name
Integer Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes att)

Description
For the Element super and on the segment number seg, if the attribute number att_no exists
and it is of type Attributes, then its value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 2021

Super_segment_attribute_exists(Element elt,Integer seg,Text att_name)
Name
Integer Super_segment_attribute_exists(Element elt,Integer seg,Text att_name)

Description
Checks to see if for segment number seg, an attribute of name att_name exists.

A non-zero function return value indicates the attribute exists.
A zero function return value indicates the attribute does not exist.
Page 513Super String Element

12d Model Programming Language Manual
Warning - this is the opposite to most 12dPL function return values
ID = 1062

Super_segment_attribute_exists(Element elt,Integer seg,Text att_name,Integer
&num)
Name
Integer Super_segment_attribute_exists(Element elt,Integer seg,Text att_name,Integer &num)

Description
Checks to see if for segment number seg, an attribute of name att_name exists, and if it does,
return the number of the attribute as num.
A non-zero function return value indicates the attribute exists and its number was successfully
returned.

A zero function return value indicates the attribute does not exist, or the number was not
successfully returned.
Warning - this is the opposite to most 12dPL function return values
ID = 1063

Super_segment_attribute_delete (Element super,Integer seg,Text att_name)
Name
Integer Super_segment_attribute_delete (Element super,Integer seg,Text att_name)

Description
For the Element super, delete the attribute with the name att_name for segment number seg.

If the Element super is not of type Super or super has no segment number seg, then a non-zero
return code is returned.
A function return value of zero indicates the attribute was deleted.
ID = 1064

Super_segment_attribute_delete (Element super,Integer seg,Integer att_no)
Name
Integer Super_segment_attribute_delete (Element super,Integer seg,Integer att_no)

Description
For the Element super, delete the attribute with attribute number att_no for segment number
seg.
If the Element super is not of type Super or super has no segment number seg, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.
ID = 1065

Super_segment_attribute_delete_all (Element super,Integer seg)
Name
Integer Super_segment_attribute_delete_all (Element super,Integer seg)
Page 514 Super String Element

Chapter 5 12dPL Library Calls
Description
Delete all the attributes of segment number seg of the super string super.
A function return value of zero indicates the function was successful.

ID = 1066

Super_segment_attribute_dump (Element super,Integer seg)
Name
Integer Super_segment_attribute_dump (Element super,Integer seg)

Description
Write out information to the Output Window about the segment attributes for segment number
seg of the super string super.
A function return value of zero indicates the function was successful.
ID = 1067

Super_segment_attribute_debug (Element super,Integer seg)
Name
Integer Super_segment_attribute_debug (Element super,Integer seg)

Description
Write out even more information to the Output Window about the segment attributes for segment
number seg of the super string super.
A function return value of zero indicates the function was successful.

ID = 1068

Get_super_segment_number_of_attributes(Element super,Integer seg,Integer
&no_atts)
Name
Integer Get_super_segment_number_of_attributes(Element elt,Integer seg,Integer &no_atts)

Description
Get the total number of attributes for segment number seg of the Element super.
The total number of attributes is returned in Integer no_atts.
A function return value of zero indicates the number of attributes was successfully returned.

A return value of 0 indicates the function call was successful.
ID = 1069

Get_super_segment_attribute (Element super,Integer seg,Text att_name,Text
&text)
Name
Integer Get_super_segment_attribute (Element super,Integer seg,Text att_name,Text &text)

Description
For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in text. The attribute must be of type Text.
Page 515Super String Element

12d Model Programming Language Manual
If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1070

Get_super_segment_attribute (Element super,Integer seg,Text att_name,Integer
&int)
Name
Integer Get_super_segment_attribute (Element super,Integer seg,Text att_name,Integer &int)

Description
For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in int. The attribute must be of type Integer.
If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1071

Get_super_segment_attribute (Element super,Integer seg,Text att_name,Real
&real)
Name
Integer Get_super_segment_attribute (Element super,Integer seg,Text att_name,Real &real)

Description
For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in real. The attribute must be of type Real.
If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1072

Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Text &txt)
Name
Integer Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Text &txt)

Description
For the Element super, get the attribute number att_no for the segment number seg and return
the attribute value in txt. The attribute must be of type Text.
If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
Page 516 Super String Element

Chapter 5 12dPL Library Calls
ID = 1073

Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer
&int)
Name
Integer Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer &int)

Description
For the Element super, get the attribute number att_no for the segment number seg and return
the attribute value in int. The attribute must be of type Integer.
If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 1074

Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Real
&real)
Name
Integer Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Real &real)

Description
For the Element super, get the attribute number att_no for the segment number seg and return
the attribute value in real. The attribute must be of type Real.
If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 1075

Get_super_segment_attribute_name (Element super,Integer seg,Integer
att_no,Text &txt)
Name
 Integer Get_super_segment_attribute_name (Element super,Integer seg,Integer att_no,Text &txt)

Description
For segment number seg of the Element super, get the name of the attribute number att_no.
The attribute name is returned in txt.
A function return value of zero indicates the attribute name was successfully returned.
ID = 1076

Get_super_segment_attribute_type (Element super,Integer seg,Text
att_name,Integer &att_type)
Name
Integer Get_super_segment_attribute_type (Element super,Integer seg,Text att_name,Integer &att_type)
Page 517Super String Element

12d Model Programming Language Manual
Description
For segment number seg of the Element super, get the type of the attribute with name
att_name. The attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.

ID = 1077

Get_super_segment_attribute_type (Element super,Integer seg,Integer
att_no,Integer &att_type)
Name
Integer Get_super_segment_attribute_type (Element super,Integer seg,Integer att_no,Integer &att_type)

Description
For segment number seg of the Element super, get the type of the attribute with attribute
number att_no. The attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.
ID = 1078

Get_super_segment_attribute_length(Element super,Integer seg,Text
att_name,Integer &att_len)
Name
Integer Get_super_segment_attribute_length(Element super,Integer seg,Text att_name,Integer &att_len)

Description
For segment number seg of the Element super, get the length (in bytes) of the attribute with the
name att_name. The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.
Note - the length is useful for user attributes of type Text and Binary.
ID = 1079

Get_super_segment_attribute_length(Element super,Integer seg,Integer
att_no,Integer &att_len)
Name
 Integer Get_super_segment_attribute_length(Element super,Integer seg,Integer att_no,Integer &att_len)

Description
For segment number seg of the Element super, get the length (in bytes) of the attribute number
att_no. The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.
Note - the length is useful for attributes of type Text and Binary.

ID = 1080

Set_super_segment_attribute (Element super,Integer seg,Text att_name,Text txt)
Name
Integer Set_super_segment_attribute (Element super,Integer seg,Text att_name,Text txt)
Page 518 Super String Element

Chapter 5 12dPL Library Calls
Description
For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1081

Set_super_segment_attribute (Element super,Integer seg,Text att_name,Integer in)
Name
Integer Set_super_segment_attribute (Element super,Integer seg,Text att_name,Integer int)

Description
For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1082

Set_super_segment_attribute (Element super,Integer seg,Text att_name,Real real)
Name
Integer Set_super_segment_attribute (Element super,Integer seg,Text att_name,Real real)

Description
For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1083

Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Text txt)
Name
Integer Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Text txt)

Description
For the Element super and on the segment number seg,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
Page 519Super String Element

12d Model Programming Language Manual
 if the attribute with number att_no does exist and it is type Text, then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.
ID = 1084

Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer in)
Name
Integer Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer int)

Description
For the Element super and on the segment number seg,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.
ID = 1085

Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Real real)
Name
Integer Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Real real)

Description
For the Element super and on the segment number seg,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.
ID = 1086
Page 520 Super String Element

Chapter 5 12dPL Library Calls
5.37.20 Super String Uid Functions
For definitions of the UID dimensions, see UID Dimensions

If Att_Vertex_UID_Array is used, then there is an Integer (referred to as a uid) stored at each
vertex of the super string. Note that this is an Integer and not a variable of type Uid.
This is used by 12d Solutions to store special backtracking numbers on each vertex (for example
for survey data reduction or with the underlying super string in a super alignment).

See 5.37.20.1 Super String Vertex Uid
See 5.37.20.2 Super String Segment Uid
Page 521Super String Element

12d Model Programming Language Manual
5.37.20.1 Super String Vertex Uid

Set_super_use_vertex_uid(Element super,Integer use)
Name
Integer Set_super_use_vertex_uid(Element super,Integer use)

Description
WARNING - Reserved for 12d Solutions Staff Only.

Tell the super string super whether to use (set), or not use (remove), the dimension
Att_Vertex_UID_Array.
A value for use of 1 sets the dimension and 0 removes it.
If Att_Vertex_UID_Array is used, then there is an Integer (referred to as a uid) stored at each
vertex of the super string.

This is used by 12d Solutions to store special backtracking numbers on each vertex (for example
for survey data reduction or with the underlying super string in a super alignment).
See UID Dimensions for information on the Vertex UID dimension or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 1572

Get_super_use_vertex_uid(Element super,Integer &use)
Name
Integer Get_super_use_vertex_uid(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_UID_Array exists (is used) for the super string super.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
If Att_Vertex_UID_Array is used, then there is an Integer (referred to as a uid) stored at each
vertex of the super string.

This is used by 12d Solutions to store special backtracking numbers on each vertex (for example
for survey data reduction or with the underlying super string in a super alignment).
See UID Dimensions for information on the Vertex UID dimension or 5.37.1 Super String
Dimensions for information on all the dimensions.
ID = 1573

Set_super_vertex_uid(Element super,Integer vert,Integer num)
Name
Integer Set_super_vertex_uid(Element super,Integer vert,Integer num)

Description
WARNING - Reserved for 12d Solutions Staff Only.
For the super Element super, set the vertex uid at vertex number vert to be num.

A return value of 0 indicates the function call was successful.
ID = 1574
Page 522 Super String Element

Chapter 5 12dPL Library Calls
Get_super_vertex_uid(Element super,Integer vert,Integer &num)
Name
Integer Get_super_vertex_uid(Element super,Integer vert,Integer &num)

Description
For the super Element super, get the vertex uid at vertex number vert and return it in num.

A return value of 0 indicates the function call was successful.
ID = 1575
Page 523Super String Element

12d Model Programming Language Manual
5.37.20.2 Super String Segment Uid

Set_super_use_segment_uid(Element super,Integer use)
Name
Integer Set_super_use_segment_uid(Element super,Integer use)

Description
WARNING - Reserved for 12d Solutions Staff Only.

Tell the super string super whether to use (set), or not use (remove), the dimension
Att_Segment_UID_Array.
A value for use of 1 sets the dimension and 0 removes it.
If Att_Segment_UID_Array is used, then there is an Integer stored at each segment of the super
string.

This is used by 12d Solutions to store special backtracking numbers on each segment (for
example for survey data reduction or with the underlying super string in a super alignment).
See UID Dimensions for information on the Segment UID dimension or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 1576

Get_super_use_segment_uid(Element super,Integer &use)
Name
Integer Get_super_use_segment_uid(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_UID_Array exists (is used) for the super string
super.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
If Att_Segment_UID_Array is used, then there is an Integer stored at each segment of the super
string.

This is used by 12d Solutions to store special backtracking numbers on each segment (for
example for survey data reduction or with the underlying super string in a super alignment).
See UID Dimensions for information on the Segment UID dimension or 5.37.1 Super String
Dimensions for information on all the dimensions.
ID = 1577

Set_super_segment_uid(Element super,Integer seg,Integer num)
Name
Integer Set_super_segment_uid(Element super,Integer seg,Integer num)

Description
WARNING - Reserved for 12d Solutions Staff Only.
For the super Element super, set the number called uid at segment number seg to be num.

A return value of 0 indicates the function call was successful.
ID = 1578
Page 524 Super String Element

Chapter 5 12dPL Library Calls
Get_super_segment_uid(Element super,Integer seg,Integer &num)
Name
Integer Get_super_segment_uid(Element super,Integer seg,Integer &num)

Description
For the super Element super, get the number called the uid on segment number seg and return
it in num.
A return value of 0 indicates the function call was successful.

ID = 1579
Page 525Super String Element

12d Model Programming Language Manual
5.37.21 Super String Vertex Image Functions
For definitions of the Visibility dimensions, see Vertex Image Dimensions

See 5.37.21.1 Super String Use Vertex Image Functions
See 5.37.21.2 Setting Super String Vertex Image Functions
Page 526 Super String Element

Chapter 5 12dPL Library Calls
5.37.21.1 Super String Use Vertex Image Functions

Set_super_use_vertex_image_value(Element super,Integer use)
Name
Integer Set_super_use_vertex_image_value(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Vertex_Image_Value is
used. If the dimension Att_Vertex_Image_Value is set then there can be one image attached to
each vertex.

See Vertex Image Dimensions for information on the Vertex Image dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
If use is 1, the dimension is set. That is, the super string can have an image attached to each
vertex (it can be a different image at each vertex).

If use is 0, the dimension is removed. If the string had images then the images will be removed.
A return value of 0 indicates the function call was successful.
ID = 1767

Get_super_use_vertex_image_value(Element super,Integer &use)
Name
Integer Get_super_use_vertex_image_value(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Image_Value exists for the super string super.
If the dimension Att_Vertex_Image_Value is set then there can be one image attached to each
vertex.

See Vertex Image Dimensions for information on the Vertex Image dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.

ID = 1768

Set_super_use_vertex_image_array(Element super,Integer use)
Name
Integer Set_super_use_vertex_image_array(Element super,Integer use)

Description
For the super string Element super, define whether the dimension Att_Vertex_Image_Array is
used, or removed, for the super string super.

If the dimension Att_Vertex_Image_Array is set then there can be more than one image attached
to each vertex.
See Vertex Image Dimensions for information on the Vertex Image dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
If use is 1, the dimension is set. That is, each super string vertex can have a number of images
attached to it.
If use is 0, the dimension is removed. If the super string vertex had images then the images will
Page 527Super String Element

12d Model Programming Language Manual
be removed.
A return value of 0 indicates the function call was successful.
ID = 1769

Get_super_use_vertex_image_array(Element super,Integer &use)
Name
Integer Get_super_use_vertex_image_array(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Image_Array exists for the super string super.
If the dimension Att_Vertex_Image_Array is set then there can be more than one image attached
to each vertex.

See Vertex Image Dimensions for information on the Vertex Image dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists. That is, each super string vertex can have a number
of images attached to it.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1770

Super_vertex_image_value_to_array(Element super)
Name
Integer Super_vertex_image_value_to_array(Element super)

Description
If for the super string super the dimension Att_Vertex_Image_Value exists and the dimension
Att_Vertex_Image_Array does not exist then there will be one image img for the entire string.
In this case (when the dimension Att_Vertex_Image_Value exists and the dimension
Att_ZCoord_Array does not exist) this function sets the Att_Vertex_Image_Array dimension and
creates a new image for each vertex of super and it is given the value img.

See Height Dimensions for information on the Height (ZCoord) dimensions or 5.37.1 Super
String Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
 ID = 2176
Page 528 Super String Element

Chapter 5 12dPL Library Calls
5.37.21.2 Setting Super String Vertex Image Functions

Super_vertex_image_delete(Element elt,Integer vertex_num,Integer image_num)
Name
Integer Super_vertex_image_delete(Element super,Integer vertex_num,Integer image_num)

Description
For the super Element super, delete image number image_num from vertex number
vertex_num.
A return value of 0 indicates the function call was successful.
 ID = 1862

Super_vertex_image_delete_all(Element super,Integer vertex_num)
Name
Integer Super_vertex_image_delete_all(Element super,Integer vertex_num)

Description
For the super Element super, delete all the images on vertex number vertex_num.
A return value of 0 indicates the function call was successful.

ID = 1863

Get_super_vertex_number_of_images(Element super,Integer vertex_num,Integer
&num_images)
Name
Integer Get_super_vertex_number_of_images(Element super,Integer vertex_num,Integer &num_images)

Description
For the super Element super, return in num_images the number of images on vertex number
vertex_num.
A return value of 0 indicates the function call was successful.
ID = 1864

Get_super_vertex_image_type(Element elt,Integer vertex,Integer image_no,Text
&image_type)
Name
Integer Get_super_vertex_image_type(Element elt,Integer vertex,Integer image_no,Text &image_type)

Description
what is image_type? (it is URL etc)

<no description>
 ID = 1865

Super_vertex_add_URL(Element super,Integer vertex,Text url)
Name
Integer Super_vertex_add_URL(Element super,Integer vertex,Text url)
Page 529Super String Element

12d Model Programming Language Manual
Description
image_vertex_array or value. Set the vertex to have text which is treated as url.
<no description>

 ID = 1771

Get_super_vertex_URL(Element elt,Integer vertex,Integer image_no,Text &url)
Name
Integer Get_super_vertex_URL(Element elt,Integer vertex,Integer image_no,Text &url)

Description
get url. If not url type then error.

<no description>
ID = 1866

Get_Super_vertex_plan_image(Element super,Integer vertex,Integer
image_no,Text &url,Real &width,Real &height,Real &angle,Real &offset_x,Real
&offset_y)
Name
Integer Get_Super_vertex_plan_image(Element super,Integer vertex,Integer image_no,Text &url,Real
&width,Real &height,Real &angle,Real &offset_x,Real &offset_y)

Description
an image type
<no description>
 ID = 1867
Page 530 Super String Element

Chapter 5 12dPL Library Calls
5.37.22 Super String Visibility Functions
For definitions of the Visibility dimensions, see Visibility Dimensions

See 5.37.22.1 Super String Combined Visibility
See 5.37.22.2 Super String Vertex Visibility
See 5.37.22.3 Super String Segment Visibility
Page 531Super String Element

12d Model Programming Language Manual
5.37.22.1 Super String Combined Visibility

Set_super_use_visibility(Element super,Integer use)
Name
Integer Set_super_use_visibility(Element super,Integer use)

Description
Tell the super string whether to use, or remove, the dimension Att_Visible_Array.

See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A value for use of 1 sets the dimension and 0 removes it.
A return value of 0 indicates the function call was successful.

ID = 718

Get_super_use_visibility(Element super,Integer &use)
Name
Integer Get_super_use_visibility(Element super,Integer &use)

Description
Query whether the dimension Att_Visible_Array exists for the super string.

See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 719
Page 532 Super String Element

Chapter 5 12dPL Library Calls
5.37.22.2 Super String Vertex Visibility

Set_super_use_vertex_visibility_value(Element super,Integer use)
Name
Integer Set_super_use_vertex_visibility_value(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Vertex_Visible_Value is
used or removed.

If Att_Vertex_Visible_Value is set and Att_Vertex_Visible_Array is not set, then there is only one
visibility value for all vertices in super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

If Att_Vertex_Visible_Value is set then the visibility is the same for all vertices in super.
If use is 1, the dimension is set and the visibility is the same for all vertices.
If use is 0, the dimension is removed.

Note that if the dimension Att_Vertex_Visible_Array exists, this call is ignored.
A return value of 0 indicates the function call was successful.
ID = 1580

Get_super_use_vertex_visibility_value(Element super,Integer &use)
Name
Integer Get_super_use_vertex_visibility_value(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Visible_Value exists for the super string super. If
Att_Vertex_Visible_Value is set then there is one visibility value for all vertices in super.
If Att_Vertex_Visible_Value is set and Att_Vertex_Visible_Array is not set, then there is only one
visibility value for all vertices in super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.

 ID = 1581

Set_super_use_vertex_visibility_array(Element super,Integer use)
Name
Integer Set_super_use_vertex_visibility_array(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Vertex_Visible_Array is
used or removed.

If Att_Vertex_Visible_Array is set then there can be a different visibility defined for each vertex in
super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
Page 533Super String Element

12d Model Programming Language Manual
If use is 1, the dimension is set and the visibility is different for each vertex.
If use is 0, the dimension is removed.
A return value of 0 indicates the function call was successful.

ID = 1582

Get_super_use_vertex_visibility_array(Element super,Integer &use)
Name
Integer Get_super_use_vertex_visibility_array(Element super,Integer &use)

Description
Query whether the dimension Att_Vertex_Visible_Array exists for the super string super.
If Att_Vertex_Visible_Array is set then there can be a different visibility defined for each vertex in
super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1583

Set_super_vertex_visibility(Element super,Integer vert,Integer visibility)
Name
Integer Set_super_vertex_visibility(Element super,Integer vert,Integer visibility)

Description
For the Element super (which must be of type Super), set the visibility value for vertex number
vert and to visibility.
If visibility is 1, the vertex is visible.
If visibility is 0, the vertex is invisible.

If the Element super is not of type Super, or Att_Vertex_Visible_Array is not set for super, then a
non-zero return code is returned.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 734

Get_super_vertex_visibility(Element super,Integer vert,Integer &visibility)
Name
Integer Get_super_vertex_visibility(Element super,Integer vert,Integer &visibility)

Description
For the Element super (which must be of type Super), get the visibility value for vertex number
vert and return it in the Integer visibility.

If visibility is 1, the vertex is visible.
If visibility is 0, the vertex is invisible.
If the Element super is not of type Super, or Att_Vertex_Visible_Array is not set for super, then a
Page 534 Super String Element

Chapter 5 12dPL Library Calls
non-zero return code is returned.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.

ID = 735
Page 535Super String Element

12d Model Programming Language Manual
5.37.22.3 Super String Segment Visibility

Set_super_use_segment_visibility_value(Element super,Integer use)
Name
Integer Set_super_use_segment_visibility_value(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Segment_Visible_Value is
used or removed.

If Att_Segment_Visible_Value is set and Att_Segment_Visible_Array is not set, then the visibility
is the same for all segments in super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
If use is 1, the dimension is set and the visibility is the same for all segments.
If use is 0, the dimension is removed.

Note that if the dimension Att_Segment_Visible_Array exists, this call is ignored.
A return value of 0 indicates the function call was successful.
ID = 1588

Get_super_use_segment_visibility_value(Element super,Integer &use)
Name
Integer Get_super_use_segment_visibility_value(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Visible_Value exists for the super string super.
If Att_Segment_Visible_Value is set and Att_Segment_Visible_Array is not set, then the visibility
is the same for all segments in super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
ID = 1589

Set_super_use_segment_visibility_array(Element super,Integer use)
Name
Integer Set_super_use_segment_visibility_array(Element super,Integer use)

Description
For Element super of type Super, define whether the dimension Att_Segment_Visible_Array is
used or removed.
If Att_Segment_Visible_Array is set then there can be a different visibility defined for each
segment in super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

If use is 1, the dimension is set and the visibility is different for each segment.
If use is 0, the dimension is removed.
Page 536 Super String Element

Chapter 5 12dPL Library Calls
A return value of 0 indicates the function call was successful.
ID = 1590

Get_super_use_segment_visibility_array(Element super,Integer &use)
Name
Integer Get_super_use_segment_visibility_array(Element super,Integer &use)

Description
Query whether the dimension Att_Segment_Visible_Array exists for the super string super.
If Att_Segment_Visible_Array is set then there can be a different visibility defined for each
segment in super.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.
use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
A return value of 0 indicates the function call was successful.

ID = 1591

Set_super_segment_visibility(Element super,Integer seg,Integer visibility)
Name
Integer Set_super_segment_visibility(Element super,Integer seg,Integer visibility)

Description
For the Element super (which must be of type Super), set the visibility value for segment
number seg to visibility.

If visibility is 1, the segment is visible.
If visibility is 0, the segment is invisible.
If the Element super is not of type Super, or Att_Segment_Visible_Array is not set for super,
then a non-zero return code is returned.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Dimensions for information on all the dimensions.

A return value of 0 indicates the function call was successful.
ID = 720

Get_super_segment_visibility(Element super,Integer seg,Integer &visibility)
Name
Integer Get_super_segment_visibility(Element super,Integer seg,Integer &visibility)

Description
For the Element super (which must be of type Super), get the visibility value for segment
number seg and return it in the Integer visibility.
If visibility is 1, the segment is visible.
If visibility is 0, the segment is invisible.

If the Element super is not of type Super, or Att_Segment_Visible_Array is not set for super,
then a non-zero return code is returned.
See Visibility Dimensions for information on the Visibility dimensions or 5.37.1 Super String
Page 537Super String Element

12d Model Programming Language Manual
Dimensions for information on all the dimensions.
A return value of 0 indicates the function call was successful.
ID = 721
Page 538 Super String Element

Chapter 5 12dPL Library Calls
5.38 Examples of Setting Up Super Strings
See 5.38.1 2d Super String
See 5.38.2 2d Super String with Arcs
See 5.38.3 3d Super String
See 5.38.4 Polyline Super String
See 5.38.5 Pipe Super String
See 5.38.6 Culvert Super String
See 5.38.7 Polyline Pipe Super String
See 5.38.8 4d Super String
Page 539Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.38.1 2d Super String
A 2d string consists of (x,y) values at each vertex of the string and a constant height for the
entire string. There are only straight segments joining the vertices.

Creating a 2d Super String with Straight Segments
To defined a super string super with num_vert vertices, and for it to have a constant height 30
say:

 #include "setups.h"
 Element super;
// need dimension 1 Att_ZCoord_Value to have the value 1 and all other dimensions are 0

 Integer flag1 = String_Super_Bit(ZCoord_Value);
// NOTE: this is the same as flag1 = 1; // dimension 1 only
 super = Create_super(flag1, num_vert);

 Set_super_2d_level(super,30.0);
 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of
 Set_super_vertex_coord(super,i,x,y,30.0);
where (x,y) are the coordinates of the ith vertex of super, height is 30, i is the vertex index.

Checking for a 2d Super String
To check if a super string Element, super, has a constant height (z-value), use the code:
 Integer ret_h_value, use_h_value, ret_z_array, use_z_array;
 ret_z_array = Get_super_use_3d(super, use_z_array);

 ret_h_value = Get_super_use_2d(super, use_h_value);

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so isn’t like a 2d super string.

If the above does not hold then:
If ret_h_value is 0 and use_h_value is 0 (from the Get_super_use_2d call) then the super string
super has a constant height dimension and is like a 2d string.

To find out the actual height of the 2d super string, use
 Real height;
 Get_super_2d_level(super,height);

The coordinate data can be read out of the super string super using repeated calls of
 Get_super_vertex_coord(super,i,x,y,z);

where (x,y) are the coordinates of the ith vertex of super. The value z can be ignored if the height
of the 2d string is already known.
Page 540 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
5.38.2 2d Super String with Arcs
Unlike the superseded 2d string, it is possible to defined a super string super with a constant
height for the entire string but rather than just having straight line segments between vertices, the
segments may be arcs.

Creating a 2d Super String with Arc Segments
So to defined a super string super with num_vert vertices, and for it to have a constant height 30
say but also to have arc segments:

 #include "setups.h"
 Element super;

// need dimension 1 Att_ZCoord_Value, dimension 3 Att_Radius_Array and
// dimension 4 Att_Major_Array to have the value 1 and all other dimensions are 0
 Integer flag1 = String_Super_Bit(ZCoord_Value)|String_Super_Bit(Radius_Array)
 |String_Super_Bit(Major_Array);
// NOTE: this is the same as flag1 = 13; // dimensions 1, 3 and 4 only

 super = Create_super(flag1, num_vert);
 Set_super_2d_level(super,30.0);

 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of

 Set_super_data(super,i,x,y,30.0,r,b);
where (x,y) are the coordinates of the ith vertex of super and Real r and Integer b are the radius
and major/minor arc bulge for the arc between vertex i and vertex i+1.

Checking for a 2d Super String with Arc Segments
To check if a super string Element, super, has a constant height (z-value) and arc segments, use
the code:
 Integer ret_h_value, use_h_value, ret_z_array, use_z_array;

 Integer ret_r_array, use_r_array, ret_b_array, use_b_array;
 ret_z_array = Get_super_use_3d(super, use_z_array);
 ret_h_value = Get_super_use_2d(super, use_h_value);

 ret_r_array = Get_super_use_segment_radius(super, use_r_array);
// note - setting the super string to have radius array also forces it to have a major/minor arc
// bulge array

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so isn’t like a 2d super string.
If the above does not hold then:
If ret_h_value is 0 and use_h_value is 0 (from the Get_super_use_2d call) then the super string
super has a constant height dimension and is like a 2d string.

To find out the actual height of the 2d super string, use

 Real height;
Page 541Examples of Setting Up Super Strings

12d Model Programming Language Manual
 Get_super_2d_level(super,height);

The coordinate data can be read out of the super string super using repeated calls of

 Get_super_data(super,i,x,y,z,r,b);
where (x,y) are the coordinates of the ith vertex of super and Real r and Integer b will give the
radius and major/minor arc bulge. The value z can be ignored if the height of the 2d string is
already known.
Page 542 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
5.38.3 3d Super String
A traditional 3d string consists of (x,y,z) values at each vertex of the string with straight line
segments between each vertex.

Creating a 3d Super String with Straight Segments
To defined a super string super with num_vert vertices and different z-values at each vertex:

 #include "setups.h"
 Element super;
// need dimension 2 Att_ZCoord_Array (2) to have the value 1 and all other dimensions are 0

 Integer flag1 = String_Super_Bit(ZCoord_Array);
// NOTE: this is the same as flag1 = 2; // dimension 2 only

 super = Create_super(flag1, num_vert);
 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of
 Set_super_vertex_coord(super,i,x,y,z);
where (x,y,z) are the coordinates of the ith vertex of super.

Checking for a 3d Super String
To check if a super string Element, super, has a variable z-value, use the code:

 Integer ret_z_array, use_z_array;
 ret_z_array = Get_super_use_3d(super, use_z_array);

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so is like a 3d super string.

The coordinate data can be read out of the super string super using repeated calls of

 Get_super_vertex_coord(super,i,x,y,z);
where (x,y,z) are the coordinates of the ith vertex of super.
Page 543Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.38.4 Polyline Super String
A traditional polyline string consists of (x,y,z) values at each vertex of the string and straight line
or arc segments between each vertex. So each vertex has values (x,y,z,r,b) where r is the radius
of the arc from this segment to the next segment and b is a major/minor arc bulge.

Creating a Polyline Super String (3d Super String with Arc Segments)
Unlike the old 3d string, it is possible to defined a super string super with a (x,y,z) coordinates at
each vertex but rather than just having straight line segments between vertices, the segments
may be arcs. This is then the traditional polyline string.

So to defined a super string super with num_vert vertices, with variable z, and also to have arc
segments:
 #include "setups.h"
 Element super;

// need dimension Att_ZCoord_Array (2), dimension Att_Radius_Array (3) and
// dimension Att_Major_Array (4) to have the value 1 and all other dimensions are 0
 Integer flag1 = String_Super_Bit(ZCord_Array)|String_Super_Bit(Radius_Array)
 |String_Super_Bit(Major_Array);
// NOTE: this is the same as flag1 = 14; // dimensions 2, 3 and 4 only
// Att_Major_Array does not actually have to be set because it is automatically set with
// Att_Radius_Array

 super = Create_super(flag1, num_vert);
 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of
 Set_super_data(super,i,x,y,y,z,r,b);
where (x,y,z) are the coordinates of the ith vertex of super and r and f are the radius and major/
minor arc bulge for the arc between vertex i and vertex i+1.

NOTE: if the dimensions were not set when the super string was first created, then they can be
created later using the Super_string_use calls. For example
 Set_super_use_3d_level(super,1); // sets on the Att_ZCoord_Array dimension

Checking for a Polyline Super String
To check if a super string Element, super has a variable z-value and allows a radius for each
segment between vertices, use the code:

 Integer ret_z_array, use_z_array;
 Integer ret_r_array, use_r_array, ret_b_array, use_b_array;

 ret_z_array = Get_super_use_3d(super, use_z_array);
 ret_r_array = Get_super_use_segment_radius(super, use_r_array);

// note - setting the super string to have radius array also forces it to have a major/minor arc array

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so is like a 3d string.

If ret_r_array is 0 and use_r_array is 1 (from the Get_super_use_segment_radius call) then the
Page 544 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
super string super has an array of radii for the segments and so is like a polyline string.

The coordinate data can be read out of the super string super using repeated calls of

 Get_super_data(super,i,x,y,z,r,b);
where (x,y,z) are the coordinates of the ith vertex of super and Real r and Integer b will give the
radius and major/minor arc bulge flag for the segment from vertex i to vertex i+1.
Page 545Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.38.5 Pipe Super String
A traditional pipe string consists of (x,y,z) values at each vertex of the string with straight line
segments between each vertex, plus a diameter for the entire string. There is also a justification
(invert, obvert, centre) for what ALL the z values represent for the pipe string.

Creating a Pipe Super String with Straight Segments
To defined a super string super with num_vert vertices and different z-values at each vertex, plus
a pipe diameter and justification for the entire string:

 #include "setups.h"
 Element super;
// need dimension 2 Att_ZCoord_Array (2), Att_Pipe_Justify (23)
// and Att_Diameter_Value (5) to have the value 1, and all other dimensions are 0
 Integer flag1 = String_Super_Bit(ZCoord_Array)|String_Super_Bit(Pipe_Justify)|

 String_Super_Bit(Diameter_Value);
 super = Create_super(flag1, num_vert);
 Set_super_pipe_justify(super,2); // obvert justification for pipe string

 Set_super_pipe(super,0.5,0.0,1)); // set the string internal diameter to 0.5 units and
 // 0 wall thickness
 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of
 Set_super_vertex_coord(super,i,x,y,z);

where (x,y,z) are the coordinates of the obvert of the ith vertex of super.

NOTE: if the dimensions were not set when the super string was first created, then they can be
created later using the Super_string_use calls. For example

 Set_super_use_3d_level(super,1); // sets on the Att_ZCoord_Array dimension
 Set_super_use_pipe(super,1); // sets on the Att_Diameter_Value dimension
 Set_super_use_pipe_justify(super,1); // sets on the Att_Pipe_Justify dimension

Checking for a Pipe Super String
To check if a super string Element, super, has a variable z-value, a diameter and a pipe
justification, use the code:
 Integer ret_z_array, use_z_array;
 Integer ret_diam_value, use_diam_value;

 Integer ret_justification_value, use_justification_value;

 ret_z_array = Get_super_use_3d(super, use_z_array);

 ret_diam_value = Get_super_use_pipe(super, use_diam_value);
 ret_justification_value = Get_super_use_pipe_justify(super, use_justification_value);

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so is like a 3d super string.
If ret_diam_value is 0 and use_diam_value is 1 (from the Get_super_use_pipe call) then the
Page 546 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
super string super has a diameter for the entire string.
If ret_justification_value is 0 and use_justification_value is 1 (from the
Get_super_use_pipe_justify call) then the super string super has a justification value to use for
each vertex of the string.

The coordinate data can be read out of the super string super using repeated calls of
 Get_super_vertex_coord(super,i,x,y,z);
where (x,y,z) are the coordinates of the ith vertex of super.

The diameter and thickness for the super string super can be obtained by the call

 Real diameter, thickness;

 Integer internal_diameter;
 Get_super_pipe(super,diameter,internal_diameter);

The justification for the super string super can be obtained by the call

 integer justify;

 Get_super_pipe_justify(super,justify);
Page 547Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.38.6 Culvert Super String
A simple box culvert consists of (x,y,z) values at each vertex of the string with straight line
segments between each vertex, plus the one width and height for the entire string. There is also
a justification (invert, obvert, centre) for what ALL the z values represent for the pipe string.

Creating a Culvert Super String with Straight Segments
To defined a super string super with num_vert vertices and different z-values at each vertex, plus
a constant culvert width and height and justification for the entire string:

#include "setups.h"
 Element super;
// need dimension 2 Att_ZCoord_Array (2), Att_Pipe_Justify (23) and Att_Culvert_Value (24)
// to have the value 1, and all other dimensions are 0

 Integer flag1 = String_Super_Bit(ZCoord_Array)|String_Super_Bit(Pipe_Justify)|
 String_Super_Bit(Culvert_Value);
 super = Create_super(flag1, num_vert);

 Set_super_pipe_justify(super,2); // obvert justification for pipe string
 Set_super_culvert(super,10,5,1,1,1,1,1)); // set the string internal width to 10 units,
 // internal height to 5, and wall thickness of 1
 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of

 Set_super_vertex_coord(super,i,x,y,z);
where (x,y,z) are the coordinates of the obvert of the ith vertex of super.

NOTE: if the dimensions were not set when the super string was first created, then they can be
created later using the Super_string_use calls. For example
 Set_super_use_3d_level(super,1); // sets on the Att_ZCoord_Array dimension
 Set_super_use_pipe(super,1); // sets on the Att_Diameter_Value dimension

 Set_super_use_pipe_justify(super,1); // sets on the Att_Pipe_Justify dimension

Checking for a Culvert Super String with Constant Width and Height
To check if a super string Element, super, has a variable z-value, a constant width and height
and a pipe justification, use the code:
 Integer ret_z_array, use_z_array;

 Integer ret_culvert_value, use_culvert_value;
 Integer ret_justification_value, use_justification_value;

 ret_z_array = Get_super_use_3d(super, use_z_array);
 ret_culvert_value = Get_super_use_culvert(super, use_culvert_value);
 ret_justification_value = Get_super_use_pipe_justify(super, use_justification_value);

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so is like a 3d super string.
Page 548 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
If ret_culvert_value is 0 and use_culvert_value is 1 (from the Get_super_use_culvert call) then
the super string super has one width and height for the entire string.
If ret_justification_value is 0 and use_justification_value is 1 (from the
Get_super_use_pipe_justify call) then the super string super has a justification value to use for
each vertex of the string.

The coordinate data can be read out of the super string super using repeated calls of
 Get_super_vertex_coord(super,i,x,y,z);
where (x,y,z) are the coordinates of the ith vertex of super.

The width, height and four thicknesses for the super string super can be obtained by the call

 Real width, height, left_thick, right_thick, top_thick, bottom_thick;

 Integer internal_width, height;
 Get_super_culvert(super,width,height,left_thick,right_thick,
 top_thick,bottom_thick,internal_width_height);

The justification for the super string super can be obtained by the call

 integer justify;

 Get_super_pipe_justify(super,justify);
Page 549Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.38.7 Polyline Pipe Super String
Unlike the old pipe string, it is possible to defined a super string super with a (x,y,z) coordinates
at each vertex but rather than just having straight line segments between vertices, the segments
may be arcs, plus a diameter and justification for the entire string. There is NO equivalent
superseded string.

Creating a Polyline Pipe Super String
So to defined a super string super with num_vert vertices, with variable z, arc segments,
diameter and justification:

 #include "setups.h"
 Element super;

// need dimensions Att_ZCoord_Array (2), Att_Radius_Array (3), Att_Major_Array (4),
// Att_Pipe_Justify (23) and Att_Diameter_Value (5) to have the value 1
// and all other dimensions the value 0
 Integer flag1 = String_Super_Bit(ZCord_Array)|String_Super_Bit(Radius_Array)
 |String_Super_Bit(Major_Array)|String_Super_Bit(Pipe_Justify)
 |String_Super_Bit(Diameter_Value);
 super = Create_super(flag1, num_vert);

 Set_super_pipe_justify(super,0); // invert justification for polyline pipe string
 Set_super_pipe(super,0.5,0.0,1); // set the string internal diameter to 0.5 units
// // 0 wall thickness

 Set_colour(super,4); // cyan in the standard colours.4d

The data could then be loaded into super using repeated calls of

 Set_super_data(super,i,x,y,y,z,r,b);
where (x,y,z) are the coordinates of the ith vertex of super and r and b are the radius and major/
minor arc bulge for the arc between vertex i and vertex i+1.

NOTE: if the dimensions were not set when the super string was first created, then they can be
created later using the Super_string_use calls. For example
 Set_super_use_3d_level(super,1); // sets on the Att_ZCoord_Array dimension
 Set_super_use_segment_radius(super,1); // sets on the Att_Radius_Array dimension

 Set_super_use_pipe(super,1); // sets on the Att_Diameter_Value dimension
 Set_super_use_pipe_justify(super,1); // sets on the Att_Pipe_Justify dimension

Checking for a Polyline Pipe Super String
To check if a super string Element, super has a variable z-value, allows a radius for each
segment between vertices, and a diameter and justification for the string, use the code:

 Integer ret_z_array, use_z_array;
 Integer ret_r_array, use_r_array, ret_f_array, use_f_array;
 Integer ret_diam_value, use_diam_value;

 Integer ret_justification_value, use_justification_value;

 ret_z_array = Get_super_use_3d(super, use_z_array);
Page 550 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
 ret_r_array = Get_super_use_segment_radius(super, use_r_array);
// note - setting the super string to have a radius array also forces it to have
// a major/minor arc array
 ret_diam_value = Get_super_use_pipe(super, use_diam_value);

 ret_justification_value = Get_super_use_pipe_justify(super, use_justification_value);

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so is like a 3d super string.

If ret_r_array is 0 and use_r_array is 1 (from the Get_super_use_segment_radius call) then the
super string super has an array of radii for the segments and so is like a polyline string.
If ret_diam_value is 0 and use_diam_value is 1 (from the Get_super_use_pipe call) then the
super string super has a diameter for the entire string.

If ret_justification_value is 0 and use_justification_value is 1 (from the
Get_super_use_pipe_justify call) then the super string super has a justification value to use for
each vertex of the string.

The coordinate data can be read out of the super string super using repeated calls of

 Get_super_data(super,i,x,y,z,r,b);
where (x,y,z) are the coordinates of the ith vertex of super and Real r and Integer b will give the
radius and major/minor arc bulge for the segment from vertex i to vertex i+1.

The diameter for the super string super can be obtained by the call

 Real diameter;

 Get_super_pipe(super,diameter);

The justification for the super string super can be obtained by the call

 integer justify;
 Get_super_pipe_justify(super,justify);
Page 551Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.38.8 4d Super String
A traditional 4d string consists of different (x,y,z) values at each vertex (with straight line
segments between each vertex) and also a different text at each vertex. So each vertex has the
values (x,y,z,t) where (x,y,z) are the coordinates of the vertex and t is the text at the vertex.

The 4d string also has drawing information to describe how the text is drawn on a plan view or
plot. All the text is drawn in the same way.

Creating a 4d Super String with Straight Segments
To defined a super string super with num_vert vertices and different z-values and text at each
vertex. There are only straight segments between the vertices and all the text is drawn the same
way: World units will be used for the text size.
 #include "setups.h"
 Element super;

// need dimensions Att_ZCoord_Array (2), Att_Vertex_Text_Array (7),
// Att_Vertex_Annotate_Value (14) and Att_Vertex_World_Annotate (30) to have the value 1
// and all other dimensions are 0
 Integer flag1 = String_Super_Bit(ZCord_Array)|String_Super_Bit(Vertex_Text_Array)
 |String_Super_Bit(Vertex_Annotate_Value)

 |String_Super_Bit(Vertex_World_Annotate);
//

 super = Create_super(flag1, num_vert);
 Set_colour(super,4); // cyan in the standard colours.4d
The drawing information for the text is set by

 Set_super_vertex_text_style(super,1,"Arial"); // 1 is ignored, textstyle "Arial"
 Set_super_vertex_text_colour(super,1,5); // 1 is ignored, colour number is 5
 Set_super_vertex_text_size(super,1,2.0); // 1 is ignored, size is 2 world units

The data could then be loaded into super using repeated calls of
 Set_super_vertex_coord(super,i,x,y,z);

 Set_super_vertex_text(super,i,txt);
where (x,y,z) are the coordinates of the ith vertex of super and txt is the Text at vertex i.

NOTE: if the dimensions were not set when the super string was first created, then they can be
created later using the Super_string_use calls. For example
 Set_super_use_3d_level(super,1); // sets on the Att_ZCoord_Array dimension
 Set_super_use_vertex_text_array(super,1); // sets on the Att_Vertex_Text_Array dimension

 Set_super_use_vertex_annotation_value(super,1); // sets on the
 //Att_Vertex_Annotate_Value dimension

Checking for a 4d Super String
To check if a super string Element, super, has a variable z-value, use the code:

 Integer ret_z_array, use_z_array, ret_t_array, use_t_array;
 ret_z_array = Get_super_use_3d(super, use_z_array);
Page 552 Examples of Setting Up Super Strings

Chapter 5 12dPL Library Calls
 ret_t_array = Get_super_use_vertex_text_array(super, use_t_array);

If ret_z_array is 0 and use_z_array is 1 (from the Get_super_use_3d call) then the super string
super has an array of z-values and so is like a 3d super string.

If ret_t_array is 0 and use_t_array is 1 (from the Get_super_use_vertex_text_array call) then the
super string super also has an array of text values and so is like a 4d string.

The coordinate data can be read out of the super string super using repeated calls of
 Get_super_vertex_coord(super,i,x,y,z);
 Get_super_vertex_text(super,i,txt);

where (x,y,z) are the coordinates of the ith vertex of super, and txt is the Text at the ith vertex.
Page 553Examples of Setting Up Super Strings

12d Model Programming Language Manual
5.39 Super Alignment String Element
A Super Alignment string holds both the horizontal and vertical information needed in defining
entities such as the centre line of a road.
Horizontal intersection points (hips), lines, arcs and transitions (such as spirals) are used to
define the plan geometry.
Vertical intersection points (vips), lines and parabolic and circular curves are used to define the
vertical geometry.

The process to define an Super Alignment string is
(a) create an Super Alignment Element
(b) add the horizontal geometry
(c) perform a Calc_alignment on the string
(d) add the vertical geometry
(e) perform a Calc_alignment
For an existing Super Alignment string, there are functions to get the positions of all critical points
(such as horizontal and vertical tangent points, spiral points, curve centres) for the string.

The functions used to create new Super Alignment strings and make inquiries and modifications
to existing Alignment strings now follow.

Element Create_super_align()
Name
Element Create_align()

Description
Create an Element of type Super_Alignment.
The function return value gives the actual Element created.
If the Super Alignment string could not be created, then the returned Element will be null.

ID = 2120

Create_super_align(Element seed)
Name
Element Create_align(Element seed)

Description
Create an Element of type Super_Alignment, and set the colour, name, style etc. of the new
string to be the same as those from the Element seed.

If the Super Alignment string could not be created, then the returned Element will be null.
ID = 2121

Is_super_alignment_solved(Element super_alignment)
Name
Integer Is_super_alignment_solved(Element super_alignment)

Description
Check if the geometry of the Element super_alignment solves.
Page 554 Super Alignment String Element

Chapter 5 12dPL Library Calls
The Element super_alignment must be of type Super_Alignment.
A no-zero function return value indicates that the geometry will solve.
A zero function return value indicates the geometry for the will not solve, or that
super_alignment is not of type Super_Alignment.

Warning this is the opposite of most 12dPL function return values.
ID = 2680

Get_super_alignment_style(Element super_alignment,Text &style)
Name
Integer Get_super_alignment_style(Element super_alignment,Text &style)

Description
This call retrieves the current alignment style of the super alignment super_alignment and
stores its name in the Text style.
This call returns 0 if it succeeds and non zero if it fails.

ID = 2805

Set_super_alignment_style(Element super_alignment,Text style)
Name
Integer Set_super_alignment_style(Element super_alignment,Text style)

Description
This call sets the current alignment style of the super alignment super_alignment to be the style
named style.

This call returns 0 if it succeeds and non zero if it fails.
ID = 2806

Get_super_alignment_valid_horizontal(Element super_alignment,Integer &valid)
Name
Get_super_alignment_valid_horizontal(Element super_alignment,Integer &valid)

Description
Check if horizontal parts of a super alignment super_alignment is valid
Output value valid: 0 not valid, 1 valid
A return value of zero indicates the function call was successful.

ID = 3053

Get_super_alignment_valid_vertical(Element super_alignment,Integer &valid)
Name
Get_super_alignment_valid_vertical(Element super_alignment,Integer &valid)

Description
Check if vertical parts of a super alignment super_alignment is valid
Output value valid: 0 not valid, 1 valid
Page 555Super Alignment String Element

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 3054

Get_super_alignment_valid(Element super_alignment,Integer &valid)
Name
Get_super_alignment_valid(Element super_alignment,Integer &valid)

Description
Check if a super alignment super_alignment is valid
Output value valid: 0 not valid, 1 valid
A return value of zero indicates the function call was successful.

ID = 3055

Get_super_alignment_horizontal_string(Element super_alignment)
Name
Element Get_super_alignment_horizontal_string(Element super_alignment)

Description
Return a super string that is the same as the horizontal parts of a super alignment
super_alignment
ID = 1898

Get_super_alignment_valid_vertical(Element super_alignment)
Name
Element Get_super_alignment_vertical_string(Element super_alignment)

Description
Return a super string that is the same as the vertical parts of a super alignment
super_alignment
ID = 1899

Get_super_alignment_vertical_position(Element super_alignment,Real
chainage,Real &level,Real &grade,Real &mvalue)
Name
Integer Get_super_alignment_vertical_position(Element super_alignment,Real chainage,Real
&level,Real &grade,Real &mvalue)

Description
Get the details (level, grade, mvalue) of the vertical information of a super alignment
super_alignment at a given chainage
A return value of zero indicates the function call was successful.

ID = 2167

Get_super_alignment_widening_left_side(Element super_alignment)
Page 556 Super Alignment String Element

Chapter 5 12dPL Library Calls
Name
Element Get_super_alignment_widening_left_side(Element super_alignment)

Description
Return a super string that is the same as the left side widening of a super alignment
super_alignment
ID = 2198

Get_super_alignment_widening_right_side(Element super_alignment)
Name
Element Get_super_alignment_widening_right_side(Element super_alignment)

Description
Return a super string that is the same as the right side widening of a super alignment
super_alignment
ID = 2199

Get_super_alignment_super_elevation_left_side(Element super_alignment)
Name
Element Get_super_alignment_super_elevation_left_side(Element super_alignment)

Description
Return a super string that is the same as the left side elevation of a super alignment
super_alignment
ID = 2200

Get_super_alignment_super_elevation_right_side(Element super_alignment)
Name
Element Get_super_alignment_super_elevation_right_side(Element super_alignment)

Description
Return a super string that is the same as the right side elevation of a super alignment
super_alignment
ID = 2201

Get_super_alignment_sight_distance_forward(Element super_alignment)
Name
Element Get_super_alignment_sight_distance_forward(Element super_alignment)

Description
Return a super string that is the same as the forward sight distance of a super alignment
super_alignment
ID = 2274

Get_super_alignment_sight_distance_reverse(Element super_alignment)
Name
Page 557Super Alignment String Element

12d Model Programming Language Manual
Element Get_super_alignment_sight_distance_reverse(Element super_alignment)

Description
Return a super string that is the same as the reverse sight distance of a super alignment
super_alignment
ID = 2275

Get_super_alignment_number_of_profiles(Element alignment,Integer &count)
Name
Integer Get_super_alignment_number_of_profiles(Element alignment,Integer &count)

Description
Get the number of profiles count of a super alignment alignment
A return value of zero indicates the function call was successful.
ID = 2624

Get_super_alignment_profile(Element alignment,Integer &index)
Name
Element Get_super_alignment_profile(Element alignment,Integer &index)

Description
Return a super string that is the same as the profile of given index of a super alignment
alignment
ID = 2625

Get_super_alignment_profile(Element alignment,Text name)
Name
Element Get_super_alignment_profile(Element alignment,Text name)

Description
Return a super string that is the same as the profile of given name of a super alignment
alignment
ID = 2276

Get_super_alignment_named_parts(Element alignment,Integer
vert_hori,Dynamic_Text &names)
Name
Integer Get_super_alignment_named_parts(Element alignment,Integer vert_hori,Dynamic_Text &names)

Description
Get the list of named part (vertical if vert_hori is 0; horizontal otherwise) names of a super
alignment alignment and assign their name to the list names
A return value of zero indicates the function call was successful.
ID = 3535
Page 558 Super Alignment String Element

Chapter 5 12dPL Library Calls
Get_super_alignment_named_positions(Element alignment,Dynamic_Text
&names)
Name
Integer Get_super_alignment_named_positions(Element alignment,Dynamic_Text &names)

Description
Get the list of named positions of a super alignment alignment and assign their names to the list
names
A return value of zero indicates the function call was successful.
ID = 3536

Get_super_alignment_named_part_chainage(Element alignment,Integer
vert_hori,Text name,Real &ch)
Name
Integer Get_super_alignment_named_part_chainage(Element alignment,Integer vert_hori,Text
name,Real &ch)

Description
Get the chainage ch of named part (vertical if vert_hori is 0; horizontal otherwise) with given
name for a super alignment alignment.
A return value of zero indicates the function call was successful.
ID = 3537

Get_super_alignment_named_position_chainage(Element alignment,Text
name,Real &ch)
Name
Integer Get_super_alignment_named_position_chainage(Element alignment,Text name,Real &ch)

Description
Get the chainage ch of named position with given name for a super alignment alignment.
A return value of zero indicates the function call was successful.
ID = 3538

Get_super_alignment_named_part_segments(Element alignment,Integer
vert_hori,Text name,Dynamic_Integer &segment_indices)
Name
Integer Get_super_alignment_named_part_segments(Element alignment,Integer vert_hori,Text
name,Dynamic_Integer &segment_indices)

Description
Get the list of segment indices segment_indices of the named part (vertical if vert_hori is 0;
horizontal otherwise) with given name for a super alignment alignment.
A return value of zero indicates the function call was successful.

ID = 3539

Get_super_alignment_named_part_segment(Element alignment,Integer
Page 559Super Alignment String Element

12d Model Programming Language Manual
vert_hori,Text name,Segment &segment)
Name
Integer Get_super_alignment_named_part_segment(Element alignment,Integer vert_hori,Text
name,Segment &segment)

Description
Get the Segment segment of the named part (vertical if vert_hori is 0; horizontal otherwise) with
given name for a super alignment alignment.
A return value of zero indicates the function call was successful.
ID = 3540

Get_super_alignment_named_chainage(Element alignment,Integer vert_hori,Real
ch,Text &name,Real &extension)
Name
Integer Get_super_alignment_named_chainage(Element alignment,Integer vert_hori,Real ch,Text
&name,Real &extension)

Description
For a super alignment alignment, find the named part (vertical if vert_hori is 0; horizontal
otherwise) containing a given chainage ch, set Text name to the part name, and extension to
the extension to the chainage point.

A return value of zero indicates the function call was successful.
ID = 3541

Get_super_alignment_named_segment(Element alignment,Integer vert_hori,Real
ch,Text &name)
Name
Integer Get_super_alignment_named_segment(Element alignment,Integer vert_hori,Real ch,Text &name)

Description
For a super alignment alignment, find the named part (vertical if vert_hori is 0; horizontal
otherwise) containing a given chainage ch, set Text name to the part name.
A return value of zero indicates the function call was successful.

ID = 3542

Set_super_alignment_use_equalities(Element alignment,Integer use)
Name
Integer Set_super_alignment_use_equalities(Element alignment,Integer use)

Description
For a super alignment alignment, create (if use is 1) or delete (if use is 0) the chainage
equalities object within the super alignment.

A return value of zero indicates the function call was successful.
ID = 2181

Get_super_alignment_use_equalities(Element alignment,Integer &use)
Page 560 Super Alignment String Element

Chapter 5 12dPL Library Calls
Name
Integer Get_super_alignment_use_equalities(Element alignment,Integer &use)

Description
For a super alignment alignment, check if the chainage equalities object exists within the super
alignment and set use to 1 if exists; 0 otherwise.
A return value of zero indicates the function call was successful.
ID = 2182

Set_super_alignment_equalities_active(Element alignment,Integer active)
Name
Integer Set_super_alignment_equalities_active(Element alignment,Integer active)

Description
For a super alignment alignment, create (if active is 1) or delete (if active is 0) the chainage
equalities object within the super alignment. If active is 1 then also turn on the equalities object

A return value of zero indicates the function call was successful.
ID = 2183

Get_super_alignment_equalities_active(Element alignment,Integer &active)
Name
Integer Get_super_alignment_equalities_active(Element alignment,Integer &active)

Description
For a super alignment alignment, check if the chainage equalities object exists within the super
alignment and set active to 1 if exists and turned on; 0 otherwise.
A return value of zero indicates the function call was successful.
ID = 2184

Super_alignment_equality_part_append(Element alignment,Text part)
Name
Integer Super_alignment_equality_part_append(Element alignment,Text part)

Description
For a super alignment alignment, append a new equality part with the given name part.
A return value of zero indicates the function call was successful.

ID = 2185

Super_alignment_equality_part_insert(Element alignment,Integer position,Text
part)
Name
Integer Super_alignment_equality_part_insert(Element alignment,Integer position,Text part)

Description
For a super alignment alignment, insert a new equality part at the given position with the given
name part.
Page 561Super Alignment String Element

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 2186

Super_alignment_equality_part_delete(Element alignment,Integer position)
Name
Integer Super_alignment_equality_part_delete(Element alignment,Integer position)

Description
For a super alignment alignment, delete the equality part at the given position
A return value of zero indicates the function call was successful.
ID = 2187

Get_super_alignment_equality_parts(Element alignment,Integer &num_parts)
Name
Integer Get_super_alignment_equality_parts(Element alignment,Integer &num_parts)

Description
For a super alignment alignment, get the number of the equality parts as num_parts.
A return value of zero indicates the function call was successful.

ID = 2188

Get_super_alignment_equality_part_id(Element alignment,Integer
position,Integer &id)
Name
Integer Get_super_alignment_equality_part_id(Element alignment,Integer position,Integer &id)

Description
For a super alignment alignment, get the id of the equality part at given position.
A return value of zero indicates the function call was successful.

ID = 2189

Get_super_alignment_equality_part_type(Element alignment,Integer position,Text
&type)
Name
Integer Get_super_alignment_equality_part_type(Element alignment,Integer position,Text &type)

Description
For a super alignment alignment, get the type of the equality part at given position.
A return value of zero indicates the function call was successful.
ID = 2190

Get_super_alignment_equality_part(Element alignment,Integer position,Text
&name)
Name
Page 562 Super Alignment String Element

Chapter 5 12dPL Library Calls
Integer Get_super_alignment_equality_part(Element alignment,Integer position,Text &name)

Description
For a super alignment alignment, get the name of the equality part at given position.

A return value of zero indicates the function call was successful.
ID = 2191

Calc_super_alignment_equalities(Element alignment)
Name
Integer Calc_super_alignment_equalities(Element alignment)

Description
For a super alignment alignment, rebuild the chainage equality.
A return value of zero indicates the function call was successful.

ID = 2192

Get_super_alignment_equality_chainage(Element alignment,Real
raw_chainage,Text &equality_name,Integer &equality_zone,Real
&equality_offset)
Name
Integer Get_super_alignment_equality_chainage(Element alignment,Real raw_chainage,Text
&equality_name,Integer &equality_zone,Real &equality_offset)

Description
For a super alignment alignment, get the equality_name; equality_zone; equality_offset of
the chainage equality part at given raw_chainage.
A return value of zero indicates the function call was successful.

ID = 2193

Get_super_alignment_raw_chainage(Element alignment,Text
equality_name,Integer equality_zone,Real equality_offset,Real &raw_chainage)
Name
Integer Get_super_alignment_raw_chainage(Element alignment,Text equality_name,Integer
equality_zone,Real equality_offset,Real &raw_chainage)

Description
For a super alignment alignment, get the raw_chainage of the chainage equality part with given
equality_name; equality_zone; equality_offset .
A return value of zero indicates the function call was successful.
ID = 2194

Get_super_alignment_number_of_equalities(Element alignment,Integer &count)
Name
Integer Get_super_alignment_number_of_equalities(Element alignment,Integer &count)

Description
Page 563Super Alignment String Element

12d Model Programming Language Manual
For a super alignment alignment, get the count of number of solved chainage equalities (K-post
and internal equalities).
A return value of zero indicates the function call was successful.
ID = 2195

Get_super_alignment_equality_data(Element align,Integer index,Real
&raw_chainage,Integer &mode,Text &equality_name,Integer
&equality_zone,Real &equality_offset,Text &pre_equality_name,Integer
&pre_equality_zone,Real &equality_before)
Name
Integer Get_super_alignment_equality_data(Element align,Integer index,Real &raw_chainage,Integer
&mode,Text &equality_name,Integer &equality_zone,Real &equality_offset,Text
&pre_equality_name,Integer &pre_equality_zone,Real &equality_before)

Description
For a super alignment alignment, get the chainage equality information: raw_chainage, mode,
equality_name, equality_zone, equality_offset, pre_equality_name, pre_equality_zone,
equality_before at a given index.
A return value of zero indicates the function call was successful.

ID = 2196

Get_super_alignment_equality_info(Element alignment,Real
chainage,Equality_Info &equality_info)
Name
Integer Get_super_alignment_equality_info(Element alignment,Real chainage,Equality_Info
&equality_info)

Description
For a super alignment alignment, get the chainage equality information: equality_info at a
given chainage.
A return value of zero indicates the function call was successful.

ID = 2223

Get_equality_info_valid(Equality_Info &info,Integer &valid)
Name
Integer Get_equality_info_valid(Equality_Info &info,Integer &valid)

Description
Get the valid flag of a super alignment chainage Equality_Info info.

A return value of zero indicates the function call was successful.
ID = 2224

Get_equality_info_name(Equality_Info &info,Text &name)
Name
Integer Get_equality_info_name(Equality_Info &info,Text &name)
Page 564 Super Alignment String Element

Chapter 5 12dPL Library Calls
Description
Get the name of a super alignment chainage Equality_Info info.
A return value of zero indicates the function call was successful.

ID = 2225

Get_equality_info_zone(Equality_Info &info,Integer &zone)
Name
Integer Get_equality_info_zone(Equality_Info &info,Integer &zone)

Description
Get the zone of a super alignment chainage Equality_Info info.
A return value of zero indicates the function call was successful.
ID = 2226

Get_equality_info_offset(Equality_Info &info,Real &offset)
Name
Integer Get_equality_info_offset(Equality_Info &info,Real &offset)

Description
Get the offset of a super alignment chainage Equality_Info info.
A return value of zero indicates the function call was successful.

ID = 2227

Get_equality_info_prevalid(Equality_Info &info,Integer &prevalid)
Name
Integer Get_equality_info_prevalid(Equality_Info &info,Integer &prevalid)

Description
Get the prevalid flag of a super alignment chainage Equality_Info info.

A return value of zero indicates the function call was successful.
ID = 2228

Get_equality_info_prename(Equality_Info &info,Text &prename)
Name
Integer Get_equality_info_prename(Equality_Info &info,Text &prename)

Description
Get the prename of a super alignment chainage Equality_Info info.
A return value of zero indicates the function call was successful.
ID = 2229

Get_equality_info_prezone(Equality_Info &info,Integer &prezone)
Name
Page 565Super Alignment String Element

12d Model Programming Language Manual
Integer Get_equality_info_prezone(Equality_Info &info,Integer &prezone)

Description
Get the prezone of a super alignment chainage Equality_Info info.

A return value of zero indicates the function call was successful.
ID = 2230

Get_equality_info_preoffset(Equality_Info &info,Real &preoffset)
Name
Integer Get_equality_info_preoffset(Equality_Info &info,Real &preoffset)

Description
Get the zone of a super alignment chainage Equality_Info info.
A return value of zero indicates the function call was successful.
ID = 2231

Set_equality_label_data(Equality_Label &label,Text name,Integer value)
Name
Integer Set_equality_label_data(Equality_Label &label,Text name,Integer value)

Description
Set the name and the Integer value of a super alignment chainage Equality_Label label.
A return value of zero indicates the function call was successful.
ID = 2232

Set_equality_label_data(Equality_Label &label,Text name,Text value)
Name
Integer Set_equality_label_data(Equality_Label &label,Text name,Text value)

Description
Set the name and the Text value of a super alignment chainage Equality_Label label.
A return value of zero indicates the function call was successful.
ID = 2233

Get_equality_label_data(Equality_Label &label,Text name,Integer &value)
Name
Integer Get_equality_label_data(Equality_Label &label,Text name,Integer &value))

Description
Get the name and the Integer value of a super alignment chainage Equality_Label label.
A return value of zero indicates the function call was successful.

ID = 2234

Get_equality_label_data(Equality_Label &label,Text name,Text &value)
Page 566 Super Alignment String Element

Chapter 5 12dPL Library Calls
Name
Integer Get_equality_label_data(Equality_Label &label,Text name,Text &value)

Description
Get the name and the Text value of a super alignment chainage Equality_Label label.
A return value of zero indicates the function call was successful.
ID = 2235

Create_equality_label(Real raw_chainage,Equality_Info
&equality_info,Equality_Label &equality_label,Text &text_label)
Name
Integer Create_equality_label(Real raw_chainage,Equality_Info &equality_info,Equality_Label
&equality_label,Text &text_label)

Description
For plotting???
Create the text_label from equality_info and equality_label at given raw_chainage.
A return value of zero indicates the function call was successful.

ID = 2236

Get_super_alignment_equality_chainage(Element alignment,Integer item,Real
&chainage)
Name
Integer Get_super_alignment_equality_chainage(Element alignment,Integer item,Real &chainage)

Description
For a super alignment alignment, get the raw chainage from chainage equality with a given
item.
A return value of zero indicates the function call was successful.
ID = 2237

Get_super_alignment_equality_info(Element alignment,Real
chainage,Equality_Info &equality_info)
Name
Integer Get_super_alignment_equality_info(Element alignment,Real chainage,Equality_Info
&equality_info)

Description
For a super alignment alignment, get the chainage equality information: equality_info at a
given chainage.

A return value of zero indicates the function call was successful.
ID = 2238
Page 567Super Alignment String Element

12d Model Programming Language Manual
5.40 Arc String Element
A 12d Model Arc string is similar to the entity Arc in that it is a helix which projects onto an arc in
the (x,y) plane.
The Element type Arc has a radius and three dimensional co-ordinates for its centre, start and
end points. The radius can be positive or negative.
A positive radius indicates that the direction of travel between the start and end points is in the
clockwise direction (right hand curve).

A negative radius indicates that the direction of travel between the start and end points is in the
anti-clockwise direction (left hand curve).
Unlike the variable of type Arc, the Element arc string has Element header information and can
be added to 12d Model models. Thus arc strings can be drawn on a 12d Model view and stored
in the 12d Model database.

Create_arc(Arc arc)
Name
Element Create_arc(Arc arc)

Description
Create an Element of type Arc from the Arc arc.
The arc string has the same centre, radius, start and end points as the Arc arc.

The function return value gives the actual Element created.
If the arc string could not be created, then the returned Element will be null.
ID = 294

Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real
z3)
Name
Element Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)

Description
Create an Element of type Arc through three given points.

The arc string has start point (x1,y1,z1), an intermediate point (x2,y2,z2) on the arc and the end
point (x3,y3,z3).
The centre and radius of the arc will be automatically calculated.
The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.
ID = 312

Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real
ye,Real ze)
Name
Element Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)

Description
Page 568 Arc String Element

Chapter 5 12dPL Library Calls
Create an Element of type Arc with centre (xc,yc,zc), radius rad, start point (xs,ys,zs) and end
point (xe,ye,ze).
The function return value gives the actual Element created.
If the arc string could not be created, then the returned Element will be null.

ID = 296

Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real
ye,Real ze)
Name
Element Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)

Description
Create an Element of type Arc with centre (xc,yc,zc), and radius rad.
The points (xs,ys,zs) and (xe,ye,ze) define the start and end points respectively for the arc. If
either of the points do not lie on the plan circle with centre (xc,yc) and radius rad, then the point
is dropped perpendicularly onto the plan circle to define the (x,y) co-ordinates for the relevant
start or end point.

The function return value gives the actual Element created.
If the arc string could not be created, then the returned Element will be null.
ID = 296

Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep)
Name
Element Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep)

Description
Create an Element of type Arc with centre point (xc,yc,zc), start point (xs,ys,zs) and sweep
angle sweep.
The absolute radius is calculated as the distance between the centre and start point of the arc.
The sign of the radius comes from the sweep angle.

The sweep angle is measured in a clockwise direction from the line joining the centre to the arc
start point. The units for sweep angles are radians.
Hence the sweep angle is measured in radians and a positive value indicates a clockwise
direction and a positive radius.
The end point of the arc will be automatically created.

The function return value gives the actual Element created.
If the arc string could not be created, then the returned Element will be null.
ID = 313

Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real
ze,Integer dir)
Name
Element Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze,Integer dir)

Description
Create an Element of type Arc with centre (xc,yc,zc), start point (xs,ys,zs) and end point
Page 569Arc String Element

12d Model Programming Language Manual
(xe,ye,ze).
The absolute radius is calculated as the distance between the centre and start point of the arc.
If dir is positive, the radius is taken to be positive.

If dir is negative, the radius is taken to be negative.
The function return value gives the actual Element created.
If the arc string could not be created, then the returned Element will be null.

ID = 314

Create_arc_2(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real start_angle)
Name
Element Create_arc_2(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real start_angle)

Description
Create an Element of type Arc with radius rad. The arc starts at the point (xs,ys,zs) with tangent
angle start_angle and total arc length arc_length.

The centre and end points will be automatically created.
The function return value gives the actual Element created.
If the arc string could not be created, then the returned Element will be null.

ID = 316

Create_arc_3(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real chord_angle)
Name
Element Create_arc_3(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real chord_angle)

Description
Create an Element of type Arc with radius rad. The arc starts at the point (xs,ys,zs) with a chord
angle chord_angle and total arc length arc_length.
The centre and end points will be automatically created.
The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.
ID = 317

Set_arc_centre(Element elt,Real xc,Real yc,Real zc)
Name
Integer Set_arc_centre(Element elt,Real xc,Real yc,Real zc)

Description
Set the centre point of the Arc string given by Element elt to (xc,yc,zc).
The start and end points are also translated by the plan distance between the old and new
centre.
A function return value of zero indicates the centre was successfully modified.

ID = 319
Page 570 Arc String Element

Chapter 5 12dPL Library Calls
Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc)
Name
Integer Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc)

Description
Get the centre point for Arc string given by Element elt.
The centre of the arc is (xc,yc,zc).
A function return value of zero indicates the centre was successfully returned.
ID = 318

Set_arc_radius(Element elt,Real rad)
Name
Integer Set_arc_radius(Element elt,Real rad)

Description
Set the radius of the Arc string given by Element elt to rad. The new radius must be non-zero.

The start and end points are projected radially so that they still lie on the arc.
A function return value of zero indicates the radius was successfully modified.
ID = 321

Get_arc_radius(Element elt,Real &rad)
Name
Integer Get_arc_radius(Element elt,Real &rad)

Description
Get the radius for Arc string given by Element elt.
The radius is given by rad.

A function return value of zero indicates the radius was successfully returned.
ID = 320

Set_arc_start(Element elt,Real xs,Real ys,Real zs)
Name
Integer Set_arc_start(Element elt,Real xs,Real ys,Real zs)

Description
Set the start point of the Arc string given by Element elt to (xs,ys,zs).
If the start point does not lie on the arc, then the point (xs,ys,zs) is projected radially onto the arc
and the projected point taken as the start point.
A function return value of zero indicates the start point was successfully modified.

ID = 323

Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs)
Name
Integer Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs)
Page 571Arc String Element

12d Model Programming Language Manual
Description
Get the start point for Arc string given by Element elt.
The start of the arc is (xs,ys,zs).

A function return value of zero indicates that the start point was successfully returned.
ID = 322

Set_arc_end(Element elt,Real xe,Real ye,Real ze)
Name
Integer Set_arc_end(Element elt,Real xe,Real ye,Real ze)

Description
Set the end point of the Arc string given by Element elt to (xe,ye,ze).
If the end point does not lie on the arc, then the point (xe,ye,ze) is projected radially onto the arc
and the projected point taken as the end point.
A function return value of zero indicates the end point was successfully modified.

ID = 325

Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze)
Name
Integer Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze)

Description
Get the end point for Arc string given by Element elt.
The end of the arc is (xe,ye,ze).
A function return value of zero indicates that the end point was successfully returned.

ID = 324

Set_arc_data(Element elt,Real xc,Real yc,Real zc, Real rad,Real xs,Real ys,Real
zs,Real xe,Real ye,Real ze)
Name
Integer Set_arc_data(Element elt,Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real
ye,Real ze)

Description
Set the data for the Arc string given by Element elt.
The arc is given the centre (xc,yc,zc), radius rad and start and end points (xs,ys,zs) and
(xe,ye,ze) respectively.
A function return value of zero indicates the arc data was successfully set.

ID = 327

Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad,Real &xs,Real
&ys,Real &zs,Real &xe,Real &ye,Real &ze)
Name
Integer Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad,Real &xs,Real &ys,Real
&zs,Real &xe,Real &ye,Real &ze)
Page 572 Arc String Element

Chapter 5 12dPL Library Calls
Description
Get the data for the Arc string given by Element elt.
The arc has centre (xc,yc,zc), radius rad and start and end points (xs,ys,zs) and (xe,ye,ze)
respectively.

A function return value of zero indicates that the arc date was successfully returned.
ID = 326

Set_arc_interval(Element elt,Real interval)
Name
Integer Set_arc_interval(Element elt,Real interval)

Description
Set the chainage interval of the Arc string given by Element elt to interval.
A function return value of zero indicates the chainage interval was successfully modified.

ID = 2257

Get_arc_interval(Element elt,Real &interval)
Name
Integer Get_arc_interval(Element elt,Real &interval)

Description
Get the chainage interval for Arc string given by Element elt and assign to interval.
A function return value of zero indicates the chainage interval was successfully returned.
ID = 2258

Set_arc_chord_arc(Element elt,Real chord_arc)
Name
Integer Set_arc_chord_arc(Element elt,Real chord_arc)

Description
Set the chord to arc tolerance for Arc string given by Element elt to chord_arc.
A function return value of zero indicates the tolerance was successfully modified.
ID = 2259

Get_arc_chord_arc(Element elt,Real &chord_arc)
Name
Integer Get_arc_chord_arc(Element elt,Real &chord_arc)

Description
Get the chord to arc tolerance for Arc string given by Element elt and assign to chord_arc.
A function return value of zero indicates the tolerance was successfully returned.

ID = 2260
Page 573Arc String Element

12d Model Programming Language Manual
5.41 Circle String Element
A 12d Model Circle string is a circle in the (x,y) plane with a constant z value (height).

Create_circle(Real xc,Real yc,Real zc,Real rad)
Name
Element Create_circle(Real xc,Real yc,Real zc,Real rad)

Description
Create an Element of type Circle with centre (xc,yc), radius rad and z value (height) zc.
The function return value gives the actual Element created.

If the circle string could not be created, then the returned Element will be null.
ID = 307

Create_circle(Real xc,Real yc,Real zc, Real xp,Real yp,Real zp)
Name
Element Create_circle(Real xc,Real yc,Real zc,Real xp,Real yp,Real zp)

Description
Create an Element of type Circle with centre (xc,yc) and point (xp,yp) on the circle.
The height of the circle is zc.

The radius of the circle will be automatically calculated.
The function return value gives the actual Element created.
If the circle string could not be created, then the returned Element will be null.

 ID = 308

Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real
z3)
Name
Element Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)

Description
Create an Element of type Circle going through the three points (x1,y1), (x2,y2) and (
x3,y3).
The height of the circle is z1.

The centre and radius of the circle will be automatically created.
The function return value gives the actual Element created.
If the circle string could not be created, then the returned Element will be null.

ID = 309

Set_circle_data(Element elt,Real xc,Real yc,Real zc,Real rad)
Name
Integer Set_circle_data(Element elt,Real xc,Real yc,Real zc,Real rad)

Description
Page 574 Circle String Element

Chapter 5 12dPL Library Calls
Set the data for the Circle string given by Element elt.
The centre of the circle is set to (xc,yc,zc), the height to zc and the radius to rad.
A function return value of zero indicates success.

ID = 311

Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad)
Name
Integer Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad)

Description
Get the data for the Circle string given by Element elt.
The centre of the circle is (xc,yc,zc), height zc
 and radius rad.

A function return value of zero indicates success.
ID = 310
Page 575Circle String Element

12d Model Programming Language Manual
5.42 Text String Element
A Text String consists of text positioned with respect to the text vertex point (x,y).
The text is defined by parameters that can be individually set, or set all at once by setting a
Textstyle_Data.
The current parameters contained in the Textstyle_Data structure and used for a Text String are:

the text itself, text style, colour, height, offset, raise, justification, angle, slant, xfactor, italic,
strikeout, underlines, weight, whiteout, border and a name.

The parameters are described in the section 5.9 Textstyle Data

The following functions are used to create new text strings and make inquiries and modifications
to existing text strings.

Create_text(Text text,Real x,Real y,Real size,Integer colour)
Name
Element Create_text(Text text,Real x,Real y,Real size,Integer colour)

Description
Creates an Element of type Text.
The Element is at position (x,y), has Text text of size size and colour colour. The other data is
defaulted.

The function return value gives the actual Element created.
If the text string could not be created, then the returned Element will be null.
ID = 174

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang)
Name
Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang)

Description
Creates an Element of type Text.
The Element is at position (x,y), has Text text of size size, colour colour and angle ang. The
other data is defaulted.

The function return value gives the actual Element created.

Fred

.position of
text vertex

the position of the
text justification
point for the text

angle

offset raise angle, offset and raise
from the text vertex

is defined by the

Text String

line giving the direction
of the text
Page 576 Text String Element

Chapter 5 12dPL Library Calls
If the text string could not be created, then the returned Element will be null.
ID = 175

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif)
Name
Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif)

Description
Creates an Element of type Text.
The Element is at position (x,y), has Text text of size size, colour colour, angle ang and
justification justif. The other data is defaulted.

The function return value gives the actual Element created.
If the text string could not be created, then the returned Element will be null.
ID = 176

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,
Integer size_mode)
Name
Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer
size_mode)

Description
Creates an Element of type Text.

The Element is at position (x,y), has Text text of size size, colour colour, angle ang, justification
justif and size mode size_mode. The other data is defaulted.
The function return value gives the actual Element created.
If the text string could not be created, then the returned Element will be null.

ID = 177

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer
justif,Integer size_mode,Real offset_distance,Real rise_distance)
Name
Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer
size_mode,Real offset_distance,Real rise_distance)

Description
Creates an Element of type Text.
The Element is at position (x,y), has Text text of size size, colour colour, angle ang, justification
justif, size mode size_mode, offset offset_distance and rise rise_distance.
The function return value gives the actual Element created.

If the text string could not be created, then the returned Element will be null.
ID = 178

Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real
Page 577Text String Element

12d Model Programming Language Manual
ang,Integer justif,Integer size_mode,Real offset_distance,Real rise_distance)
Name
Integer Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer
justif,Integer size_mode,Real offset_distance,Real rise_distance)

Description
Set values for each of the text parameters.

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates that the text data was successfully set.
 ID = 180

Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer
&colour,Real &ang,Integer &justification,Integer &size_mode,Real
&offset_dist,Real &rise_dist)
Name
Integer Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer &colour,Real
&ang,Integer &justification,Integer &size_mode,Real &offset_dist,Real &rise_dist)

Description
Get the values for each of the text parameters.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates that the text data was successfully returned.
ID = 179

Set_text_value(Element elt,Text text)
Name
Integer Set_text_value(Element elt,Text text)

Description
Set the actual text of the text Element elt.
The text is given as Text text.
A function return value of zero indicates the data was successfully set.

ID = 461

Get_text_value(Element elt,Text &text)
Name
Integer Get_text_value(Element elt,Text &text)

Description
Get the actual text of the text Element elt.
The text is returned as Text text.
A function return value of zero indicates the data was successfully returned.
ID = 453
Page 578 Text String Element

Chapter 5 12dPL Library Calls
Set_text_textstyle_data(Element elt,Textstyle_Data d)
Name
Integer Set_text_textstyle_data(Element elt,Textstyle_Data d)

Description
For the Element elt of type Text, set the Textstyle_Data to be d.

Setting a Textstyle_Data means that all the individual values that are contained in the
Textstyle_Data are set rather than having to set each one individually.
If the value is blank in the Textstyle_Data d then the value in elt would be left alone.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates the Textstyle_Data was successfully set.
ID = 1669

Get_text_textstyle_data(Element elt,Textstyle_Data &d)
Name
Integer Get_text_textstyle_data(Element elt,Textstyle_Data &d)

Description
For the Element elt of type Text, get the Textstyle_Data for the string and return it as d.
A non-zero function return value is returned if elt is not of type Text (and also d would be left
unchanged) .
A function return value of zero indicates the Textstyle_Data was successfully returned.
ID = 1670

Get_text_length(Element elt,Real &length)
Name
Integer Get_text_length(Element elt,Real &length)

Description
Get the length of the characters of the text Element elt.
The text length is returned as Real length.
A function return value of zero indicates the data was successfully returned.

ID = 580

Set_text_xy(Element elt,Real x,Real y)
Name
Integer Set_text_xy(Element elt,Real x,Real y)

Description
Set the base position of for the text Element elt.
The position is given as Real (x,y).
A function return value of zero indicates the data was successfully set.

ID = 462
Page 579Text String Element

12d Model Programming Language Manual
Get_text_xy(Element elt,Real &x,Real &y)
Name
Integer Get_text_xy(Element elt,Real &x,Real &y)

Description
Get the base position of for the text Element elt.
The position is returned as Real (x,y).
A function return value of zero indicates the data was successfully returned.
ID = 454

Set_text_xyz(Element elt,Real x,Real y,Real z)
Name
Integer Set_text_xyz(Element elt,Real x,Real y,Real z)

Description
Set the base position of for the text Element elt.
The position is given as Real (x,y,z).
A function return value of zero indicates the data was successfully set.

ID = 462

Get_text_xyz(Element elt,Real &x,Real &y,Real &z)
Name
Integer Get_text_xyz(Element elt,Real &x,Real &y,Real &z)

Description
Get the base position of for the text Element elt.
The position is returned as Real (x,y,z).
A function return value of zero indicates the data was successfully returned.

ID = 454

Set_text_units(Element elt,Integer units_mode)
Name
Integer Set_text_units(Element elt,Integer units_mode)

Description
Set the units used for the text parameters of the text Element elt.
The mode is given as Integer units_mode.
For the values of units_mode, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully set.

ID = 466

Get_text_units(Element elt,Integer &units_mode)
Name
Integer Get_text_units(Element elt,Integer &units_mode)
Page 580 Text String Element

Chapter 5 12dPL Library Calls
Description
Get the units used for the text parameters of the text Element elt.
The mode is returned as Integer units_mode.

For the values of units_mode, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.
ID = 458

Set_text_size(Element elt,Real size)
Name
Integer Set_text_size(Element elt,Real size)

Description
Set the size of the characters of the text Element elt.
The text size is returned as Real size.
A function return value of zero indicates the data was successfully set.
ID = 463

Get_text_size(Element elt,Real &size)
Name
Integer Get_text_size(Element elt,Real &size)

Description
Get the size of the characters of the text Element elt.
The text size is returned as Real size.

A function return value of zero indicates the data was successfully returned.
ID = 455

Set_text_justify(Element elt,Integer justify)
Name
Integer Set_text_justify(Element elt,Integer justify)

Description
Set the justification used for the text Element elt.
The justification is given as Integer justify.
For the values of justify and their meaning, see 5.9 Textstyle Data.

A function return value of zero indicates the data was successfully set.
ID = 465

Get_text_justify(Element elt,Integer &justify)
Name
Integer Get_text_justify(Element elt,Integer &justify)

Description
Page 581Text String Element

12d Model Programming Language Manual
Get the justification used for the text Element elt.
The justification is returned as Integer justify.
For the values of justify and their meaning, see 5.9 Textstyle Data.

A function return value of zero indicates the data was successfully returned.
ID = 457

Set_text_angle(Element elt,Real ang)
Name
Integer Set_text_angle(Element elt,Real ang)

Description
Set the angle of rotation (in radians) about the text (x,y) point of the text Element elt.
The angle is given as Real ang.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the data was successfully set.
ID = 464

Get_text_angle(Element elt,Real &ang)
Name
Integer Get_text_angle(Element elt,Real &ang)

Description
Get the angle of rotation (in radians) about the text (x,y) point of the text Element elt and return
the angle as ang.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the data was successfully returned.
ID = 456

Set_text_angle2(Element elt,Real ang2)
Name
Integer Set_text_angle2(Element elt,Real ang2)

Description
Set the 3D beta angle (in radians) about the text (x,y) point of the text Element elt.
The angle is given as Real ang2.
A function return value of zero indicates the data was successfully set.

ID = 3579

Get_text_angle2(Element elt,Real &ang2)
Name
Integer Get_text_angle2(Element elt,Real &ang2)

Description
Get the 3D beta angle (in radians) about the text (x,y) point of the text Element elt and return the
Page 582 Text String Element

Chapter 5 12dPL Library Calls
angle as ang2.
A function return value of zero indicates the data was successfully returned.
ID = 3576

Set_text_angle3(Element elt,Real ang3)
Name
Integer Set_text_angle3(Element elt,Real ang3)

Description
Set the 3D gamma angle (in radians) about the text (x,y) point of the text Element elt.
The angle is given as Real ang3.
A function return value of zero indicates the data was successfully set.
ID = 3580

Get_text_angle3(Element elt,Real &ang3)
Name
Integer Get_text_angle3(Element elt,Real &ang3)

Description
Get the 3D gamma angle (in radians) about the text (x,y) point of the text Element elt and return
the angle as ang3.
A function return value of zero indicates the data was successfully returned.

ID = 3577

Set_text_offset(Element elt,Real offset)
Name
Integer Set_text_offset(Element elt,Real offset)

Description
Set the offset distance of the text Element elt.
The offset is given as Real offset.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully set.

ID = 467

Get_text_offset(Element elt,Real &offset)
Name
Integer Get_text_offset(Element elt,Real &offset)

Description
Get the offset distance of the text Element elt.
The offset is returned as Real offset.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the data was successfully returned.
Page 583Text String Element

12d Model Programming Language Manual
ID = 459

Set_text_rise(Element elt,Real rise)
Name
Integer Set_text_rise(Element elt,Real rise)

Description
Set the rise distance of the text Element elt.
The rise is returned as Real rise.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully set.

ID = 468

Get_text_rise(Element elt,Real &rise)
Name
Integer Get_text_rise(Element elt,Real &rise)

Description
Get the rise distance of the text Element elt.
The rise is returned as Real rise.
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the data was successfully returned.
 ID = 460

Set_text_height(Element elt,Real height)
Name
Integer Set_text_height(Element elt,Real height)

Description
Set the height of the characters of the text Element elt.
The text height is given as Real height.
A function return value of zero indicates the data was successfully set.

ID = 584

Get_text_height(Element elt,Real &height)
Name
Integer Get_text_height(Element elt,Real &height)

Description
Get the height of the characters of the text Element elt.
The text height is returned as Real height.
A function return value of zero indicates the data was successfully returned.
ID = 579
Page 584 Text String Element

Chapter 5 12dPL Library Calls
Set_text_slant(Element elt,Real slant)
Name
Integer Set_text_slant(Element elt,Real slant)

Description
Set the slant of the characters of the text Element elt.
The text slant is given as Real slant.
A function return value of zero indicates the data was successfully set.
ID = 585

Get_text_slant(Element elt,Real &slant)
Name
Integer Get_text_slant(Element elt,Real &slant)

Description
Get the slant of the characters of the text Element elt.
The text slant is returned as Real slant.
A function return value of zero indicates the data was successfully returned.
ID = 581

Set_text_style(Element elt,Text style)
Name
Integer Set_text_style(Element elt,Text style)

Description
Set the style of the characters of the text Element elt.
The text style is given as Text style.
A function return value of zero indicates the data was successfully set.

ID = 587

Get_text_style(Element elt,Text &style)
Name
Integer Get_text_style(Element elt,Text &style)

Description
Get the style of the characters of the text Element elt.
The text style is returned as Text style.
A function return value of zero indicates the data was successfully returned.
ID = 583

Set_text_x_factor(Element elt,Real xfact)
Name
Page 585Text String Element

12d Model Programming Language Manual
Integer Set_text_x_factor(Element elt,Real xfact)

Description
Set the x factor of the characters of the text Element elt.
The text x factor is given as Real xfact.
A function return value of zero indicates the data was successfully set.
ID = 586

Get_text_x_factor(Element elt,Real &xfact)
Name
Integer Get_text_x_factor(Element elt,Real &xfact)

Description
Get the x factor of the characters of the text Element elt.
The text x factor is returned as Real xfact.
A function return value of zero indicates the data was successfully returned.
ID = 582

Set_text_ttf_underline(Element elt,Integer underline)
Name
Integer Set_text_ttf_underline(Element elt,Integer underline)

Description
For the Element elt of type Text, set the underline state to underline.
If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates underlined was successfully set.

ID = 2596

Get_text_ttf_underline(Element elt,Integer &underline)
Name
Integer Get_text_ttf_underline(Element elt,Integer &underline)

Description
For the Element elt of type Text, get the underline state and return it in underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates underlined was successfully returned.
ID = 2592
Page 586 Text String Element

Chapter 5 12dPL Library Calls
Set_text_ttf_strikeout(Element elt,Integer strikeout)
Name
Integer Set_text_ttf_strikeout(Element elt,Integer strikeout)

Description
For the Element elt of type Text, set the strikeout state to strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates strikeout was successfully set.
 ID = 2597

Get_text_ttf_strikeout(Element elt,Integer &strikeout)
Name
Integer Get_text_ttf_strikeout(Element elt,Integer &strikeout)

Description
For the Element elt of type Text, get the strikeout state and return it in strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates strikeout was successfully returned.

ID = 2593

 Set_text_ttf_italic(Element elt,Integer italic)
Name
Integer Set_text_ttf_italic(Element elt,Integer italic)

Description
For the Element elt of type Text, set the italic state to italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates italic was successfully set.
ID = 2598

Get_text_ttf_italic(Element elt,Integer &italic)
Name
Integer Get_text_ttf_italic(Element elt,Integer &italic)

Description
For the Element elt of type Text, get the italic state and return it in italic.
Page 587Text String Element

12d Model Programming Language Manual
If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates italic was successfully returned.
ID = 2594

Set_text_ttf_outline(Element elt,Integer outline)
Name
Integer Set_text_ttf_outline(Element elt,Integer outline)

Description
For the Element elt of type Text, set the outline state to outline.
If outline = 1, then for a true type font the text will be only shown in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.

A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates outline was successfully set.
 ID = 2772

Get_text_ttf_outline(Element elt,Integer &outline)
Name
Integer Get_text_ttf_outline(Element elt,Integer &outline)

Description
For the Element elt of type Text, get the outline state and return it in outline.

If outline = 1, then for a true type font the text will be shown only in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates outline was successfully returned.
ID = 2771

Set_text_ttf_weight(Element elt,Integer weight)
Name
Integer Set_text_ttf_weight(Element elt,Integer weight)

Description
For the Element elt of type Text, set the font weight to weight.
For the list of allowable weights, go to Allowable Weights
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates weight was successfully set.
ID = 2599
Page 588 Text String Element

Chapter 5 12dPL Library Calls
Get_text_ttf_weight(Element elt,Integer &weight)
Name
Integer Get_text_ttf_weight(Element elt,Integer &weight)

Description
For the Element elt of type Text, get the font weight and return it in weight.
For the list of allowable weights, go to Allowable Weights
A non-zero function return value is returned if elt is not of type Text.
A function return value of zero indicates weight was successfully returned.

 ID = 2595

Set_text_whiteout(Element text,Integer colour)
Name
Integer Set_text_whiteout(Element text,Integer colour)

Description
For the Text Element text, set the colour number of the colour used for the whiteout box around
the text, to be colour.
If no text whiteout is required, then set the colour number to NO_COLOUR.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully set.
ID = 2752

Get_text_whiteout(Element text,Integer &colour)
Name
Integer Get_text_whiteout(Element text,Integer &colour)

Description
For the Text Element text, get the colour number that is used for the whiteout box around the
text. The whiteout colour is returned as Integer colour.
NO_COLOUR is the returned as the colour number if whiteout is not being used.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully returned.

ID = 2751

Set_text_border(Element text,Integer colour)
Name
Integer Set_text_border(Element text,Integer colour)

Description
For the Text Element text, set the colour number of the colour used for the border of the whiteout
box around the text, to be colour.
If no whiteout border is required, then set the colour number to NO_COLOUR.
Page 589Text String Element

12d Model Programming Language Manual
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully set.

ID = 2762

Get_text_border(Element text,Integer &colour)
Name
Integer Get_text_border(Element text,Integer &colour)

Description
For the Text Element text, get the colour number that is used for the border of the whiteout box
around the text. The whiteout border colour is returned as Integer colour.
NO_COLOUR is the returned as the colour number if there is no whiteout border.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff)
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the colour number was successfully returned.
ID = 2761

Set_text_border_style(Element text,Integer style)
Name
Integer Set_text_border_style(Element text,Integer style)

Description
For the Text Element text, set the the border style that is used for the border of the whiteout box
around the text accordingly to Integer style.
Rectangle 1

Circle 2
Capsule 3
Bevel 4

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the border style was successfully set.
ID = 3581

Get_text_border_style(Element text,Integer &style)
Name
Integer Get_text_border_style(Element text,Integer &style)

Description
For the Text Element text, get the border style that is used for the border of the whiteout box
around the text. The border style is returned as Integer style.
Rectangle 1

Circle 2
Capsule 3
Bevel 4
Page 590 Text String Element

Chapter 5 12dPL Library Calls
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully returned.

ID = 3578
Page 591Text String Element

12d Model Programming Language Manual
5.43 Pipeline String Element
Integer Create_pipeline()
Name
Integer Create_pipeline()

Description
Create a pipeline.

A function return value of zero indicates the pipeline was created successfully.
ID = 1264

Create_pipeline(Element seed)
Name
 Integer Create_pipeline(Element seed)

Description
Create an Element of type Pipeline, and set the colour, name, style etc. of the new string to be
the same as those from the Element seed.
A function return value of zero indicates the pipeline was created successfully.
ID = 1265

Set_pipeline_diameter(Element pipeline,Real diameter)
Name
 Integer Set_pipeline_diameter(Element pipeline,Real diameter)

Description
Set the diameter for pipeline.

Type of the diameter must be Real.
A function return value of zero indicates the diameter was successfully set.
ID = 1266

Get_pipeline_diameter(Element pipeline,Real &diameter)
Name
 Integer Get_pipeline_diameter(Element pipeline,Real &diameter)

Description
Get the diameter from the Element pipeline.
The type of diameter must be Real.
A function return value of zero indicates the diameter was returned successfully.
ID = 1268

Set_pipeline_length(Element pipeline,Real length)
Name
 Integer Set_pipeline_length(Element pipeline,Real length)
Page 592 Pipeline String Element

Chapter 5 12dPL Library Calls
Description
Set the length for pipeline.
Type of the length must be Real.
A function return value of zero indicates the length was successfully set.
ID = 1267

Get_pipeline_length(Element pipeline,Real &length)
Name
 Integer Get_pipeline_length(Element pipeline,Real &length)

Description
Get the length from the Element pipeline.
The type of length must be Real.
A function return value of zero indicates the length was returned successfully.
ID = 1269

Set_pipeline_shape(Element pipeline,Integer shape)
Name
Integer Set_pipeline_shape(Element pipeline,Integer shape)

Description
Set shape shape of a pipeline Element pipeline
A return value of zero indicates the function call was successful.
List of values for shape

0 no pipe nor culvert
1 pipe

2 culvert
ID = 3024

Get_pipeline_shape(Element pipeline,Integer &shape)
Name
Integer Get_pipeline_shape(Element pipeline,Integer &shape)

Description
Get shape shape of a pipeline Element pipeline
A return value of zero indicates the function call was successful.
List of values for shape

0 no pipe nor culvert
1 pipe
2 culvert

ID = 3025
Page 593Pipeline String Element

12d Model Programming Language Manual
Set_pipeline_justification(Element pipeline,Integer justification)
Name
Integer Set_pipeline_justification(Element pipeline,Integer justification)

Description
Set pipe culvert justification justification of a pipeline Element pipeline
A return value of zero indicates the function call was successful.
List of values for justification

0 invert

1 centre
2 obvert

ID = 3026

Get_pipeline_justification(Element pipeline,Integer &justification)
Name
Integer Get_pipeline_justification(Element pipeline,Integer &justification)

Description
Get pipe culvert justification justification of a pipeline Element pipeline
A return value of zero indicates the function call was successful.
List of values for justification

0 invert

1 centre
2 obvert

ID = 3027

Set_pipeline_culvert(Element pipeline,Real w,Real h)
Name
Integer Set_pipeline_culvert(Element pipeline,Real w,Real h)

Description
Set pipe culvert width w and height h of a pipeline Element pipeline
A return value of zero indicates the function call was successful.
ID = 3028

Get_pipeline_culvert(Element pipeline,Real &w,Real &h)
Name
Integer Get_pipeline_culvert(Element pipeline,Real &w,Real &h)

Description
Get pipe culvert width w and height h of a pipeline Element pipeline
A return value of zero indicates the function call was successful.
ID = 3029
Page 594 Pipeline String Element

Chapter 5 12dPL Library Calls
5.44 Drainage String Element
Drainage Definitions
See Drainage Definitions - Pits and Pipes
See Drainage Definitions - Connection Points
See Drainage Definitions - Flow Direction
See Drainage Definitions - Drainage Network, Junction, Trunk

Drainage Definitions - Pits and Pipes
The drainage string is used in the Drainage modules (Drainage, Drainage Analysis and
Dynamic Drainage Analysis) and also in the Sewer (Waste Water) module.

Drainage strings have a special attribute (sewertype) to denote whether the drainage string
represents a storm water (sewertype = 0 the default) or a waste water (foul water or sewer) string
(sewertype = 1) but both will be referred to as a drainage string.

A drainage string consists of two parts:
(a) a string of vertices with straight or arc segments that defines the underlying geometry of the

drainage string
(b) information about pits (or maintenance holes) and pipes.

Pits (maintenance holes or manholes) can be located anywhere on the underlying string but are
normally located on actual vertices of the underlying string. There must be a pit on the first and
last vertices of the underlying string.
Pits can be circular or rectangular, and have a depth, cover, grate and sump levels as well as
wall and bottom thicknesses.
Pipe are the conduits connecting the pits, and pipes can be round or rectangular.

The number of pits is return in npits by the function Get_drainage_pits(Element drain,Integer
&npits) and the number of pipes = number of pits - 1.

Drainage Definitions - Connection Points
Although a pipe must go between two pits, the ends of the pipe do not have to be on the centre of
the pit at each end but stop at what are called connection points.

PLAN VIEW

Pit 1on first vertex

Pit 2

Pit 3

Pit 5 is between two vertices

Underlying String

Pipe 4 on vertex

Pit 6 on last vertex

No pit on this vertex

Vertices

Pits on Underlying String

Pipe 1
Pipe 2

Pipe 3
Pipe 4

Pipe 5
Page 595Drainage String Element

12d Model Programming Language Manual
If connection points are being used, then there will be
(a) one connection point for the first pit (for the pipe leaving the first pit) and the underlying

string will have a vertex for the pit and one for the connection point
(b) one connection point for the last pit (for the pipe entering the last pit) and the underlying

string will have a vertex for the pit and one for the connection point
(c) two connection points for each pit between the end pits (one for the pipe entering/leaving

from the left of the pit and the other for the pipe entering/leaving from the right of the pit) and
the underlying string will have a vertex for the pit and one for each of the two connection
points

Drainage Definitions - Flow Direction
A drainage string has a flow direction which is either in the same as the direction of the
drainage string (dir = 1), or is in the opposite direction to the direction of the drainage string (dir =
0). The direction of a string is the chainage direction of the string.
Storm water strings are usually designed with the flow direction the same as the drainage string
direction and so when profiled in a section view, most of the pipes slope down to the right.
Water water strings are usually designed with the flow direction the opposite to the drainage
string direction and so when profiled in a section view, most of the pipes slope up to the right.

PLAN VIEW

Pit 1

Pit 2
Pit 3

Pit 4

Pipe 1
Pipe 2

Pipe 3

connection point for
Pipe 1 leaving Pit 1

point for Pit 1

connection point for
Pipe 1 entering Pit 2

point for Pit 2
point for Pit 3

connection point for
Pipe 2 leaving Pit 2

connection point for
Pipe 3 leaving Pit 3

point for Pit 4

connection point for
Pipe 2 entering Pit 3

connection point for
Pipe 3 entering Pit 4

flow direction opposite to string direction

SECTION VIEW

PLAN VIEWPit 1
Pit 2 Pit 3

Pit 4
Pit 5 Pit 6 Pit 7

Pit 1
Pit 1

Pipe 1

Pipe 2 Pipe 3

Pipe 4

Pipe 6Pipe 5
connection points
for Pipe 1

 flow direction the same as string direction
dir = 0dir = 1
Page 596 Drainage String Element

Chapter 5 12dPL Library Calls
Drainage Definitions - Drainage Network, Junction, Trunk

In 12d Model, a drainage network is defined to be all the drainage strings in the same model.
So all the drainage strings in the same model are considered to be part of the same drainage
network. If you have two different drainage networks, then they must be in different models. In
particular, all the drainage strings of type storm water need to be in a different model to those of
type waste water.
To model one drainage string AB connecting into another drainage string A in the same network
(model), the pit at the end of string AB must have exactly the same (x,y) location as the pit on the
drainage string A where the connection occurs. This situation represents a junction and the pit
at the end of AB is called the junction pit and the pit in A, is the controlling pit, and is either a
trunk or a diverging pit.

The two pits are then considered to be the same pit and all the information for the pit resides on
the controlling pit.
A branch is defined as a drainage string that flows into a non-outlet pit of another drainage string.
Thus the flow direction of the drainage string is important.

The drainage string that the water flows into from a branch drainage string is referred to as a
trunk line (for that branch string).

A trunk line may also be a branch for another downstream trunk line.

For more information on drainage strings, see the 12d Model Reference manual.

The following functions are used to create new drainage strings and make inquiries and
modifications to existing drainage strings.
See 5.44.1 Underlying Drainage String Functions
See 5.44.2 General Drainage String Functions
See 5.44.3 Drainage String Pits
See 5.44.4 Drainage Pit Type Information in the drainage.4d File
See 5.44.5 Drainage String Pit Attributes
See 5.44.6 Drainage String Pipes
See 5.44.7 Drainage Pipe Type Information in the drainage.4d File
See 5.44.8 Drainage String Pipe Attributes
See 5.44.9 Drainage String House Connections - For Sewer Module Only

SECTION VIEW

PLAN VIEW

Pit A1
Pit A2 Pit A3

Pit A1

Pit AB2
Pit AB1

Branch AB

Trunk or Main line A

Pit A2

placing pit AB3
on A3

the bottom of pit A3 is
usually set below AB3

output level of AB3

Pit A4

Pit A3
Pit A4
Page 597Drainage String Element

12d Model Programming Language Manual
5.44.1 Underlying Drainage String Functions
A drainage string consists of two parts:
(a) a string of vertices with straight or arc segments that defines the underlying geometry of the

drainage string
(b) information about pits (maintenance holes or manholes) and pipes.
See Drainage Definitions
Creating a Drainage String

There are 3 steps to creating a drainage string and must be executed in the following order:

Step 1 – Create the underlying geometry
 Note: The number of pits may be more or less than the number of vertices.
 A geometry segment may have several pits.

 A bent pipe would have a vertex in between the 2 pits.

 1 function call method

 Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts, Integer
num_pits)

 2 function calls method
 Create_drainage(Integer num_verts,Integer num_pits)
 followed by either

 Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_verts,Integer start_vert) - arrays
 or
 Set_drainage_data(Element drain,Integer i,Real x,Real y,Real z,Real r,Integer b)
- singular

 Note: the z value is not used by the drainage string

Step 2 – Add the pits

Set_drainage_pit(Element drain,Integer p,Real x,Real y,Real z) - z is the cover level, the sump
level is floating by default
Notes: the x,y is dropped onto the underlying geometry to determine the location on the
geometry string (x,y,chainage) and then it is discarded.
Set_drainage_pit_thickness(Element drain,Integer p,Real bottom,Real front,Real back,Real
left,Real right) - optional

To set and lock the sump level requires 2 function calls:
Set_drainage_pit_float_sump(Element drain,Integer pit,Integer sump_float) – sump_float set to 0

Set_drainage_pit_sump_level(Element drain,Integer pit,Real level)

Step 3 – Add the Pipe inverts and dimensions

Inverts
Page 598 Drainage String Element

Chapter 5 12dPL Library Calls
Set_drainage_pipe_inverts(Element drain,Integer p,Real lhs,Real rhs)
or
Set_drainage_pit_inverts(Element drain,Integer p,Real lhs,Real rhs)

Dimensions
Set_drainage_pipe_diameter(Element drain,Integer p,Real diameter)
- used to draw the pipe

Set_drainage_pipe_width(Element drain,Integer pipe,Real &width)
– only needed for box culverts
Set_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)
- only needed for trapezoidal shapes

Set_drainage_pipe_thickness(Element drain,Integer pit,Real top,Real bottom,Real left,Real
right) - optional, only top used for circular pipes
Set_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer n) – only needed if
more than 1 identical pipe between pits
Set_drainage_pipe_separation(Element drainage,Integer pipe,Real separation) - only needed if
more than 1 identical pipe between pits

Set_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real nominal_diameter) -
used as a reference value only
The following functions are for defining the underlying geometry of the drainage string.
Drainage pit information starts in the section 5.44.3 Drainage String Pits and drainage pipe
information starts in the section 5.44.6 Drainage String Pipes.

Create_drainage(Integer num_verts,Integer num_pits)
Name
Element Create_drainage(Integer num_verts,Integer num_pits)

Description
Create an Element of type Drainage with room for num_verts vertices in the underlying string,
and room for num_pits pits.
The actual data of the drainage string is set after the string is created.

If the drainage string could not be created, then the returned Element will be null.
ID = 490

Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts,
Integer num_pits)
Name
Element Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts, Integer
num_pits)

Description
Create an Element of type drainage.
The Element has num_verts vertices with (x,y,z) values for the vertices given in the Real arrays
x[], y[] and z[], and the radii of the arcs for the segments between the vertices given by the Real
radius array r[] and the Integer bulge array b[] (Bulge arrayb=1 for major arc >180 degrees, b =
1 for minor arc < 180 degrees).
Page 599Drainage String Element

12d Model Programming Language Manual
The drainage string also contains Integer num_pits pits.
The function return value gives the actual Element created.
If the drainage string could not be created, then the returned Element will be null.

 ID = 489

Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer
b[],Integer num_verts)
Name
Integer Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_verts)

Description
Set the (x,y,z,r,b) data for the first num_verts vertices of the drainage Element drain.
This function allows the user to modify a large number of vertices of the string in one call.
The maximum number of vertices that can be set is given by the number of vertices in the string.

The (x,y,z,r,b) values for each string vertex are given in the Real arrays x[], y[], z[], r[] and b[].
The number of vertices to be set is given by Integer num_verts
If the Element drain is not of type Drainage, then nothing is modified and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully set.
Note

This function can not create new Drainage Elements but only modify existing Drainage Elements.
 ID = 2100

Get_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer
b[],Integer max_verts,Integer &num_verts)
Name
Integer Get_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_verts,Integer &num_verts)

Description
Get the (x,y,z,r,b) data for the first max_verts points of the drainage Element drain.
The (x,y,z,r,b) values at each string vertex are returned in the Real arrays x[], y[], z[], r[] and b[].
The maximum number of vertices that can be returned is given by max_verts (usually the size of
the arrays). The vertex data returned starts at the first vertex and goes up to the minimum of
max_verts and the number of vertices in the string.
The actual number of vertices returned is returned by Integer num_verts
num_verts <= max_verts

If the Element drain is not of type Drainage, then num_pts is returned as zero and the function
return value is set to a non-zero value.
A function return value of zero indicates the data was successfully returned.
 ID = 2097

Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer
Page 600 Drainage String Element

Chapter 5 12dPL Library Calls
b[],Integer num_verts,Integer start_vert)
Name
Integer Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
num_verts,Integer start_vert)

Description
For the drainage Element drain, set the (x,y,z,r,b) data for num_verts vertices, starting at vertex
number start_vert.
This function allows the user to modify a large number of vertices of the string in one call starting
at vertex number start_vert rather than vertex one.
The maximum number of vertices that can be set is given by the difference between the number
of vertices in the string and the value of start_vert.
The (x,y,z,r,f) values for the string vertices are given in the Real arrays x[], y[], z[], r[] and b[].
The number of the first string vertex to be modified is start_vert.
The total number of vertices to be set is given by Integer num_verts
If the Element drain is not of type Drainage, then nothing is modified and the function return
value is set to a non-zero value.
A function return value of zero indicates the data was successfully set.
Notes
(a) A start_vert of one gives the same result as the function Set_drainage_data(Element

drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts).
(b) This function can not create new Drainage Elements but only modify existing Drainage

Elements.
ID = 2101

Get_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer
b[],Integer max_verts,Integer &num_verts,Integer start_vert)
Name
Integer Get_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
max_verts,Integer &num_verts,Integer start_vert)

Description
For a drainage Element drain, get the (x,y,z,r,b) data for max_verts points starting at vertex
number start_vert.
This routine allows the user to return the data from a drainage string in user specified chunks.
This is necessary if the number of vertices in the string is greater than the size of the arrays
available to contain the information.

The maximum number of vertices that can be returned is given by max_verts (usually the size of
the arrays). For this function, the vertex data returned starts at vertex number start_vert rather
than vertex one.
The (x,y,z,r,b) values at each string vertex are returned in the Real arrays x[], y[], z[], r[] and b[].
The actual number of vertices returned is given by Integer num_verts
num_verts <= max_verts
If the Element drain is not of type Drainage, then num_verts is set to zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
Note
Page 601Drainage String Element

12d Model Programming Language Manual
A start_vert of one gives the same result as for the function Get_drainage_data(Element
drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer max_verts,Integer &num_verts).
 ID = 2098

Set_drainage_data(Element drain,Integer i,Real x,Real y,Real z,Real r,Integer b)
Name
Integer Set_drainage_data(Element drain,Integer i,Real x,Real y,Real z,Real r,Integer b)

Description
Set the (x,y,z,r,f) data for the ith vertex of the string.
The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.
The radius value is given in Real r.
The minor/major value is given in Integer b. if b = 0, arc < 180 degrees; if b = 1, arc >180
degrees.
A function return value of zero indicates the data was successfully set.

 ID = 2102

Get_drainage_data(Element drain,Integer i,Real &x,Real &y,Real &z,Real
&r,Integer &b)
Name
Integer Get_drainage_data(Element drain,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &b)

Description
Get the (x,y,z,r,f) data for the ith vertex of the Element drain.
The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.
The radius value is returned in Real r.
The minor/major value is returned in Integer b.
If minor/major is 0, arc < 180.
If minor/major is 1, arc > 180

A function return value of zero indicates the data was successfully returned.
ID = 2099

Go to the next section 5.44.2 General Drainage String Functionsor return to 5.44 Drainage String
Element.
Page 602 Drainage String Element

Chapter 5 12dPL Library Calls
5.44.2 General Drainage String Functions

Set_drainage_outfall_height(Element drain,Real ht)
Name
Integer Set_drainage_outfall_height(Element drain,Real ht)

Description
Set the outfall height of the drainage Element drain to the value ht.
A function return value of zero indicates the outfall height was successfully set.

 ID = 491

Get_drainage_outfall_height(Element drain,Real &ht)
Name
Integer Get_drainage_outfall_height(Element drain,Real &ht)

Description
Get the outfall height of the drainage Element drain and return it as ht.
A function return value of zero indicates the outfall height was successfully returned.
ID = 492

Set_drainage_ns_tin(Element drain,Tin tin)
Name
Integer Set_drainage_ns_tin(Element drain,Tin tin)

Description
For the drainage string drain, set the natural surface Tin to be tin.
A function return value of zero indicates the tin was successfully set.
ID = 1275

Get_drainage_ns_tin(Element drain,Tin &tin)
Name
 Integer Get_drainage_ns_tin(Element drain,Tin &tin)

Description
For the drainage string drain, get the natural surface Tin and return it in tin.
A function return value of zero indicates the tin was successfully returned.

ID = 1274

Set_drainage_fs_tin(Element drain,Tin tin)
Name
 Integer Set_drainage_fs_tin(Element drain,Tin tin)

Description
For the drainage string drain, set the finished surface Tin to be tin.
Page 603Drainage String Element

12d Model Programming Language Manual
A function return value of zero indicates the tin was successfully set.
ID = 1273

Get_drainage_fs_tin(Element drain,Tin &tin)
Name
 Integer Get_drainage_fs_tin(Element drain,Tin &tin)

Description
For the drainage string drain, get the finished surface Tin and return it in tin.
A function return value of zero indicates the tin was successfully returned.
ID = 1272

Set_drainage_flow(Element drain,Integer dir)
Name
Integer Set_drainage_flow(Element drain,Integer dir)

Description
Set the flow direction of the drainage Element drain
The flow direction is given as Integer dir.
dir = 1 means the flow direction is the same as the string direction. That is, the flow direction is
the same as the chainage direction of the drainage string.
dir = 0 means the flow direction is opposite to the string direction. That is, the flow direction is the
opposite direction to the chainage direction of the drainage string.

See Drainage Definitions.
A function return value of zero indicates the flow direction was successfully set.
ID = 539

Get_drainage_flow(Element drain,Integer &dir)
Name
Integer Get_drainage_flow(Element drain,Integer &dir)

Description
Get the flow direction of the drainage Element drain and return the flow direction dir.
dir = 1 means the flow direction is the same as the string direction. That is, the flow direction is
the same as the chainage direction of the drainage string.

dir = 0 means the flow direction is opposite to the string direction. That is, the flow direction is the
opposite direction to the chainage direction of the drainage string.
See Drainage Definitions.
A function return value of zero indicates the flow direction was successfully returned.

 ID = 540

Set_drainage_float(Element drain,Integer string_pit_float)
Name
 Integer Set_drainage_float(Element drain,Integer string_pit_float)
Page 604 Drainage String Element

Chapter 5 12dPL Library Calls
Description
For the Element drain, which must be of type Drainage, set the value of the flag for the string
floating pit to string_pit_float.
Note: If a pit does not have a pit_float value set for the pit, then the pit uses the string_pit_float
value.

A pit can be given its own pit_float value using the call Set_drainage_pit_float(Element
drain,Integer pit,Integer pit_float).
If string_pit_float = 1, the top of a pit automatically takes its level (height) from the finished
surface tin for the drainage string drain.
If string_pit_float = 0, the top of the pit level is fixed.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the string_pit_float was successfully set.

ID = 1271

Get_drainage_float(Element drain,Integer &string_pit_float)
Name
 Integer Get_drainage_float(Element drain,Integer &string_pit_float)

Description
For the Element drain, which must be of type Drainage, return the value of the flag for the string
floating pit in string_pit_float.
Note: If a pit does not have a pit_float value set for the pit, then the pit uses the string_pit_float
value.
A pit can be given its own pit_float value using the call Set_drainage_pit_float(Element
drain,Integer pit,Integer pit_float).
If string_pit_float = 1, the top of a pit automatically takes its level (height) from the finished
surface tin for the drainage string drain.

If string_pit_float = 0, the top of the pit level is fixed.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the string_pit_float value was successfully returned.

ID = 1270

Get_drainage_trunk(Element drain,Element &trunk)
Name
 Integer Get_drainage_trunk(Element drain,Element &trunk)

Description
For the drainage string drain, determine if drain flows into a trunk string.

If there is a trunk string then it is returned as trunk and the function return value is 0. If a trunk
exists, then drain is a branch string.
If there is no trunk string and the downstream end of drain is an outlet then the function return
value is 44.
For all other cases, the function return value is non zero but not 44.

See Drainage Definitions.
ID = 1444
Page 605Drainage String Element

12d Model Programming Language Manual
Drainage_default_grading_to_end(Element drain,Integer pipe_num)
Name
Integer Drainage_default_grading_to_end(Element drain,Integer pipe_num)

Description
For the Element drain, which must be of type Drainage, grade from pipe number pipe_num to
the end of the string using the minimum grade, cover etc for the drain.
The drainage flow direction is essential to the grading algorithm.

A function return value of zero indicates the string was successfully graded.
ID = 1700

Drainage_grade_to_end(Element drain,Integer pipe_num,Real slope)
Name
Integer Drainage_grade_to_end(Element drain,Integer pipe_num,Real slope)

Description
For the Element drain, which must be of type Drainage, grade from pipe number pipe_num to
the end of the string using the slope slope where the units for slope are 1:in. That is, 1 vertical :in
slope horizontal
The drainage flow direction is essential to the grading algorithm.

A function return value of zero indicates the string was successfully graded.
ID = 1701

Set_drainage_sewer(Element drainage,Integer type)
Name
Integer Set_drainage_sewer(Element drainage,Integer type)

Description
Set the drainage sewer type of the drainage string Element drainage with the Integer type.
A return value of zero indicates the function call was successful.
The list of values for drainage sewer type

0 Drainage
1 Sewer
2 Water Supply

3 All
ID = 2954

Get_drainage_sewer(Element drainage,Integer &type)
Name
Integer Get_drainage_sewer(Element drainage,Integer &type)

Description
Get the drainage sewer type of the drainage string Element drainage to the Integer type.
Page 606 Drainage String Element

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.
The list of values for drainage sewer type

0 Drainage

1 Sewer
2 Water Supply
3 All

ID = 2955

Go to the next section 5.44.3 Drainage String Pitsor return to 5.44 Drainage String Element.
Page 607Drainage String Element

12d Model Programming Language Manual
5.44.3 Drainage String Pits
Drainage Pit Definitions
For a circle drainage pit, the point for the pit is the centre of the circle of the pit.
For a rectangular drainage pit, the point for the pit is the centre of the internal walls of the pit and
the rotation of the pit is defined by the pit symbol angle which is measured in the counter
clockwise direction from the x-axis. The pit length is defined in the direction of the pit symbol
angle and pit width is in the direction perpendicular to the length. The front, back, left and right
are all defined in relation to line going through the centre of the pit and with the pit symbol angle.

 Drainage Pit Cross Section

PLAN VIEW

Pit p

Pit p+1

Pipe p

Pipe p+1

point for Pit p point for Pit p+1

chainage direction
of string drain

front

 back

right

left

diameter

Circular Pit

front
thickness

length

width

Box Pit

right

left thickness

front

back

thickness

pit symbol angle

length

thickness
thickness

centre of pit

 cover level

 grate level

 sump invert
 bottom of pit

grate

pit cover

de
pt

h
of

 p
it

bottom thickness

right thickness

left thickness

SECTION VIEW
Page 608 Drainage String Element

Chapter 5 12dPL Library Calls
Get_drainage_pits(Element drain,Integer &npits)
Name
Integer Get_drainage_pits(Element drain,Integer &npits)

Description
For the Element drain, which must of type Drainage, get the number of pits for the string and
return it in npits. The number of pipes in npits - 1.

The i’th pipe goes from the i’th pit to the (i+1)’th pit.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
 ID = 530

Set_drainage_pit(Element drain,Integer p,Real x,Real y,Real z)
Name
Integer Set_drainage_pit(Element drain,Integer p,Real x,Real y,Real z)

Description
Set the x,y & z for the pth pit of the string Element drain.
The x coordinate of the pit is given as Real x.
The y coordinate of the pit is given as Real y.

The z coordinate of the pit is given as Real z.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 532

Get_drainage_pit(Element drain,Integer p,Real &x,Real &y,Real &z)
Name
Integer Get_drainage_pit(Element drain,Integer p,Real &x,Real &y,Real &z)

Description
Get the x,y & z for the pth pit of the string Element drain.

The x coordinate of the pit is returned in Real x.
The y coordinate of the pit is returned in Real y.
The z coordinate of the pit is returned in Real z (the cover level).

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 531

Get_drainage_pit_area(Element element,Integer pit,Integer elev,Real
&sump_area,Dynamic_Real &depth-elev,Dynamic_Real &area,Integer &ret_num)
Name
Integer Get_drainage_pit_area(Element drain,Integer p,Integer elev,Real &sump_area,Dynamic_Real
Page 609Drainage String Element

12d Model Programming Language Manual
&depth-elev,Dynamic_Real &area,Integer &ret_num)

Description
Get the plan area for the pth pit of the string Element drain at the sump [1] for all pits and \, top of
chamber[2] and bottom of riser[3] for extended pits.

Integer Get_drainage_pit_area(Element element,Integer pit,Integer elev,Real
&sump_area,Dynamic_Real &de,Dynamic_Real &area,Integer &ret_num)
elev set to a value other than zero will return elev data Dynamic_Real &depth-elev
sump_area returns the same value as area[1]. This is for easy access when ret_num = 1.

depth-elev return a Dynamic_Real with either depth or elevation values as specified in Integer
elev above.
area returns area values at the level specified in depth-elev
ret_num return the number of values in the Dynamic_Reals above. For extended nodes the area
changes with elevation and the ret_num will be greater than 1

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 3796

Set_drainage_pit_name(Element drain,Integer p,Text name)
Name
Integer Set_drainage_pit_name(Element drain,Integer p,Text name)

Description
For the Element drain, which must be of type Drainage, set the name for the pth pit to name.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 513

Get_drainage_pit_name(Element drain,Integer p,Text &name)
Name
Integer Get_drainage_pit_name(Element drain,Integer p,Text &name)

Description
For the Element drain, which must be of type Drainage, get the name for the pth pit and return it
in name.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
 ID = 507
Page 610 Drainage String Element

Chapter 5 12dPL Library Calls
Set_drainage_pit_colour(Element drain,Integer p,Integer colour)
Name
Integer Set_drainage_pit_colour(Element drain,Integer pit,Integer colour)

Description
For the Element drain, which must of type Drainage, set the colour of the pth pit to colour
number colour.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 2781

Get_drainage_pit_colour(Element drain,Integer p,Integer &colour)
Name
Integer Get_drainage_pit_colour(Element drain,Integer p,Integer &colour)

Description
For the Element drain, which must of type Drainage, return the colour number of the pth pit in
colour.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 2780

Set_drainage_pit_diameter(Element drain,Integer p,Real diameter)
Name
Integer Set_drainage_pit_diameter(Element drain,Integer p,Real diameter)

Description
For the Element drain, which must of type Drainage, set the diameter for the pth pit to diameter.
See Drainage Pit Definitions.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 511

Get_drainage_pit_diameter(Element drain,Integer p,Real &diameter)
Name
Integer Get_drainage_pit_diameter(Element drain,Integer p,Real &diameter)

Description
For the Element drain, which must of type Drainage, return the diameter of the pth pit in
diameter.
See Drainage Pit Definitions.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 505
Page 611Drainage String Element

12d Model Programming Language Manual
Set_drainage_pit_symbol_angle(Element drain,Integer p,Real angle)
Name
Integer Set_drainage_pit_symbol_angle(Element drain,Integer p,Real angle)

Description
For the Element drain, which must of type Drainage, set the angle for the pth pit to angle. angle
is used for both the physical pit, and a symbol used for the pit in a Drainage Plan Plot.

angle is in radians and measured in the counter clockwise direction from the x-axis.
See Drainage Pit Definitions.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully set.
ID = 2872

Get_drainage_pit_symbol_angle(Element drain,Integer pit,Real &angle)
Name
Integer Get_drainage_pit_symbol_angle(Element drain,Integer pit,Real &angle)

Description
For the Element drain, which must of type Drainage, return the angle of the pth pit in angle.
angle is used for both the physical pit, and a symbol used for the pit in a Drainage Plan Plot.

angle is in radians and measured in the counter clockwise direction from the x-axis.

See Drainage Pit Definitions.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 2871

Set_drainage_pit_width(Element drain,Integer p,Real width)
Name
Integer Set_drainage_pit_width(Element drain,Integer p,Real width)

Description
For the Element drain, which must of type Drainage, set the width for the pth pit to width.

See Drainage Pit Definitions.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 2876

Get_drainage_pit_width(Element drain,Integer p,Real &width)
Name
Integer Get_drainage_pit_width(Element drain,Integer p,Real &width)

Description
For the Element drain, which must of type Drainage, return the width of the pth pit in width.

See Drainage Pit Definitions.
Page 612 Drainage String Element

Chapter 5 12dPL Library Calls
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 2877

Set_drainage_pit_length(Element drain,Integer p,Real length)
Name
Integer Set_drainage_pit_length(Element drain,Integer p,Real length)

Description
For the Element drain, which must of type Drainage, set the length for the pth pit to length.

See Drainage Pit Definitions.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 2878

Get_drainage_pit_length(Element drain,Integer p,Real &length)
Name
Integer Get_drainage_pit_length(Element drain,Integer p,Real &length)

Description
For the Element drain, which must of type Drainage, return the length of the pth pit in length.

See Drainage Pit Definitions.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 2879

Set_drainage_pit_float_sump(Element drain,Integer pit,Integer sump_float)
Name
Integer Set_drainage_pit_float_sump(Element drain,Integer pit,Integer sump_float)

Description
For the Element drain, which must be of type Drainage, and pit number pit, set the flag for the
floating sump invert level to sump_float.
If sump_float = 1, the invert level of the sump automatically moves to be the invert level of the
lowest pipe coming into the pit, plus the sump offset (which is defined by an attribute).
If sump_float = 0, the invert level of the sump is fixed and is explicitly set by the call
Set_drainage_pit_sump_level(Element drain,Integer pit,Real level).
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the floating sump level flag was successfully set.
ID = 2786

Get_drainage_pit_float_sump(Element element,Integer pit,Integer &sump_float)
Name
Page 613Drainage String Element

12d Model Programming Language Manual
Integer Get_drainage_pit_float_sump(Element element,Integer pit,Integer &sump_float)

Description
For the Element drain, which must be of type Drainage, and pit number pit, return the flag for the
floating sump invert level as sump_float.
If sump_float = 1, the invert level of the sump automatically moves to be the invert level of the
lowest pipe coming into the pit, plus the sump offset (which is defined by an attribute).
If sump_float = 0, the invert level of the sump is fixed and is explicitly set by the call
Set_drainage_pit_sump_level(Element drain,Integer pit,Real level).
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the floating sump level flag was successfully returned.
ID = 2787

Set_drainage_pit_sump_level(Element drain,Integer pit,Real level)
Name
Integer Set_drainage_pit_sump_level(Element drain,Integer pit,Real level)

Description
For the Element drain, which must be of type Drainage, and pit number pit, set the pit sump
invert level to level.
This value is only used when the pit floating sump level flag is set to 1. See
Set_drainage_pit_float_sump(Element drain,Integer pit,Integer sump_float).
See Drainage Pit Cross Section.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the sump invert level was successfully set.

ID = 2788

Get_drainage_pit_sump_level(Element drain,Integer pit,Real &level)
Name
Integer Get_drainage_pit_sump_level(Element drain,Integer pit,Real &level)

Description
invert of the sump

For the Element drain, which must be of type Drainage, and pit number pit, return the invert
level of the sump as level.
See Drainage Pit Cross Section.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the sump invert level was successfully returned.
ID = 2789

Set_drainage_pit_thickness(Element drain,Integer p,Real bottom,Real front,Real
back,Real left,Real right)
Name
Integer Set_drainage_pit_thickness(Element drain,Integer p,Real bottom,Real front,Real back,Real
left,Real right)
Page 614 Drainage String Element

Chapter 5 12dPL Library Calls
Description
For the Element drain, which must of type Drainage, set the thicknesses for the pth pit to
bottom, front back, left and right where
 bottom is the thickness of the bottom of the pit
 front is the thickness for a round pit and the front thickness for a rectangular pit
 back is the back thickness for a rectangular pit and not used for a round pit
 left is the left thickness for a rectangular pit and not used for a round pit
 right is the right thickness for a rectangular pit and not used for a round pit

See Drainage Pit Definitions.

CAUTION: The Set_drainage_pit_type() and Set_drainage_pit_diameter() call will set the
pit thicknesses to the drainage.4d values.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 2870

Get_drainage_pit_thickness(Element drain,Integer p,Real &bottom,Real
&front,Real &back,Real &left,Real &right)
Name
Integer Get_drainage_pit_thickness(Element drain,Integer p,Real &bottom,Real &front,Real &back,Real
&left,Real &right)

Description
For the Element drain, which must of type Drainage, get the thicknesses for the pth pit and
return them in bottom, front back, left and right where

 bottom is the thickness of the bottom of the pit
 front is the thickness for a round pit, and the front thickness for a rectangular pit
 back is the back thickness for a rectangular pit and not used for a round pit
 left is the left thickness for a rectangular pit and not used for a round pit
 right is the right thickness for a rectangular pit and not used for a round pit
See Drainage Pit Definitions.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the thicknesses was successfully returned.
ID = 2869

Set_drainage_use_connection_points(Element drain,Integer
use_connection_points)
Name
Integer Set_drainage_use_connection_points(Element drain,Integer use_connection_points)

Description
For the Element drain, which must be of type Drainage, set whether pit connection points are
used or not.

If use_connection_points = 0, pit connection points are not used.
If use_connection_points = 1, pit connection points are used.

If connection points are to be used and there are no custom connection points defined for the pit
in the drainage.4d file, then every pipe goes to the centre of the closest rectangular side, or onto
Page 615Drainage String Element

12d Model Programming Language Manual
the circle for circular pits.
If connection points are to be used and there are custom connection points defined for the pit in
the drainage.4d file, then the pipes go to the closest connection point.
See Drainage Definitionsfor connection points.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the use_connection_points flag was successfully set.
ID = 2790

Get_drainage_use_connection_points(Element drain,Integer
&use_connection_points)
Name
Integer Get_drainage_use_connection_points(Element drain,Integer &use_connection_points)

Description
For the Element drain, return the pit connection point mode for the string in
use_connection_points.

If use_connection_points = 0, pit connection points are not used for drain.
If use_connection_points = 1, pit connection points are used for drain.
See Drainage Definitionsfor connection points.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the use_connection_points flag was successfully
returned.

ID = 2791

Set_drainage_pit_connection_points_mode(Element drainage,Integer pit,Integer
mode)
Name
Integer Set_drainage_pit_connection_points_mode(Element drainage,Integer pit,Integer mode)

Description
Set connection points mode of the drainage string Element drainage at pit index pit to Integer
mode.
A return value of zero indicates the function call was successful.
The list of values for connection points mode:

0 Centre
1 Points
2 Perimeter

3 Unrestricted
ID = 2881
???

Get_drainage_pit_connection_points_mode(Element drainage,Integer pit,Integer
&mode)
Name
Page 616 Drainage String Element

Chapter 5 12dPL Library Calls
Integer Get_drainage_pit_connection_points_mode(Element drainage,Integer pit,Integer &mode)

Description
Get connection points mode of the drainage string Element drainage at pit index pit.
A return value of zero indicates the function call was successful.
The list of values for connection points mode

0 Centre

1 Points
2 Perimeter
3 Unrestricted

ID = 2882
???

Set_drainage_pit_symbol_angle_mode(Element drainage,Integer pit,Integer mode)
Name
Integer Set_drainage_pit_symbol_angle_mode(Element drainage,Integer pit,Integer mode)

Description
Set the pit symbol angle mode of the drainage string Element drainage at pit index pit to Integer
mode.
A return value of zero indicates the function call was successful.

The list of values for pit symbol angle mode
0 Floating
1 Setout String

2 Manual
ID = 2884
???

Get_drainage_pit_symbol_angle_mode(Element drainage,Integer pit,Integer
&mode)
Name
Integer Get_drainage_pit_symbol_angle_mode(Element drainage,Integer pit,Integer &mode)

Description
Get the pit symbol angle mode of the drainage string Element drainage at pit index pit.
A return value of zero indicates the function call was successful.
The list of values for pit symbol angle mode

0 Floating

1 Setout String
2 Manual

ID = 2883

???
Page 617Drainage String Element

12d Model Programming Language Manual
Set_drainage_pit_2d_connection_mode(Element drainage,Integer pit,Integer
mode)
Name
Integer Set_drainage_pit_2d_connection_mode(Element drainage,Integer pit,Integer mode)

Description
Set the pit 2d connection mode of the drainage string Element drainage at pit index pit to Integer
mode.
A return value of zero indicates the function call was successful.
The list of values for pit 2d connection mode

0 Not set
1 Grate
2 Sump

3 Channel
4 None

ID = 2885

???

Get_drainage_pit_2d_connection_mode(Element drainage,Integer pit,Integer
&mode)
Name
Integer Get_drainage_pit_2d_connection_mode(Element drainage,Integer pit,Integer &mode)

Description
Get the pit 2d connection mode of the drainage string Element drainage at pit index pit.
A return value of zero indicates the function call was successful.

The list of values for pit 2d connection mode
0 Not set
1 Grate

2 Sump
3 Channel
4 None

ID = 2886
???

Get_drainage_pit_connection(Element drainage,Integer mh_index,Integer
&mh_con_type,Element &con_string,Integer &con_mh_index,Integer &con_type)
Name
Integer Get_drainage_pit_connection(Element drainage,Integer mh_index,Integer
&mh_con_type,Element &con_string,Integer &con_mh_index,Integer &con_type)

Description
Get the pit connection information for the drainage string Element drainage at manhole index
mh_index.
A return value of zero indicates the function call was successful.
Page 618 Drainage String Element

Chapter 5 12dPL Library Calls
ID = 2889
???

Drainage_Adjust_Pit_Connection_Points(Element drain,Integer pit)
Name
Integer Drainage_Adjust_Pit_Connection_Points(Element drain,Integer pit)

Description
For the Element drain, which must be of type Drainage, recalculate the pit connection points for
pit number pit.
Note that this needs to be done if the pit was moved or changed. For example, changing the
diameter of the pit.

See Drainage Definitionsfor connection points.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the connection points were successfully adjusted.

ID = 2792

Drainage_Adjust_Pit_Connection_Points_All(Element drain)
Name
Integer Drainage_Adjust_Pit_Connection_Points_All(Element drain)

Description
For the Element drain, which must be of type Drainage, recalculate the pit connection points for
all the pits in drain.

Note that this needs to be done if pits were moved or changed. For example, changing the
diameter of the pits.
See Drainage Definitionsfor connection points.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the connection points were successfully adjusted.
ID = 2793

Get_drainage_pit_connection_points(Element drain,Integer pit,Real &lx,Real
&ly,Real &rx,Real &ry)
Name
Integer Get_drainage_pit_connection_points(Element drain,Integer pit,Real &lx,Real &ly,Real &rx,Real
&ry)

Description
For the Element drain, which must be of type Drainage, return the pit connection points for pit
number pit.
The coordinates of the pit connection point for the pipe that comes into the pit from the left are
returned as (lx,ly).

The coordinates of the pit connection point for the pipe that goes out of the pit to the right are
returned as (rx,ry).
See Drainage Definitionsfor connection points.
Page 619Drainage String Element

12d Model Programming Language Manual
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the connection points were successfully returned.
ID = 2847

Set_drainage_pit_inverts(Element drain,Integer p,Real lhs,Real rhs)
Name
Integer Set_drainage_pit_inverts(Element drain,Integer p,Real lhs,Real rhs)

Description
For the Element drain, which must be of type Drainage, set the invert levels of the pipes of drain
entering/leaving the pth pit.
The invert level of the pipe entering/leaving the left side of the pit is set to Real lhs.

The invert level of the pipe entering/leaving the right side of the pit is set to Real rhs.
See Drainage Pipe Definitions for invert levels.
Note: this is setting the invert levels of the pipes entering/leaving the pth pit.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 514

Get_drainage_pit_inverts(Element drain,Integer p,Real &lhs,Real &rhs)
Name
Integer Get_drainage_pit_inverts(Element drain,Integer p,Real &lhs,Real &rhs)

Description
For the Element drain, which must be of type Drainage, get the invert levels of the pipes of drain
entering/leaving the pth pit.

The invert level of the pipe entering/leaving the left side of the pit is returned in lhs.
The invert level of the pipe entering/leaving the right side of the pit is returned in rhs.
See Drainage Pipe Definitions for invert levels.

Note: this is getting the invert levels of the pipes entering/leaving the pth pit.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 508

Get_drainage_pit_angle(Element drain,Integer p,Real &ang)
Name
Integer Get_drainage_pit_angle(Element drain,Integer p,Real &ang)

Description
For the Element drain, which must of type Drainage, get the angle between pipes of drain
entering and leaving the pth pit, and return the angle as ang.

Note: this is not the angle of the drainage pit itself which is returned by the call
Get_drainage_pit_symbol_angle(Element drain,Integer pit,Real &angle).
If drain is not an Element of type Drainage then a non zero function return code is returned.
Page 620 Drainage String Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the data was successfully returned.
ID = 517

Get_drainage_pit_angle (Element drain,Integer p,Real &ang,Integer trunk)
Name
Integer Get_drainage_pit_angle(Element drain,Integer p,Real &ang,Integer trunk)

Description
For the Element drain, which must of type Drainage, for the pth pit, get the angle between
incoming pipe and the outgoing pipe, and return it as ang. ang is in radians.
If the drainage string is using connection points, the direction of the pipes at the connection
points are used.

If the drainage string is NOT using connection points, the direction of the pipes at the pit centre
are used.
trunk controls the action to be taken when the pit is at the downstream end of the drainage
string.
If trunk in non-zero, then a trunk line will be searched for to obtain the outgoing pipe. If no trunk
line is found, ang = 0.

If trunk is zero, ang = 0.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 1294

Get_drainage_pit_chainage(Element drain,Integer p,Real &chainage)
Name
Integer Get_drainage_pit_chainage(Element drain,Integer p,Real &chainage)

Description
For the Element drain, which must be of type Drainage, return the chainage for the pth pit in
chainage.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 520

Get_drainage_pit_chainages(Element drain,Integer pit,Real &ch_lcp,Real
&ch_centre,Real &ch_rcp)
Name
Integer Get_drainage_pit_chainages(Element drain,Integer pit,Real &ch_lcp,Real &ch_centre,Real
&ch_rcp)

Description
For the Element drain, which must be of type Drainage, and for pit number pit, return the
chainages of the pit connection points and the chainage of the centre of the pit.

The chainage of the pit connection point for the pipe that comes into the pit from the left is
returned as ch_lcp.
The chainage of the pit connection point for the pipe that goes out of the pit to the right is
Page 621Drainage String Element

12d Model Programming Language Manual
returned as ch_rcp.
The chainage of the centre of the pit is returned as ch_centre.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the chainages were successfully returned.
ID = 2848

Get_drainage_pit_shape(Element drain,Integer pit,Integer mode,Element
&super_inside,Element &super_outside)
Name
Integer Get_drainage_pit_shape(Element drain,Integer pit,Integer mode,Element &super_inside,Element
&super_outside)

Description
For the Element drain, which must be of type Drainage, return the plan shape of the inside of pit
number pit as the super string super_inside and the plan shape of the outside of the pit as
super_outside.
So for a circular pit with a wall thickness, a super string representing a circle of the diameter of
the pit is the super_inside and a circle of (diameter + 2*thickness) is the super_outside.

If mode = 0, the shapes are given the z-value of the bottom of the pit (sump bottom).
If mode = 1, the shapes are given the z-value of the invert of the sump.
If mode = 2, the shapes are given the z-value of the grate.

If mode = 3, the shapes are given the z-value of the cover.

If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the shapes were successfully returned.
ID = 2849

Set_drainage_pit_float(Element drain,Integer pit,Integer pit_float)
Name
 Integer Set_drainage_pit_float(Element drain,Integer pit,Integer pit_float)

Description

 mode = 3 cover level

 mode = 2 grate level

 mode = 1 sump invert
 mode = 0 bottom of pit

grate

pit cover

de
pt

h
of

 p
it
Page 622 Drainage String Element

Chapter 5 12dPL Library Calls
For the Element drain, which must be of type Drainage, and pit number pit, set the flag for the
floating pit level to pit_float.
If pit_float = 1, the top of the pit automatically takes its level (height) from the finished surface tin
for the drainage string drain.
If pit_float = 0, the top of the pit level is fixed.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the pit_float value was successfully set.
ID = 1277

Get_drainage_pit_float(Element drain,Integer pit,Integer &pit_float)
Name
 Integer Get_drainage_pit_float(Element drain,Integer pit,Integer &pit_float)

Description
For the Element drain, which must be of type Drainage, and pit number pit, return the flag for the
floating pit level as pit_float.
If pit_float = 1, the top of the pit automatically takes its level (height) from the finished surface tin
for the drainage string drain.
If pit_float = 0, the top of the pit level is fixed.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the pit_float value was successfully returned.
ID = 1276

Set_drainage_pit_hgl(Element drain,Integer p,Real hgl)
Name
Integer Set_drainage_pit_hgl(Element drain,Integer p,Real hgl)

Description
For the Element drain, which must be of type Drainage, set the hgl level for the centre of the pth
pit of the string to hgl.
If hgl is null then the hgl for the surface is not drawn.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully set.
ID = 1241

Get_drainage_pit_hgl(Element drain,Integer p,Real &hgl)
Name
Integer Get_drainage_pit_hgl(Element drain,Integer p,Real &hgl)

Description
For the Element drain, which must be of type Drainage, get the hgl level for centre of the pth pit
and return it in hgl.
If hgl is null then the hgl for the surface is not drawn.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
Page 623Drainage String Element

12d Model Programming Language Manual
 ID = 1242

Set_drainage_pit_surface_hgl(Element element,Integer pit,Real surface_hgl)
Name
Integer Set_drainage_pit_surface_hgl(Element element,Integer pit,Real surface_hgl)

Description
For the Element drain, which must be of type Drainage, set the surface hgl level for the centre of
the pth pit of the string, to surface_hgl.
If surface_hgl is null then the hgl for the surface is not drawn.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 2785

Get_drainage_pit_surface_hgl(Element element,Integer pit,Real &surface_hgl
Name
Integer Get_drainage_pit_surface_hgl(Element element,Integer pit,Real &surface_hgl)

Description
For the Element drain, which must be of type Drainage, get the surface hgl level for the centre of
the pth pit of the string, and return it in surface_hgl.
If surface_hgl is null then the hgl for the surface is not drawn.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully set.
ID = 2784

Set_drainage_pit_hgls(Element drain,Integer p,Real lhs,Real rhs)
Name
Integer Set_drainage_pit_hgls(Element drain,Integer p,Real lhs,Real rhs)

Description
For the Element drain, which must be of type Drainage, set the hgl levels of the pipes of drain
entering/leaving the pth pit.
The hgl level of the pipe entering/leaving the left side of the pit is given as Real lhs.
The hgl level of the entering/leaving right side of the pit is given as Real rhs.

Note: this is setting the hgl levels for the pipes entering/leaving the pth pit, not the hgl of the pit.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

 ID = 538

Get_drainage_pit_hgls(Element drain,Integer p,Real &lhs,Real &rhs)
Name
Integer Get_drainage_pit_hgls(Element drain,Integer p,Real &lhs,Real &rhs)
Page 624 Drainage String Element

Chapter 5 12dPL Library Calls
Description
For the Element drain, which must be of type Drainage, get the hgl levels of the pipes of drain
entering/leaving the pth pit.
The hgl level of the pipe entering/leaving the left side of the pit is returned in Real lhs.

The hgl level of the pipe entering/leaving the right side of the pit is returned in Real rhs.
Note: this is getting the hgl levels of the pipes entering/leaving the pth pit, not the hgl of the pit.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
 ID = 535

Set_drainage_pit_road_chainage(Element drain,Integer p,Real chainage)
Name
Integer Set_drainage_pit_road_chainage(Element drain,Integer p,Real chainage)

Description
For the Element drain, which must be of type Drainage, set the road chainage for the pth pit to
chainage.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully set.
ID = 515

Get_drainage_pit_road_chainage(Element drain,Integer p,Real &chainage)
Name
Integer Get_drainage_pit_road_chainage(Element drain,Integer p,Real &chainage)

Description
For the Element drain, which must be of type Drainage, return the road chainage for the pth pit
in chainage.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 509

Set_drainage_pit_road_name(Element drain,Integer p,Text name)
Name
Integer Set_drainage_pit_road_name(Element drain,Integer p,Text name)

Description
For the Element drain, which must be of type Drainage, set the road name for the pth pit to
name.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 516

Get_drainage_pit_road_name(Element drain,Integer p,Text &name)
Page 625Drainage String Element

12d Model Programming Language Manual
Name
Integer Get_drainage_pit_road_name(Element drain,Integer p,Text &name)

Description
For the Element drain, which must be of type Drainage, return the road name for the pth pit in
name.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

 ID = 510

Set_drainage_pit_type(Element drain,Integer p,Text type)
Name
Integer Set_drainage_pit_type(Element drain,Integer p,Text type)

Description
For the Element drain, which must be of type Drainage, set the type for the pth pit to type.

If the pit type type is in the drainge.4d file, then the call also sets the values for the pit to be those
given in the drainage.4d file for the pit type.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

 ID = 512

Get_drainage_pit_type(Element drain,Integer p,Text &type)
Name
Integer Get_drainage_pit_type(Element drain,Integer p,Text &type)

Description
For the Element drain, which must be of type Drainage, return the type for the pth pit in type.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 506

Get_drainage_pit_branches(Element drain,Integer p,Dynamic_Element
&branches)
Name
 Integer Get_drainage_pit_branches(Element drain,Integer p,Dynamic_Element &branches)

Description
For the Element drain, which must be of type Drainage, this function returns a list of the
branches (each branch is a Drainage string) that flow into the pth pit of drain. The list of
branches is returned in the Dynamic_Element branches.
Note: a branch is defined as a drainage string that flows into a non-outlet pit of another drainage
string. Thus the flow direction of the drainage string is important.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 1443
Page 626 Drainage String Element

Chapter 5 12dPL Library Calls
Get_drainage_pit_depth(Element drain,Integer p,Real &depth)
Name
Integer Get_drainage_pit_depth(Element drain,Integer p,Real &depth)

Description
For the Element drain, which must be of type Drainage, return the depth of the pth pit in depth.
If drain is not an Element of type Drainage then a non zero function return code is returned.

See for the def inion of pit depth.
A function return value of zero indicates the data was successfully returned.

 ID = 519

Get_drainage_pit_drop(Element drain,Integer p,Real &drop)
Name
Integer Get_drainage_pit_drop(Element drain,Integer p,Real &drop)

Description
For the Element drain, which must be of type Drainage, return the drop through the pth pit in
drop.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
 ID = 518

Get_drainage_pit_ns(Element drain,Integer n,Real &ns_ht)
Name
Integer Get_drainage_pit_ns(Element drain,Integer n,Real &ns_ht)

Description
For the Element drain, which must be of type Drainage, return the height from the natural
surface tin at the location of the centre of the nth pit in ns_ht.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 521

Get_drainage_pit_fs(Element drain,Integer n,Real &fs_ht)
Name
Integer Get_drainage_pit_fs(Element drain,Integer n,Real &fs_ht)

Description
For the Element drain, which must be of type Drainage, return the height from the finished
surface tin at the location of the centre of the nth pit in fs_ht.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 522
Page 627Drainage String Element

12d Model Programming Language Manual
Go to the next section 5.44.4 Drainage Pit Type Information in the drainage.4d Fileor return to
5.44 Drainage String Element.
Page 628 Drainage String Element

Chapter 5 12dPL Library Calls
5.44.4 Drainage Pit Type Information in the drainage.4d File

Get_drainage_number_of_manhole_types(Integer &num_types)
Name
Integer Get_drainage_number_of_manhole_types(Integer &num_types)

Description
Get the number of pit (manhole, maintenance hole) types from the drainage.4d file and return the
number in num_types.
A function return value of zero indicates the data was successfully returned.

ID = 2077

Get_drainage_manhole_type(Integer i,Text &type)
Name
Integer Get_drainage_manhole_type(Integer i,Text &type)

Description
Get the name of the i’th manhole type from the drainage.4d file and return the name in type.

A function return value of zero indicates the data was successfully returned.
ID = 2078

Get_drainage_manhole_length(Text type,Real &length)
Name
Integer Get_drainage_manhole_length(Text type,Real &length)

Description
For the manhole of type type from the drainage.4d file, return the length as given by the keyword
"mhsize" in length (the length and width are given by the keyword "mhsize").
If there is no such manhole type, -1 is returned as the function return value.
If the length does not exist for the manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.
ID = 2079

Get_drainage_manhole_width(Text type,Real &width)
Name
Integer Get_drainage_manhole_width(Text type,Real &width)

Description
For the manhole of type type from the drainage.4d file, return the width as given by the keyword
"mhsize" in width (the length and width are given by the keyword "mhsize").
If there is no such manhole type, -1 is returned as the function return value.
If the width does not exist for manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.
 ID = 2080
Page 629Drainage String Element

12d Model Programming Language Manual
Get_drainage_manhole_description(Text type,Text &description)
Name
Integer Get_drainage_manhole_description(Text type,Text &description)

Description
Get the description of the manhole of type type from the drainage.4d file and return the
description in description.
If there is no such manhole type, -1 is returned as the function return value.

If the description does not exist for manhole type type, -2 is returned as the function return value.
A function return value of zero indicates the data was successfully returned.
ID = 2081

Get_drainage_manhole_notes(Text type,Text ¬es)
Name
Integer Get_drainage_manhole_notes(Text type,Text ¬es)

Description
Get the notes of the manhole of type type from the drainage.4d file and return the notes in
notes.

If there is no such manhole type, -1 is returned as the function return value.
If notes do not exist for manhole type type, -2 is returned as the function return value.
A function return value of zero indicates the data was successfully returned.

 ID = 2082

Get_drainage_manhole_group(Text type,Text &group)
Name
Integer Get_drainage_manhole_group(Text type,Text &group)

Description
Get the group of the manhole of type type from the drainage.4d file and return the group in
group.

If there is no such manhole type, -1 is returned as the function return value.
If group does not exist for manhole type type, -2 is returned as the function return value.
A function return value of zero indicates the data was successfully returned.

ID = 2083

Get_drainage_manhole_capacities(Text type,Real &multi,Real &fixed, Real
&percent,Real &coeff,Real &power)
Name
Integer Get_drainage_manhole_capacities(Text type,Real &multi,Real &fixed,Real &percent,Real
&coeff,Real &power)

Description
From the drainage.4d file, for the manhole of type type return the values for the generic Inlet
Page 630 Drainage String Element

Chapter 5 12dPL Library Calls
capacities from the file for:
 cap_multi // if undefined the default is 1
 cap_fixed // if undefined the default is 0
 cap_percent // if undefined the default is 0
 cap_coeff // if undefined the default is 0
 cap_power // if undefined the default is 1
A function return value of zero indicates the data was successfully returned.

ID = 2084

Get_drainage_number_of_sag_curves(Text type,Integer &n)
Name
Integer Get_drainage_number_of_sag_curves(Text type,Integer &n)

Description
From the drainage.4d file, for the manhole of type type, get the number of sag capacity curves
(cap_curve_sag) and return the number in n.
A function return value of zero indicates the number was successfully returned.
ID = 2085

Get_drainage_sag_curve_name(Text type,Text &name)
Name
Integer Get_drainage_sag_curve_name(Text type,Text &name)

Description
From the drainage.4d file, for the manhole of type type, return the name of the sag capacity
curve (cap_curve_sag) in name.
A function return value of zero indicates the data was successfully returned.

ID = 2086

Get_drainage_manhole_capacities_sag(Text type,Real &multi,Real &fixed,Real
&percent,Real &coeff,Real &power)
Name
Integer Get_drainage_manhole_capacities_sag(Text type,Real &multi,Real &fixed,Real &percent,Real
&coeff,Real &power)

Description
From the drainage.4d file, for the manhole of type type, return the sag capacity curve
(cap_curve_sag) values from the file for:
 cap_multi // if undefined the default is 1
 cap_fixed // if undefined the default is 0
 cap_percent // if undefined the default is 0
 cap_coeff // if undefined the default is 0
 cap_power // if undefined the default is 1
A function return value of zero indicates the data was successfully returned.

ID = 2087
Page 631Drainage String Element

12d Model Programming Language Manual
Get_drainage_number_of_sag_curve_coords(Text type,Integer &n)
Name
Integer Get_drainage_number_of_sag_curve_coords(Text type,Integer &n)

Description
From the drainage.4d file, for the manhole of type type, return the number of coordinates in the
sag capacity curve (cap_curve_sag) in n.

Note - n may be 0.
A function return value of zero indicates the number was successfully returned.
ID = 2088

Get_drainage_sag_curve_coords(Text type,Real Depth[],Real Qin[],Integer
nmax,Integer &num)
Name
Integer Get_drainage_sag_curve_coords(Text type,Real Depth[],Real Qin[],Integer nmax,Integer &num)

Description
From the drainage.4d file, for the manhole of type type, return the coordinates for the sag
capacity curve (cap_curve_sag) in Depth[] and Qin[].
nmax is the size of the arrays Depth[] and Qin[], and num returns the actual number of
coordinates.
A function return value of zero indicates the coordinates were successfully returned.

ID = 2089

Get_drainage_number_of_grade_curves(Text type,Integer &n)
Name
Integer Get_drainage_number_of_grade_curves(Text type,Integer &n)

Description
From the drainage.4d file, for the manhole of type type, get the number of grade curves
(cap_curve_grade) and return the number in n.

A function return value of zero indicates the number was successfully returned.
ID = 2090

Get_drainage_grade_curve_name(Text type,Integer i,Text &name)
Name
Integer Get_drainage_grade_curve_name(Text type,Integer i,Text &name)

Description
From the drainage.4d file, for the manhole of type type, return the name of the i’th grade curve
(cap_curve_grade) in name.
A function return value of zero indicates the name was successfully returned.
 ID = 2091

Get_drainage_grade_curve_threshold(Text type,Text name,Integer
Page 632 Drainage String Element

Chapter 5 12dPL Library Calls
&by_grade,Real &road_grade,Integer &by_xfall,Real &road_xfall)
Name
Integer Get_drainage_grade_curve_threshold(Text type,Text name,Integer &by_grade,Real
&road_grade,Integer &by_xfall,Real &road_xfall)

Description
From the drainage.4d file, for the manhole of type type, and the capacity on grade curve called
name:

if the keyword "road_grade" exists then by_grade is set to 1 and the road on grade value is
returned in road_grade. Otherwise by_grade is set to 0.
if the keyword "road_crossfall" exists then by_crossfall is set to 1 and the road crossfall value is
returned in road_xfall. Otherwise by_xfall is set to 0.

A function return value of zero indicates the values were successfully returned.
ID = 2092

Get_drainage_manhole_capacities_grade(Text type,Text name,Real &multi,Real
&fixed,Real &percent,Real &coeff,Real &power)
Name
Integer Get_drainage_manhole_capacities_grade(Text type,Text name,Real &multi,Real &fixed,Real
&percent,Real &coeff,Real &power)

Description
From the drainage.4d file, for the manhole of type type, and the capacity on grade curve called
name, return the sag capacity curve (cap_curve_grade) values from the file for:
 cap_multi // if undefined the default is 1
 cap_fixed // if undefined the default is 0
 cap_percent // if undefined the default is 0
 cap_coeff // if undefined the default is 0
 cap_power // if undefined the default is 1

A function return value of zero indicates the data was successfully returned.
ID = 2093

Get_drainage_number_of_grade_curve_coords(Text type,Text name,Integer &n)
Name
Integer Get_drainage_number_of_grade_curve_coords(Text type,Text name,Integer &n)

Description
From the drainage.4d file, for the manhole of type type, and the capacity on grade curve called
name, return the number of coordinates in the on grade capacity curve (cap_curve_grade) in n.
Note - n may be 0.
A function return value of zero indicates the number was successfully returned.

ID = 2094

Get_drainage_grade_curve_coords(Text type,Text name,Real Qa[],Real
Qin[],Integer nmax,Integer &n)
Name
Page 633Drainage String Element

12d Model Programming Language Manual
Integer Get_drainage_grade_curve_coords(Text type,Text name,Real Qa[],Real Qin[],Integer
nmax,Integer &n)

Description
From the drainage.4d file, for the manhole of type type, and the capacity on grade curve called
name, return the coordinates for the on grade capacity curve (cap_curve_grade) in Qa[] and
Qin[].
nmax is the size of the arrays Qa[] and Qin[], and num returns the actual number of coordinates.
A function return value of zero indicates the coordinates were successfully returned.
ID = 2095

Get_drainage_manhole_config(Text type,Text &cap_config)
Name
Integer Get_drainage_manhole_config(Text type,Text &cap_config)

Description
From the drainage.4d file, for the manhole of type type, return the value of the keyword
"cap_config" in cap_config.
The value of cap_config must be:

"g" - for an on grade pit
"s" - for an sag pit

or
"m" - for a manhole sealed pit.

If the value of cap_config is not "g", "s" or "m" then a non zero function return value is returned.

A function return value of zero indicates the value was successfully returned.
ID = 2103

Get_drainage_manhole_diam(Text type,Real &diameter)
Name
Integer Get_drainage_manhole_diam(Text type,Real &diameter)

Description
From the drainage.4d file, for the manhole of type type, return the value of the keyword
"mhdiam" in diameter.
A function return value of zero indicates the value was successfully returned.
 ID = 2104

Get_drainage_manhole_types(Text water_type,Dynamic_Text &types)
Name
Integer Get_drainage_manhole_types(Text water_type,Dynamic_Text &types)

Description
From the drainage.4d file, for given purpose water_type, return the list of manhole types in
types.
A function return value of zero indicates the types was successfully returned.

 ID = 3860
Page 634 Drainage String Element

Chapter 5 12dPL Library Calls
Go to the next section 5.44.5 Drainage String Pit Attributesor return to 5.44 Drainage String
Element.
Page 635Drainage String Element

12d Model Programming Language Manual
5.44.5 Drainage String Pit Attributes
Get_drainage_pit_attribute_length(Element drain,Integer pit,Integer
att_no,Integer &att_len)
Name
 Integer Get_drainage_pit_attribute_length(Element drain,Integer pit,Integer att_no,Integer &att_len)

Description
For pit number pit of the Element drain, get the length (in bytes) of the attribute number att_no.
The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.
Note - the length is useful for attributes of type Text and Binary.
ID = 1005

Get_drainage_pit_attribute_length(Element drain,Integer pit,Text
att_name,Integer &att_len)
Name
Integer Get_drainage_pit_attribute_length(Element drain,Integer pit,Text att_name,Integer &att_len)

Description
For pit number pit of the Element drain, get the length (in bytes) of the attribute with the name
att_name. The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.
ID = 1004

Get_drainage_pit_attribute_type(Element drain,Integer pit,Integer att_no,Integer
&att_type)
Name
 Integer Get_drainage_pit_attribute_type(Element drain,Integer pit,Integer att_no,Integer &att_type)

Description
For pit number pit of the Element drain, get the type of the attribute with attribute number
att_no. The attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.

 ID = 1003

Get_drainage_pit_attribute_type(Element drain,Integer pit,Text att_name,Integer
&att_type)
Name
 Integer Get_drainage_pit_attribute_type(Element drain,Integer pit,Text att_name,Integer &att_type)

Description
For pit number pit of the Element drain, get the type of the attribute with name att_name. The
attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.
Page 636 Drainage String Element

Chapter 5 12dPL Library Calls
ID = 1002

Get_drainage_pit_attribute_name(Element drain,Integer pit,Integer att_no,Text
&name)
Name
Integer Get_drainage_pit_attribute_name(Element drain,Integer pit,Integer att_no,Text &name)

Description
For pit number pit of the Element drain, get the name of the attribute number att_no. The
attribute name is returned in name.
A function return value of zero indicates the attribute name was successfully returned.

 ID = 1001

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real &real)
Name
Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real &real)

Description
For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in real. The attribute must be of type Real.

If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

ID = 1000

Get_drainage_pit_attribute (Element drain,Integer pit,Integer att_no,Integer &int)
Name
 Integer Get_drainage_pit_attribute (Element drain,Integer pit,Integer att_no,Integer &int)

Description
For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

ID = 999

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text &txt)
Name
Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text &txt)

Description
Page 637Drainage String Element

12d Model Programming Language Manual
For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in txt. The attribute must be of type Text.
If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
 ID = 998

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real &real)
Name
 Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real &real)

Description
For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in real. The attribute must be of type Real.
If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 997

Get_drainage_pit_number_of_attributes(Element drain,Integer pit,Integer
&no_atts)
Name
 Integer Get_drainage_pit_number_of_attributes(Element drain,Integer pit,Integer &no_atts)

Description
Get the total number of attributes for pit number pit of the Element drain.

The total number of attributes is returned in Integer no_atts.
A function return value of zero indicates the number of attributes was successfully returned.
ID = 994

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text &txt)
Name
 Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text &txt)

Description
For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in txt. The attribute must be of type Text.
If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
Page 638 Drainage String Element

Chapter 5 12dPL Library Calls
ID = 995

Get_drainage_pit_attribute (Element drain,Integer pit,Text att_name,Integer &int)
Name
 Integer Get_drainage_pit_attribute (Element drain,Integer pit,Text att_name,Integer &int)

Description
For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 996

Get_drainage_pit_attributes(Element drain,Integer pit,Attributes &att)
Name
Integer Get_drainage_pit_attributes(Element drain,Integer pit,Attributes &att)

Description
For the Element drain, return the Attributes for the pit number pit as att.
If the Element is not of type Drainage or the pit number pit has no attribute then a non-zero
return value is returned.
A function return value of zero indicates the attribute is successfully returned.

 ID = 2022

Set_drainage_pit_attributes(Element drain,Integer pit,Attributes att)
Name
Integer Set_drainage_pit_attributes(Element drain,Integer pit,Attributes att)

Description
For the Element drain, set the Attributes for the pit number pit to att.
If the Element is not of type Drainage then a non-zero return value is returned.
A function return value of zero indicates the attribute is successfully set.
ID = 2023

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid &uid)
Name
Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid &uid)

Description
For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
Page 639Drainage String Element

12d Model Programming Language Manual
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2024

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes
&att)
Name
Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes &att)

Description
For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in att. The attribute must be of type Attributes.
If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2025

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid &uid)
Name
Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid &uid)

Description
For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in uid. The attribute must be of type Uid.
If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 2026

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes
&att)
Name
Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes &att)

Description
For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
Page 640 Drainage String Element

Chapter 5 12dPL Library Calls
ID = 2027

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid uid)
Name
Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid uid)

Description
For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2028

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes att)
Name
Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes att)

Description
For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2029

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid uid)
Name
Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid uid)

Description
For the Element drain and on the pit number pit, if the attribute number att_no exists and it is of
type Uid, then its value is set to uid.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2030
Page 641Drainage String Element

12d Model Programming Language Manual
Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes att)
Name
Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes att)

Description
For the Element drain and on the pit number pit, if the attribute number att_no exists and it is of
type Attributes, then its value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2031

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real real)
Name
 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real real)

Description
For the Element drain and on the pit number pit,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute
number att_no.

ID = 1011

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Integer int)
Name
 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Integer int)

Description
For the Element drain and on the pit number pit,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute
number att_no.

ID = 1010
Page 642 Drainage String Element

Chapter 5 12dPL Library Calls
Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text txt)
Name
 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text txt)

Description
For the Element drain and on the pit number pit,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute
number att_no.
ID = 1009

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real real)
Name
 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real real)

Description
For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1008

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Integer int)
Name
 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Integer int)

Description
For the Element drain and on the pit number pit
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1007

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text txt)
Page 643Drainage String Element

12d Model Programming Language Manual
Name
 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text txt)

Description
For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1006

Drainage_pit_attribute_exists(Element drain,Integer pit,Text att_name)
Name
 Integer Drainage_pit_attribute_exists (Element drain,Integer pit,Text att_name)

Description
For the Element drain, checks to see if an attribute with the name att_name exists for pit number
pit.
A non-zero function return value indicates that an attribute of that name exists.

If the attribute does not exist, or drain is not of type Drainage, or there is no pit number pit, a
zero function return value is returned.
Warning - this is the opposite of most 12dPL function return values.
 ID = 987

Drainage_pit_attribute_exists (Element drain,Integer pit,Text name,Integer &no)
Name
 Integer Drainage_pit_attribute_exists (Element drain,Integer pit,Text name,Integer &no)

Description
For the Element drain, checks to see if an attribute with the name att_name exists for pit number
pit.
If the attribute of that name exists, its attribute number is returned is no.

A non-zero function return value indicates that an attribute of that name exists.
If the attribute does not exist, or drain is not of type Drainage, or there is no pit number pit, a
zero function return value is returned.
Warning - this is the opposite of most 12dPL function return values.

ID = 988

Drainage_pit_attribute_delete (Element drain,Integer pit,Text att_name)
Name
Integer Drainage_pit_attribute_delete (Element drain,Integer pit,Text att_name)

Description
Page 644 Drainage String Element

Chapter 5 12dPL Library Calls
For the Element drain, delete the attribute with the name att_name for pit number pit.
If the Element drain is not of type Drainage or drain has no pit number pit, then a non-zero
return code is returned.
A function return value of zero indicates the attribute was deleted.

ID = 989

Drainage_pit_attribute_delete (Element drain,Integer pit,Integer att_no)
Name
 Integer Drainage_pit_attribute_delete (Element drain,Integer pit,Integer att_no)

Description
For the Element drain, delete the attribute with attribute number att_no for pit number pit.
If the Element drain is not of type Drainage or drain has no pit number pit, then a non-zero
return code is returned.
A function return value of zero indicates the attribute was deleted.

ID = 990

Drainage_pit_attribute_delete_all (Element drain,Integer pit)
Name
 Integer Drainage_pit_attribute_delete_all (Element drain,Integer pit)

Description
Delete all the attributes of pit number pit of the drainage string drain.

A function return value of zero indicates the function was successful.
 ID = 991

Drainage_pit_attribute_dump (Element drain,Integer pit)
Name
 Integer Drainage_pit_attribute_dump (Element drain,Integer pit)

Description
Write out information to the Output Window about the pit attributes for pit number pit of the
drainage string drain.
A function return value of zero indicates the function was successful.
ID = 992

Drainage_pit_attribute_debug (Element drain,Integer pit)
Name
 Integer Drainage_pit_attribute_debug (Element drain,Integer pit)

Description
Write out even more information to the Output Window about the pit attributes for pit number pit
of the drainage string drain.

A function return value of zero indicates the function was successful.
ID = 993
Page 645Drainage String Element

12d Model Programming Language Manual
Go to the next section 5.44.6 Drainage String Pipesor return to 5.44 Drainage String Element.
Page 646 Drainage String Element

Chapter 5 12dPL Library Calls
5.44.6 Drainage String Pipes
Drainage Pipe Definitions
Drainage pipe number n goes from drainage pit number n and pit number n+1. The left end of
the pipe is the end closest to pit n, and the right end is the end closes to pit n+1.

Drainage Pipe Cross Sections
A drainage pipe can have either a Circular, Box or Trapezoid cross section depending on
whether only a diameter is defined (circular), only a diameter and a width are defined (box), or a
diameter, width and top width are defined (trapezoid). The box and trapezoid will be referred to
as non round pipes.
Pipes can also have thicknesses.
For a round pipe, there is only one thickness.

For a non round pipe, there is a top_thickness, bottom_thickness, left_thickness and
right_thickness. Note that the left and right are defined when going in the chainage direction of
the pipe.
So diameter, width and top width refer to the internal dimensions of the pipe and for a

 round pipe, the external diameter = diameter + 2 * thickness
 box pipe, the external diameter = diameter + top thickness + bottom thickness
 the external width = width + left thickness + right thickness

 trapezoid pipe, the external diameter = diameter + top thickness + bottom thickness
 the external width = width + left thickness + right thickness
 the external top width = top width + left thickness + right thickness

Drainage Pipe Definitions

 pit number n
 pit number n+1

 pipe number n left end of pipe

 right end of pipe

 left invert level
 right invert level

 pipe thickness

Section View
Page 647Drainage String Element

12d Model Programming Language Manual

diameter

width

top width = null
top width

diameter

width

diameter

top width = null

width = null

Circular Box Trapezoid

bottom thickness

top thickness

left thickness

right thickness

right thickness

left thickness

top
thickness

Section View
Page 648 Drainage String Element

Chapter 5 12dPL Library Calls
Set_drainage_pipe_inverts(Element drain,Integer p,Real lhs,Real rhs)
Name
Integer Set_drainage_pipe_inverts(Element drain,Integer p,Real lhs,Real rhs)

Description
Set the pipe invert levels for the pth pipe of the string Element drain.

The invert level of the left hand end of the pipe is given as Real lhs.
The invert level of the right hand end of the pipe is given as Real rhs.
See Drainage Pipe Definitions.

Note: pipe invert levels can also be set using the call Set_drainage_pit_inverts(Element
drain,Integer p,Real lhs,Real rhs).
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully set.
ID = 536

Get_drainage_pipe_inverts(Element drain,Integer p,Real &lhs,Real &rhs)
Name
Integer Get_drainage_pipe_inverts(Element drain,Integer p,Real &lhs,Real &rhs)

Description
Get the pipe invert levels for the pth pipe of the string Element drain.
The invert level of the pipe of the left hand end of the pipe is returned in Real lhs.
The invert level of the right hand end of the pipe is returned in Real rhs.

See Drainage Pipe Definitions.
Note: pipe invert levels can also be returned using the call Get_drainage_pit_inverts(Element
drain,Integer p,Real &lhs,Real &rhs).
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 533

Set_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer n)
Name
Integer Set_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer n)

Description
For the Element drain, which must be of type Drainage, and for the pipe number pipe, set the
number of pipes to be n.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the number was successfully set.

ID = 2852

Get_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer &n)
Name
Integer Get_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer &n)
Page 649Drainage String Element

12d Model Programming Language Manual
Description
For the Element drain, which must be of type Drainage, and for the pipe number pipe, return the
number of pipes as n.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the number was successfully returned.
ID = 2853

Set_drainage_pipe_colour(Element drain,Integer p,Integer colour)
Name
Integer Set_drainage_pipe_colour(Element drain,Integer p,Integer colour)

Description
Set the colour of the pth pipe of the Element drain to colour number colour.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 2783

Get_drainage_pipe_colour(Element drain,Integer p,Integer &colour)
Name
Integer Get_drainage_pipe_colour(Element drain,Integer p,Integer &colour)

Description
Get the colour number of the pth pipe of the Element drain and return the colour number in
colour.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 2782

Set_drainage_pipe_name(Element drain,Integer p,Text name)
Name
Integer Set_drainage_pipe_name(Element drain,Integer p,Text name)

Description
Set the pipe name for the pth pipe of the string Element drain.

The pipe name is given as Text name.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 502

Get_drainage_pipe_name(Element drain,Integer p,Text &name)
Name
Integer Get_drainage_pipe_name(Element drain,Integer p,Text &name)

Description
Page 650 Drainage String Element

Chapter 5 12dPL Library Calls
Get the pipe name for the pth pipe of the string Element drain.
The pipe name is returned in Text name.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 497

Set_drainage_pipe_type(Element drain,Integer p,Text type)
Name
Integer Set_drainage_pipe_type(Element drain,Integer p,Text type)

Description
Set the pipe type for the pth pipe of the string Element drain.
The pipe type is given as Text type.

If the pipe type type is in the drainge.4d file, then the call also sets the values for the pipe to be
those given in the drainage.4d file for the pipe type.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 501

Get_drainage_pipe_type(Element drain,Integer p,Text &type)
Name
Integer Get_drainage_pipe_type(Element drain,Integer p,Text &type)

Description
Get the pipe type for the pth pipe of the string Element drain.
The pipe type is returned in Text type.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 496

Set_drainage_pipe_cover(Element drain,Integer pipe,Real cover)
Name
 Integer Set_drainage_pipe_cover(Element drain,Integer pipe,Real cover)

Description
For the Element drain, which must be of type Drainage, set the minimum cover for pipe number
pipe, to cover.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 1442

Get_drainage_pipe_cover(Element drain,Integer pipe,Real &minc,Real &maxc)
Page 651Drainage String Element

12d Model Programming Language Manual
Name
 Integer Get_drainage_pipe_cover(Element drain,Integer pipe,Real &minc,Real &maxc)

Description
For the Element drain, which must be of type Drainage, return the minimum cover value for pipe
number pipe, in cover.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 1441

Set_drainage_pipe_diameter(Element drain,Integer p,Real diameter)
Name
Integer Set_drainage_pipe_diameter(Element drain,Integer p,Real diameter)

Description
Set the pipe diameter for the pth pipe of the string Element drain.

The pipe diameter is given as Real diameter.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 500

Set_drainage_pipe_width(Element drain,Integer pipe,Real &width)
Name
Integer Set_drainage_pipe_width(Element drain,Integer pipe,Real &width)

Description
For the Element drain, which must be of type Drainage, and pipe number pipe, set the width of
the pipe to the value width.
If a width is not to be used then set a null value for width.
See Drainage Pipe Cross Sections.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the width was successfully set.
ID = 2857

Set_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)
Name
Integer Set_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)

Description
For the Element drain, which must be of type Drainage, and pipe number pipe, set the top width
of the pipe to the value top_width.
If a top width is not to be used then set a null value for top_width.

See Drainage Pipe Cross Sections.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the top width was successfully set.
Page 652 Drainage String Element

Chapter 5 12dPL Library Calls
ID = 2858

Get_drainage_pipe_diameter(Element drain,Integer p,Real &diameter)
Name
Integer Get_drainage_pipe_diameter(Element drain,Integer p,Real &diameter)

Description
Get the pipe diameter for the pth pipe of the string Element drain.

The pipe diameter is returned in Real diameter.
See Drainage Pipe Cross Sections.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 495

Get_drainage_pipe_width(Element drain,Integer pipe,Real &width)
Name
Integer Get_drainage_pipe_width(Element drain,Integer pipe,Real &width)

Description
For the Element drain, which must be of type Drainage, and pipe number pipe, get the width of
the pipe and return it in width.
If a width is not to be used then a null value is returned for width.

If drain is not an Element of type Drainage then a non zero function return code is returned.
See Drainage Pipe Cross Sections.
A function return value of zero indicates the width was successfully returned.

ID = 2855

Get_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)
Name
Integer Get_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)

Description
For the Element drain, which must be of type Drainage, and pipe number pipe, get the top width
of the pipe and return it in top_width.

If a top width is not to be used then a null value is returned for top_width.
See Drainage Pipe Cross Sections.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the top width was successfully returned.
ID = 2856

Get_drainage_pipe_thickness(Element drain,Integer pipe,Real &top,Real
&bottom,Real &left,Real &right)
Name
Page 653Drainage String Element

12d Model Programming Language Manual
Integer Get_drainage_pipe_thickness(Element drain,Integer pipe,Real &top,Real &bottom,Real
&left,Real &right)

Description
For the Element drain, which must be of type Drainage, and pipe number pipe, set the pipe
thicknesses to top, bottom, left and right where

 top is the thickness for a round pipe, and the top thickness for a non round pipe.
 bottom is the thickness of the bottom of the pipe for a non round pipe.
 left is the thickness of the left of the pipe for a non round pipe.
 right is the thickness of the right of the pipe for a non round pipe.
See Drainage Pipe Cross Sections.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the thicknesses were successfully set.
ID = 2867

Set_drainage_pipe_thickness(Element drain,Integer pit,Real top,Real bottom,Real
left,Real right)
Name
Integer Set_drainage_pipe_thickness(Element drain,Integer pit,Real top,Real bottom,Real left,Real right)

Description
For the Element drain, which must be of type Drainage, and pipe number pipe, return the pipe
thicknesses in top, bottom, left and right where

 top is the thickness for a round pipe, and the top thickness for a non round pipe.
 bottom is the thickness of the bottom of the pipe for a non round pipe.
 left is the thickness of the left of the pipe for a non round pipe.
 right is the thickness of the right of the pipe for a non round pipe.
See Drainage Pipe Cross Sections.

CAUTION: The Set_drainage_pipe_type() and Set_drainage_pipe_diameter() call will set
the pipe thicknesses to the drainage.4d values.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the thicknesses were successfully returned.
ID = 2868

Get_drainage_pipe_intersects_pit(Element drain,Integer pipe,Real offset,Real
&lx,Real &ly,Real &lch,Real &rx,Real &ry,Real &rch)
Name
Integer Get_drainage_pipe_intersects_pit(Element drain,Integer pipe,Real offset,Real &lx,Real &ly,Real
&lch,Real &rx,Real &ry,Real &rch)

Description
For the Element drain, which must be of type Drainage, and for pipe number pipe, get the (x,y)
coordinates and chainage of the intersection of the pipe offset (in the (x,y) pane) by the distance
offset, with the pits at either end of the offset pipe.

If offset is positive then the pipe is offset to the right of the original pipe, and to the left when the
offset is negative. Left and right are defined with respect to the direction of the pipe.
The coordinates of the intersection of the pipe with the left hand pit are returned as (lx,ly) and the
Page 654 Drainage String Element

Chapter 5 12dPL Library Calls
chainage of the intersection point as lch.
The coordinates of the intersection of the pipe with the right hand pit are returned as (rx,ry) and
the chainage of the intersection point as rch.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the values were successfully returned.
ID = 2851

Get_drainage_pipe_shape(Element element,Integer pipe,Integer
mode,Dynamic_Element &super_inside,Dynamic_Element &super_outside)
Name
Integer Get_drainage_pipe_shape(Element element,Integer pipe,Integer mode,Dynamic_Element
&super_inside,Dynamic_Element &super_outside)

Description
For the Element drain, which must be of type Drainage, return as super strings, the shape of the
insides of the pipes in the Dynamic_Element super_inside and the shape of the outsides of the
pipes in the Dynamic_Element super_outside. The number of pipes, separation and thickness
settings are used in generating all the shapes.

So this function returns a list of the super strings that “draw” the plan view of the inside and
outside of the pipes.
For a circular pipe with wall thickness, the super_inside string is a super string with a plan box
shape with a width of the diameter of the pipe and a length equal to the length of the pipe. And
super_outside has a width equal to (diameter + 2*thickness).
For a rectangular pipe with a wall thicknesses, the super_inside is a super string with a plan box
shape with a width of the diameter of the pipe and a length equal to the length of the pipe. And
super_outside has a width equal to (diameter + left_thickness + right_thickness)

mode controls the z values assigned to the super strings.
If mode = 0, the shapes are given the z-value of the invert levels of the pipes.
If mode = 1, the shapes are given the z-value of the centre levels of the pipes.
If mode = 2, the shapes are given the z-value of the obvert levels of the pipes.
A function return value of 2 indicates the super strings could not be created.
A function return value of zero indicates the shapes were successfully returned.

ID = 2854

Get_drainage_pipe_shape(Element drain,Integer pipe,Integer mode,Real
offset,Element &super_inside,Element &super_outside)
Name
Integer Get_drainage_pipe_shape(Element drain,Integer pipe,Integer mode,Real offset,Element
&super_inside,Element &super_outside)

Description
For the Element drain, which must be of type Drainage, return the shape of the inside of pipe
number pipe as the super string super_inside and the shape of the outside of the pipe as
super_outside, and the shapes are offset in the (x,y) plane from the pipe by the distance offset.
If offset is positive then the shapes are offset to the right of the pipe and to the left when the
offset is negative. Left and right is defined with respect to the direction of the pipe.

So this function returns a list of the super strings that “draw” the plan view of the inside and
Page 655Drainage String Element

12d Model Programming Language Manual
outside of the pipe offset by the given value offset.
For for a circular pipe with a wall thickness, the super_inside is a super string with a plan box
shape with a width of the diameter of the pipe and a length equal to the length of the pipe. And
super_outside has a width equal to (diameter + 2*thickness).
For a rectangular pipe with a wall thicknesses, the super_inside is a super string with a plan box
shape with a width of the diameter of the pipe and a length equal to the length of the pipe. And
super_outside has a width equal to (diameter + left_thickness + right_thickness)

If mode = 0, the shapes are given the z-value of the invert levels of the pipe.
If mode = 1, the shapes are given the z-value of the centre levels of the pipe.
If mode = 2, the shapes are given the z-value of the obvert levels of the pipe.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the shapes were successfully returned.

Note: the number of pipes and separation are not used for generating the shapes and offset is
use instead. For generating shapes using number of pipes and separation, see
Get_drainage_pipe_shape(Element element,Integer pipe,Integer mode,Dynamic_Element
&super_inside,Dynamic_Element &super_outside)
ID = 2850

Set_drainage_pipe_hgls(Element drain,Integer p,Real lhs,Real rhs)
Name
Integer Set_drainage_pipe_hgls(Element drain,Integer p,Real lhs,Real rhs)

Description
Set the pipe hgl levels for the pth pipe of the string Element drain.
The hgl level of the left hand side of the pipe is set to lhs.

The hgl level of the right hand side of the pipe is set to rhs.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.

ID = 537

Get_drainage_pipe_hgls(Element drain,Integer p,Real &lhs,Real &rhs)
Name
Integer Get_drainage_pipe_hgls(Element drain,Integer p,Real &lhs,Real &rhs)

Description
Get the pipe HGL levels for the pth pipe of the string Element drain.

The hgl level of the left hand side of the pipe is returned in lhs.
The hgl level of the right hand side of the pipe is returned in rhs.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 534

Set_drainage_pipe_velocity(Element drain,Integer p,Real velocity)
Page 656 Drainage String Element

Chapter 5 12dPL Library Calls
Name
Integer Set_drainage_pipe_velocity(Element drain,Integer p,Real velocity)

Description
Get the pipe flow velocity for the pth pipe of the string Element drain.
The velocity of the pipe is returned in Real velocity.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully set.
ID = 499

Get_drainage_pipe_velocity(Element drain,Integer p,Real &velocity)
Name
Integer Get_drainage_pipe_velocity(Element drain,Integer p,Real &velocity)

Description
Get the flow velocity for the pth pipe of the string Element drain.
The velocity is returned in Real velocity.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 494

Set_drainage_pipe_flow(Element drain,Integer p,Real flow)
Name
Integer Set_drainage_pipe_flow(Element drain,Integer p,Real flow)

Description
Get the pipe flow volume for the pth pipe of the string Element drain.
The velocity of the pipe is returned in Real flow.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully set.
ID = 498

Set_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real
nominal_diameter)
Name
Integer Set_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real nominal_diameter)

Description
Set the pipe nominal diameter of the drainage string Element drainage at pipe index pipe to
Real nominal_diameter.
A return value of zero indicates the function call was successful.
ID = 2890

Set_drainage_pipe_separation(Element drainage,Integer pipe,Real separation)
Name
Page 657Drainage String Element

12d Model Programming Language Manual
Integer Set_drainage_pipe_separation(Element drainage,Integer pipe,Real separation)

Description
Set the pipe separation of the drainage string Element drainage at pipe index pipe to Real
separation.

A return value of zero indicates the function call was successful.
ID = 2892

Get_drainage_pipe_flow(Element drain,Integer p,Real &flow)
Name
Integer Get_drainage_pipe_flow(Element drain,Integer p,Real &flow)

Description
Get the flow volume for the pth pipe of the string Element drain.
The volume is returned in Real velocity.
If drain is not an Element of type Drainage then a non zero function return code is returned.

A function return value of zero indicates the data was successfully returned.
ID = 493

Get_drainage_pipe_length(Element drain,Integer p,Real &length)
Name
Integer Get_drainage_pipe_length(Element drain,Integer p,Real &length)

Description
Get the pipe length for the pth pipe of the string Element drain.
The length of the pipe is returned in Real length.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 503

Get_drainage_pipe_grade(Element drain,Integer p,Real &grade)
Name
Integer Get_drainage_pipe_grade(Element drain,Integer p,Real &grade)

Description
Get the pipe grade for the pth pipe of the string Element drain.
The grade of the pipe is returned in Real grade.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.
ID = 504

Get_drainage_pipe_ns(Element drain,Integer p,Real ch[],Real ht[],Integer
max_pts,Integer &npts)
Name
Page 658 Drainage String Element

Chapter 5 12dPL Library Calls
Integer Get_drainage_pipe_ns(Element drain,Integer p,Real ch[],Real ht[],Integer max_pts,Integer
&npts)

Description
For the drainage string drain, get the heights along the pth pipe from the natural surface tin.

Because the pipe is long then there will be more than one height and the heights are returned in
chainage order along the pipe. The heights are returned in the arrays ch (for chainage) and ht.
The maximum number of natural surface points that can be returned is given by max_pts
(usually the size of the arrays).
The actual number of points of natural surface is returned in npts.

If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 523

Get_drainage_pipe_fs(Element drain,Integer p,Real ch[],Real ht[],Integer
max_pts,Integer &npts)
Name
Integer Get_drainage_pipe_fs(Element drain,Integer p,Real ch[],Real ht[],Integer max_pts,Integer
&npts)

Description
For the drainage string drain, get the heights along the pth pipe from the finished surface tin.
Because the pipe is long then there will be more than one height and the heights are returned in
chainage order along the pipe. The heights are returned in the arrays ch (for chainage) and ht.
The maximum number of finished surface points that can be returned is given by max_pts
(usually the size of the arrays).

The actual number of points of finished surface is returned in npts.
If drain is not an Element of type Drainage then a non zero function return code is returned.
A function return value of zero indicates the data was successfully returned.

ID = 524

Get_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real
&nominal_diameter)
Name
Integer Get_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real &nominal_diameter)

Description
Get the pipe nominal diameter nominal_diameter of the drainage string Element drainage at
pipe index pipe.
A return value of zero indicates the function call was successful.
ID = 2891

Get_drainage_pipe_separation(Element drainage,Integer pipe,Real &separation)
Name
Integer Get_drainage_pipe_separation(Element drainage,Integer pipe,Real &separation)
Page 659Drainage String Element

12d Model Programming Language Manual
Description
Get the pipe separation separation of the drainage string Element drainage at pipe index pipe.
A return value of zero indicates the function call was successful.

ID = 2893

Go to the next section 5.44.7 Drainage Pipe Type Information in the drainage.4d Fileor return to
5.44 Drainage String Element.
Page 660 Drainage String Element

Chapter 5 12dPL Library Calls
5.44.7 Drainage Pipe Type Information in the drainage.4d File

Get_drainage_number_of_pipe_types(Integer &n)
Name
Integer Get_drainage_number_of_pipe_types(Integer &n)

Description
Get the number of pipe types (classes) from the drainage.4d file and return the number in n.
A function return value of zero indicates the data was successfully returned.

ID = 2271

Get_drainage_pipe_type(Integer i,Text &type)
Name
Integer Get_drainage_pipe_type(Integer i,Text &type)

Description
Get the name of the i’th pipe type (class) from the drainage.4d file and return the name in type.

A function return value of zero indicates the data was successfully returned.
 ID = 2272

Get_drainage_pipe_roughness(Text type,Real &roughness,Integer
&roughness_type)
Name
Integer Get_drainage_pipe_roughness(Text type,Real &roughness,Integer &roughness_type)

Description
For the pipe type type, return from the drainage.4d file, the roughness in roughness and
roughness type in roughness_type. Roughness type is MANNING (0) or COLEBROOK (1).
If pipe type type does not exist, then a non-zero return value is returned.

A function return value of zero indicates the data was successfully returned.
ID = 2273

Get_drainage_pipe_types(Text water_type,Dynamic_Text &types)
Name
Integer Get_drainage_pipe_types(Text water_type,Dynamic_Text &types)

Description
From the drainage.4d file, for given purpose water_type, return the list of pipe types in types.
A function return value of zero indicates the types was successfully returned.
 ID = 3861

Go to the next section 5.44.8 Drainage String Pipe Attributesor return to 5.44 Drainage String
Element.
Page 661Drainage String Element

12d Model Programming Language Manual
5.44.8 Drainage String Pipe Attributes
Set_drainage_pipe_attributes(Element drain,Integer pipe,Attributes att)
Name
Integer Set_drainage_pipe_attributes(Element drain,Integer pipe,Attributes att)

Description
For the Element drain, set the Attributes for the pipe number pipe to att.
If the Element is not of type Drainage then a non-zero return value is returned.
A function return value of zero indicates the attribute is successfully set.
ID = 2033

Get_drainage_pipe_attributes(Element drain,Integer pipe,Attributes &att)
Name
Integer Get_drainage_pipe_attributes(Element drain,Integer pipe,Attributes &att)

Description
For the Element drain, return the Attributes for the pipe number pipe as att.
If the Element is not of type Drainage or the pipe number pipe has no attribute then a non-zero
return value is returned.

A function return value of zero indicates the attribute is successfully returned.
 ID = 2032

Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid &uid)
Name
Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid &uid)

Description
For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in uid. The attribute must be of type Uid.
If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2034

Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes
 &att)
Name
Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes &att)

Description
For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.
Page 662 Drainage String Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2035

Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid &uid)
Name
Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid &uid)

Description
For the Element drain get the attribute with number att_no for the pipe number pipe and return
the attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 2036

Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,
Attributes &att)
Name
Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Attributes &att)

Description
For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in att. The attribute must be of type Attributes.
If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 2037

Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid uid)
Name
Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid uid)

Description
For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.
If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 2038
Page 663Drainage String Element

12d Model Programming Language Manual
Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,
Attributes att)
Name
Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes att)

Description
For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 2039

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid uid)
Name
Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid uid)

Description
For the Element drain and on the pipe number pipe, if the attribute number att_no exists and it
is of type Uid, then its value is set to uid.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 2040

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,
Attributes att)
Name
Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Attributes att)

Description
For the Element drain and on the pipe number pipe, if the attribute number att_no exists and it
is of type Attributes, then its value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.
If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
ID = 2041
Page 664 Drainage String Element

Chapter 5 12dPL Library Calls
Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text
&txt)
Name
 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text &txt)

Description
For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in txt. The attribute must be of type Text.

If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.
ID = 1020

Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer
&int)
Name
 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer &int)

Description
For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in int. The attribute must be of type Integer.
If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.
ID = 1021

Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Real
&real)
Name
 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Real &real)

Description
For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in real. The attribute must be of type Real.

If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

ID = 1022
Page 665Drainage String Element

12d Model Programming Language Manual
Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text
&txt)
Name
 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text &txt)

Description
For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in txt. The attribute must be of type Text.
If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
ID = 1023

Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Integer
&int)
Name
 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Integer &int)

Description
For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

ID = 1024

Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Real
&real)
Name
Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Real &real)

Description
For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in real. The attribute must be of type Real.
If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
ID = 1025

Drainage_pipe_attribute_exists(Element drain,Integer pipe,Text att_name)
Page 666 Drainage String Element

Chapter 5 12dPL Library Calls
Name
Integer Drainage_pipe_attribute_exists (Element drain,Integer pipe,Text att_name)

Description
For the Element drain, checks to see if an attribute with the name att_name exists for pipe
number pipe.
A non-zero function return value indicates that an attribute of that name exists.
If the attribute does not exist, or drain is not of type Drainage, or there is no pipe number pipe, a
zero function return value is returned.

Warning this is the opposite of most 12dPL function return values.
ID = 1012

Drainage_pipe_attribute_exists (Element drain, Integer pipe,Text name,Integer
&no)
Name
 Integer Drainage_pipe_attribute_exists (Element drain, Integer pipe,Text name,Integer &no)

Description
For the Element drain, checks to see if an attribute with the name att_name exists for pipe
number pipe.

If the attribute of that name exists, its attribute number is returned is no.
A non-zero function return value indicates that an attribute of that name exists.
If the attribute does not exist, or drain is not of type Drainage, or there is no pipe number pipe, a
zero function return value is returned.

Warning this is the opposite of most 12dPL function return values.
ID = 1013

Drainage_pipe_attribute_delete (Element drain,Integer pipe,Text att_name)
Name
 Integer Drainage_pipe_attribute_delete (Element drain,Integer pipe,Text att_name)

Description
For the Element drain, delete the attribute with the name att_name for pipe number pipe.
If the Element drain is not of type Drainage or drain has no pipe number pipe, then a non-zero
return code is returned.
A function return value of zero indicates the attribute was deleted.

ID = 1014

Drainage_pipe_attribute_delete (Element drain,Integer pipe,Integer att_no)
Name
 Integer Drainage_pipe_attribute_delete (Element drain,Integer pipe,Integer att_no)

Description
For the Element drain, delete the attribute with attribute number att_no for pipe number pipe.
If the Element drain is not of type Drainage or drain has no pipe number pipe, then a non-zero
return code is returned.
Page 667Drainage String Element

12d Model Programming Language Manual
A function return value of zero indicates the attribute was deleted.
ID = 1015

Drainage_pipe_attribute_delete_all (Element drain,Integer pipe)
Name
 Integer Drainage_pipe_attribute_delete_all (Element drain,Integer pipe)

Description
Delete all the attributes of pipe number pipe of the drainage string drain.
A function return value of zero indicates the function was successful.
ID = 1016

Drainage_pipe_attribute_dump (Element drain,Integer pipe)
Name
 Integer Drainage_pipe_attribute_dump (Element drain,Integer pipe)

Description
Write out information to the Output Window about the pipe attributes for pipe number pipe of the
drainage string drain.
A function return value of zero indicates the function was successful.

ID = 1017

Drainage_pipe_attribute_debug (Element drain,Integer pipe)
Name
 Integer Drainage_pipe_attribute_debug (Element drain,Integer pipe)

Description
Write out even more information to the Output Window about the pipe attributes for pipe number
pipe of the drainage string drain.
A function return value of zero indicates the function was successful.
ID = 1018

Get_drainage_pipe_number_of_attributes(Element drain,Integer pipe,Integer
&no_atts)
Name
Integer Get_drainage_pipe_number_of_attributes(Element drain,Integer pipe,Integer &no_atts)

Description
Get the total number of attributes for pipe number pipe of the Element drain.

The total number of attributes is returned in Integer no_atts.
A function return value of zero indicates the number of attributes was successfully returned.
ID = 1019

Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Text
Page 668 Drainage String Element

Chapter 5 12dPL Library Calls
att_name,Integer &att_len)
Name
 Integer Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Text att_name,Integer &att_len)

Description
For pipe number pipe of the Element drain, get the length (in bytes) of the attribute with the
name att_name. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.
Note - the length is useful for user attributes of type Text and Binary.
ID = 1029

Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Integer
att_no,Integer &att_len)
Name
Integer Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Integer att_no,Integer &att_len)

Description
For pipe number pipe of the Element drain, get the length (in bytes) of the attribute number
att_no. The attribute length is returned in att_len.
A function return value of zero indicates the attribute length was successfully returned.
Note - the length is useful for attributes of type Text and Binary.
ID = 1030

Get_drainage_pipe_attribute_name(Element drain,Integer pipe,Integer
att_no,Text &name)
Name
 Integer Get_drainage_pipe_attribute_name(Element drain,Integer pipe,Integer att_no,Text &name)

Description
For pipe number pipe of the Element drain, get the name of the attribute number att_no. The
attribute name is returned in name.
A function return value of zero indicates the attribute name was successfully returned.
ID = 1026

Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Text
att_name,Integer &att_type)
Name
 Integer Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Text att_name,Integer &att_type)

Description
For pipe number pipe of the Element drain, get the type of the attribute with name att_name.
The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.
ID = 1027
Page 669Drainage String Element

12d Model Programming Language Manual
Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Integer
att_no,Integer &att_type
Name
 Integer Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Integer att_no,Integer &att_type)

Description
For pipe number pipe of the Element drain, get the type of the attribute with attribute number
att_no. The attribute type is returned in att_type.
A function return value of zero indicates the attribute type was successfully returned.
ID = 1028

Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text txt)
Name
 Integer Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text txt)

Description
For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

ID = 1031

Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer
int)
Name
Integer Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer int)

Description
For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.
ID = 1032

Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Real real)
Name
 Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Real real)

Description
Page 670 Drainage String Element

Chapter 5 12dPL Library Calls
For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.
ID = 1033

Set_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text txt)
Name
 Integer Set_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text txt)

Description
For the Element drain and on the pipe number pipe,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text, then set its value to txt.
If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
number att_no.
ID = 1034

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Integer
int)
Name
 Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Integer int)

Description
For the Element drain and on the pipe number pipe,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
number att_no.

ID = 1035

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Real real)
Name
 Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Real real)

Description
For the Element drain and on the pipe number pipe,
Page 671Drainage String Element

12d Model Programming Language Manual
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
number att_no.
ID = 1036

Go to the next section 5.44.9 Drainage String House Connections - For Sewer Module Onlyor
return to 5.44 Drainage String Element.
Page 672 Drainage String Element

Chapter 5 12dPL Library Calls
5.44.9 Drainage String House Connections - For Sewer Mod-
ule Only

Get_drainage_hcs(Element drain,Integer &no_hcs)
Name
Integer Get_drainage_hcs(Element drain,Integer &no_hcs)

Description
Get the number of house connections for the string Element drain.
The number of house connection is returned in Integer no_hcs.

A function return value of zero indicates the data was successfully returned.
ID = 590

Get_drainage_hc(Element drain,Integer h,Real &x,Real &y,Real &z)
Name
Integer Get_drainage_hc(Element drain,Integer h,Real &x,Real &y,Real &z)

Description
Get the x,y & z for the hth house connection of the string Element drain.
The x coordinate of the house connection is returned in Real x.
The y coordinate of the house connection is returned in Real y.
The z coordinate of the house connection is returned in Real z.
A function return value of zero indicates the data was successfully returned.
ID = 591

Set_drainage_hc_adopted_level(Element drain,Integer hc,Real level)
Name
 Integer Set_drainage_hc_adopted_level(Element drain,Integer hc,Real level)

Description
For the drainage string drain, set the adopted level for the h’th house connection to level.
A function return value of zero indicates the data was successfully set.

ID = 1302

Get_drainage_hc_adopted_level(Element drain,Integer h,Real &level)
Name
Integer Get_drainage_hc_adopted_level(Element drain,Integer h,Real &level)

Description
Get the adopted level for the h’th house connection of the string Element drain.

The adopted level of the house connection is returned in Real level.
A function return value of zero indicates the data was successfully returned.

ID = 598
Page 673Drainage String Element

12d Model Programming Language Manual
Set_drainage_hc_bush(Element drain,Integer hc,Text bush)
Name
 Integer Set_drainage_hc_bush(Element drain,Integer hc,Text bush)

Description
For the drainage string drain, set the bush type for the h’th house connection to bush.

A function return value of zero indicates the data was successfully set.
ID = 1310

Get_drainage_hc_bush(Element drain,Integer h,Text &bush)
Name
Integer Get_drainage_hc_bush(Element drain,Integer h,Text &bush)

Description
Get the bush type for the h’th house connection of the string Element drain.
The bush type of the house connection is returned in Text bush.
A function return value of zero indicates the data was successfully returned.

ID = 606

Set_drainage_hc_colour(Element drain,Integer hc,Integer colour)
Name
 Integer Set_drainage_hc_colour(Element drain,Integer hc,Integer colour)

Description
For the drainage string drain, set the colour number for the h’th house connection to colour.
A function return value of zero indicates the data was successfully set.
ID = 1307

Get_drainage_hc_colour(Element drain,Integer h,Integer &colour)
Name
Integer Get_drainage_hc_colour(Element drain,Integer h,Integer &colour)

Description
Get the colour for the h’th house connection of the string Element drain.
The colour of the house connection is returned in Integer colour.
A function return value of zero indicates the data was successfully returned.
ID = 603

Set_drainage_hc_depth(Element drain,Integer hc,Real depth)
Name
 Integer Set_drainage_hc_depth(Element drain,Integer hc,Real depth)

Description
For the drainage string drain, set the depth for the h’th house connection to depth.
Page 674 Drainage String Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the data was successfully set.
ID = 1305

Get_drainage_hc_depth(Element drain,Integer h,Real &depth)
Name
Integer Get_drainage_hc_depth(Element drain,Integer h,Real &depth)

Description
Get the depth for the h’th house connection of the string Element drain.
The depth of the house connection is returned in Real depth.

A function return value of zero indicates the data was successfully returned.
ID = 601

Set_drainage_hc_diameter(Element drain,Integer hc,Real diameter)
Name
 Integer Set_drainage_hc_diameter(Element drain,Integer hc,Real diameter)

Description
For the drainage string drain, set the diameter for the h’th house connection to diameter.
A function return value of zero indicates the data was successfully set.
ID = 1306

Get_drainage_hc_diameter(Element drain,Integer h,Real &diameter)
Name
Integer Get_drainage_hc_diameter(Element drain,Integer h,Real &diameter)

Description
Get the diameter for the h’th house connection of the string Element drain.
The diameter of the house connection is returned in Real diameter.
A function return value of zero indicates the data was successfully returned.
ID = 602

Set_drainage_hc_grade(Element drain,Integer hc,Real grade)
Name
 Integer Set_drainage_hc_grade(Element drain,Integer hc,Real grade)

Description
For the drainage string drain, set the grade for the h’th house connection to grade.
A function return value of zero indicates the data was successfully set.
ID = 1304

Get_drainage_hc_grade(Element drain,Integer h,Real &grade)
Name
Page 675Drainage String Element

12d Model Programming Language Manual
Integer Get_drainage_hc_grade(Element drain,Integer h,Real &grade)

Description
Get the grade for the h’th house connection of the string Element drain.

The grade of the house connection is returned in Real grade.
A function return value of zero indicates the data was successfully returned.
 ID = 600

Set_drainage_hc_hcb(Element drain,Integer hc,Integer hcb)
Name
 Integer Set_drainage_hc_hcb(Element drain,Integer hc,Integer hcb)

Description
For the drainage string drain, set the hcb for the h’th house connection to hcb.

A function return value of zero indicates the data was successfully set.
ID = 1300

Get_drainage_hc_hcb(Element drain,Integer h,Integer &hcb)
Name
Integer Get_drainage_hc_hcb(Element drain,Integer h,Integer &hcb)

Description
Get the hcb for the h’th house connection of the string Element drain.
The hcb of the house connection is returned in Integer hcb.

A function return value of zero indicates the data was successfully returned.
ID = 596

Set_drainage_hc_length(Element drain,Integer hc,Real length)
Name
 Integer Set_drainage_hc_length(Element drain,Integer hc,Real length)

Description
For the drainage string drain, set the length for the h’th house connection to length.

A function return value of zero indicates the data was successfully set.
ID = 1303

Get_drainage_hc_length(Element drain,Integer h,Real &length)
Name
Integer Get_drainage_hc_length(Element drain,Integer h,Real &length)

Description
Get the length for the h’th house connection of the string Element drain.
The length of the house connection is returned in Real length.
A function return value of zero indicates the data was successfully returned.
Page 676 Drainage String Element

Chapter 5 12dPL Library Calls
ID = 599

Set_drainage_hc_level(Element drain,Integer hc,Real level)
Name
 Integer Set_drainage_hc_level(Element drain,Integer hc,Real level)

Description
For the drainage string drain, set the level for the h’th house connection to level.
A function return value of zero indicates the data was successfully set.
ID = 1301

Get_drainage_hc_level(Element drain,Integer h,Real &level)
Name
Integer Get_drainage_hc_level(Element drain,Integer h,Real &level)

Description
Get the level for the h’th house connection of the string Element drain.
The level of the house connection is returned in Real level.
A function return value of zero indicates the data was successfully returned.
ID = 597

Set_drainage_hc_material(Element drain,Integer hc,Text material)
Name
 Integer Set_drainage_hc_material(Element drain,Integer hc,Text material)

Description
For the drainage string drain, set the material for the h’th house connection to material.
A function return value of zero indicates the data was successfully set.
 ID = 1309

Get_drainage_hc_material(Element drain,Integer h,Text &material)
Name
Integer Get_drainage_hc_material(Element drain,Integer h,Text &material)

Description
Get the material for the h’th house connection of the string Element drain.
The material of the house connection is returned in Text material.
A function return value of zero indicates the data was successfully returned.
ID = 605

Set_drainage_hc_name(Element drain,Integer hc,Text name)
Name
Integer Set_drainage_hc_name(Element drain,Integer hc,Text name)
Page 677Drainage String Element

12d Model Programming Language Manual
Description
For the drainage string drain, set the name for the h’th house connection to name.
A function return value of zero indicates the data was successfully set.

ID = 1299

Get_drainage_hc_name(Element drain,Integer h,Text &name)
Name
Integer Get_drainage_hc_name(Element drain,Integer h,Text &name)

Description
Get the name for the h’th house connection of the string Element drain.

The name of the house connection is returned in Text name.
A function return value of zero indicates the data was successfully returned.
ID = 595

Set_drainage_hc_side(Element drain,Integer hc,Integer side)
Name
 Integer Set_drainage_hc_side(Element drain,Integer hc,Integer side)

Description
For the drainage string drain, set the side for the h’th house connection by the value of side.

 when side = -1, the house connection is on the left side of the string.
 when side = 1, the house connection is on the right side of the string.
A function return value of zero indicates the data was successfully set.

ID = 1298

Get_drainage_hc_side(Element drain,Integer h,Integer &side)
Name
Integer Get_drainage_hc_side(Element drain,Integer h,Integer &side)

Description
Get the side for the h’th house connection of the string Element drain.

The side of the house connection is returned in Integer side.
If side = -1, the house connection is on the left side of the string.
If side = 1, the house connection is on the right side of the string.

A function return value of zero indicates the data was successfully returned.
ID = 594

Set_drainage_hc_type(Element drain,Integer hc,Text type)
Name
 Integer Set_drainage_hc_type(Element drain,Integer hc,Text type)

Description
For the drainage string drain, set the hc type for the h’th house connection to type.
Page 678 Drainage String Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the data was successfully set.
ID = 1308

Get_drainage_hc_type(Element drain,Integer h,Text &type)
Name
Integer Get_drainage_hc_type(Element drain,Integer h,Text &type)

Description
Get the type for the h’th house connection of the string Element drain.
The type of the house connection is returned in Text type.

A function return value of zero indicates the data was successfully returned.
ID = 604

Get_drainage_hc_chainage(Element drain,Integer h,Real &chainage)
Name
Integer Get_drainage_hc_chainage(Element drain,Integer h,Real &chainage)

Description
Get the chainage for the h’th house connection of the string Element drain.
The chainage of the house connection is returned in Real chainage.
A function return value of zero indicates the data was successfully returned.

ID = 592

Get_drainage_hc_ip(Element drain,Integer h,Integer &ip)
Name
Integer Get_drainage_hc_ip(Element drain,Integer h,Integer &ip)

Description
Get the intersect point for the h’th house connection of the string Element drain.

The intersection point of the house connection is returned in Integer ip.
ip is zero based (i.e. the first ip = 0)
A function return value of zero indicates the data was successfully returned.

ID = 593

Go to the next major section 5.45 Feature String Elementor return to 5.44 Drainage String
Element.
Page 679Drainage String Element

12d Model Programming Language Manual
5.45 Feature String Element
A 12d Model Feature string is a circle with a z-value at the centre but only null values on the
circumference.

Create_feature()
Name
Element Create_feature()

Description
Create an Element of type Feature
The function return value gives the actual Element created.
If the feature string could not be created, then the returned Element will be null.
ID = 872

Create_feature(Element seed)
Name
Element Create_feature(Element seed)

Description
Create an Element of type Feature and set the colour, name, style etc. of the new string to be the
same as those from the Element Seed.

The function return value gives the actual Element created.
If the Feature string could not be created, then the returned Element will be null.
 ID = 873

Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real rad)
Name
Element Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real rad)

Description
Create an Element of type Feature with name name, colour colour, centre (xc,yc), radius rad
and z value (height) zc.
The function return value gives the actual Element created.

If the Feature string could not be created, then the returned Element will be null.
ID = 874

Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc)
Name
Integer Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc)

Description
Get the centre point for Feature string given by Element elt.
The centre of the Feature is (xc,yc,zc).
Page 680 Feature String Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the centre was successfully returned.
ID = 876

Set_feature_centre(Element elt,Real xc,Real yc,Real zc)
Name
Integer Set_feature_centre(Element elt,Real xc,Real yc,Real zc)

Description
Set the centre point of the Feature string given by Element elt to (xc,yc,zc).
A function return value of zero indicates the centre was successfully modified.

ID = 875

Get_feature_radius(Element elt,Real &rad)
Name
Integer Get_feature_radius(Element elt,Real &rad)

Description
Get the radius for Feature string given by Element elt and return it in rad.

A function return value of zero indicates the radius was successfully returned.
ID = 878

Set_feature_radius(Element elt,Real rad)
Name
Integer Set_feature_radius(Element elt,Real rad)

Description
Set the radius of the Feature string given by Element elt to rad. The new radius must be non-
zero.
A function return value of zero indicates the radius was successfully modified.
ID = 877
Page 681Feature String Element

12d Model Programming Language Manual
5.46 Interface String Element
A Interface string consists of (x,y,z,flag) values at each point of the string where flag is the cut-fill
flag.
If the cut-fill flag is
-2 the surface was not reached

-1 the point was in cut
 0 the point was on the surface
 1 the point was in fill

The following functions are used to create new Interface strings and make inquiries and
modifications to existing Interface strings.

Create_interface(Real x[],Real y[],Real z[],Integer f[],Integer num_pts)
Name
Element Create_interface(Real x[],Real y[],Real z[],Integer f[],Integer num_pts)

Description
Create an Element of type Interface.

The Element has num_pts points with (x,y,z,flag) values given in the Real arrays x[], y[], z[] and
Integer array f[].
The function return value gives the actual Element created.

If the Interface string could not be created, then the returned Element will be null.
ID = 181

Create_interface(Integer num_pts)
Name
Element Create_interface(Integer num_pts)

Description
Create an Element of type Interface with room for num_pts (x,y,z,flag) points.
The actual x, y, z and flag values of the Interface string are set after the string is created.
If the Interface string could not be created, then the returned Element will be null.

ID = 451

Create_interface(Integer num_pts,Element seed)
Name
Element Create_interface(Integer num_pts,Element seed)

Description
Create an Element of type Interface with room for num_pts (x,y,z,flag) points, and set the colour,
name, style etc. of the new string to be the same as those from the Element seed.

The actual x, y, z and flag values of the Interface string are set after the string is created.
If the Interface string could not be created, then the returned Element will be null.
ID = 668
Page 682 Interface String Element

Chapter 5 12dPL Library Calls
Get_interface_data(Element elt,Real x[],Real y[],Real z[], Integer f[],Integer
max_pts,Integer &num_pts)
Name
Integer Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer max_pts,Integer
&num_pts)

Description
Get the (x,y,z,flag) data for the first max_pts points of the Interface Element elt.
The (x,y,z,flag) values at each string point are returned in the Real arrays x[], y[], z[] and Integer
array f[].
The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is given by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type Interface, then num_pts is returned as zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
ID = 182

Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)
Name
Integer Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Description
For a Interface Element elt, get the (x,y,z,flag) data for max_pts points starting at the point
number start_pt.
This routine allows the user to return the data from a Interface string in user specified chunks.
This is necessary if the number of points in the string is greater than the size of the arrays
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).
However, for this function, the point data returned starts at point number start_pt rather than point
one.
The (x,y,z,text) values at each string point are returned in the Real arrays x[], y[], z[] and Integer
array f[].
The actual number of points returned is given by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type Interface, then num_pts is returned as zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
Note

A start_pt of one gives the same result as for the previous function.
Page 683Interface String Element

12d Model Programming Language Manual
ID = 183

Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f)
Name
Integer Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f)

Description
Get the (x,y,z,flag) data for the ith point of the string.

The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.

The flag value is returned in Integer f.
A function return value of zero indicates the data was successfully returned.
ID = 184

Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer
num_pts)
Name
Integer Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts)

Description
Set the (x,y,z,flag) data for the first num_pts points of the Interface Element elt.
This function allows the user to modify a large number of points of the string in one call.
The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z,flag) values at each string point are given in the Real arrays x[], y[], z[] and Integer
array f[].
The number of points to be set is given by Integer num_pts
If the Element elt is not of type Interface, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.
Note
This function can not create new Interface Elements but only modify existing Interface Elements.

ID = 185

Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer
num_pts,Integer start_pt)
Name
Integer Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts,Integer
start_pt)

Description
For the Interface Element elt, set the (x,y,z,flag) data for num_pts points starting at point number
start_pt.
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt
 rather than point one.
Page 684 Interface String Element

Chapter 5 12dPL Library Calls
The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
The (x,y,z,flag) values for the string points are given in the Real arrays x[], y[], z[] and Integer
array f[].
The number of the first string point to be modified is start_pt.
The total number of points to be set is given by Integer num_pts
If the Element elt is not of type Interface, then nothing is modified and the function return value is
set to a non-zero value.
A function return value of zero indicates the data was successfully set.

Notes
(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new Interface Elements but only modify existing Interface

Elements.
ID = 186

Set_interface_data(Element elt,Integer i,Real x,Real y,Real z,Integer flag)
Name
Integer Set_interface_data(Element elt,Integer i,Real x,Real y,Real z,Integer flag)

Description
Set the (x,y,z,flag) data for the ith point of the string.

The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.

The flag value is given in Integer flag.
A function return value of zero indicates the data was successfully set.
ID = 187
Page 685Interface String Element

12d Model Programming Language Manual
5.47 Grid String and Grid Tin Element
Grid string and grid tin are two separated types of elements; however they have a lot of the same
underlining structures: grid geometry; grid range; and heights data.
Grid geometry contains information about:
(a) the coordinate of the origin point
(b) the angle of grid lines
(c) the spacings of grid lines.
Grid range contains information about the start and end in both directions of the grid. Note that
the grid can start before or after the origin point.

Grid height contains information about the levels of points defined by the grid range and
geometry.
The following functions are used to create new grid elements and make inquiries and
modifications to existing grid elements.

Create_grid_string()
Name
Element Create_grid_string()

Description
Return an Element of type grid string.

Use calls Set_grid_geometry and Set_grid_range to setup the data of the grid string.
ID = 2908

Create_grid_tin(Text name)
Name
Tin Create_grid_tin(Text name)

Description
Create a grid Tin with the given name.
The function return value gives the actual Tin created.

Use calls Set_grid_geometry and Set_grid_range to setup the data of the grid string.
ID = 2909

Can_edit_grid_data(Element elt,Integer &result)
Name
Integer Can_edit_grid_data(Element elt,Integer &result)

Description
Set the Integer value result to 1 if the grid data of Element elt can be edited, 0 otherwise.
A return value of 1 indicates the Element elt does not have valid grid data.
A return value of 0 indicates the Element elt has valid grid data.

ID = 2910

Set_grid_geometry(Element elt,Real origin_x,Real origin_y,Real spacing_x,Real
Page 686 Grid String and Grid Tin Element

Chapter 5 12dPL Library Calls
spacing_y,Real angle)
Name
Integer Set_grid_geometry(Element elt,Real origin_x,Real origin_y,Real spacing_x,Real spacing_y,Real
angle)

Description
Set the geometry the grid data of the Element elt with the origin point (origin_x,origin_y),
spacing space_x, space_y in the x, y direction and with angle angle.

A return value of 10 indicates the Element elt does not have valid unlocked grid data.
A return value of 0 indicates the grid data was set successfully.
ID = 2911

Get_grid_geometry(Element elt,Real &origin_x,Real &origin_y,Real
&spacing_x,Real &spacing_y,Real &angle)
Name
Integer Get_grid_geometry(Element elt,Real &origin_x,Real &origin_y,Real &spacing_x,Real
&spacing_y,Real &angle)

Description
Get the geometry the grid data of the Element elt to the origin point (origin_x,origin_y), spacing
space_x, space_y in the x, y direction and with angle angle.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 0 indicates the grid data was set successfully.

ID = 2912

Set_grid_range(Element elt,Integer xmin,Integer ymin,Integer xmax,Integer ymax)
Name
Integer Set_grid_range(Element elt,Integer xmin,Integer ymin,Integer xmax,Integer ymax)

Description
Set the range the grid data of the Element elt with x-range from xmin to xmax y-range from
ymin to ymax.

A return value of 10 indicates the Element elt does not have valid unlocked grid data.
A return value of 11 indicates the input range is not valid.
A return value of 100 indicates the input range exceeded the points limit.

A return value of 0 indicates the grid data was set successfully.
ID = 2913

Get_grid_range(Element elt,Integer &xmin,Integer &ymin,Integer &xmax,Integer
&ymax)
Name
Integer Get_grid_range(Element elt,Integer &xmin,Integer &ymin,Integer &xmax,Integer &ymax)

Description
Get the geometry the grid data of the Element elt with the origin point (origin_x,origin_y),
spacing space_x, space_y in the x, y direction and with angle angle.
Page 687Grid String and Grid Tin Element

12d Model Programming Language Manual
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 0 indicates the grid data was set successfully.
ID = 2914

Grid_get_x_points(Element elt,Integer &count)
Name
Integer Grid_get_x_points(Element elt,Integer &count)

Description
Get the number of point in x-range of the grid data of the Element elt as Integer count.
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of zero indicates the function call was successful.
ID = 2915

Grid_get_x_count(Element elt,Integer &count)
Name
Integer Grid_get_x_count(Element elt,Integer &count)

Description
Get the number of point in x-range of the grid data of the Element elt as Integer count.
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of zero indicates the function call was successful.
ID = 2915

Grid_get_y_points(Element elt,Integer &count)
Name
Integer Grid_get_y_points(Element elt,Integer &count)

Description
Get the number of point in y-range of the grid data of the Element elt as Integer count.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of zero indicates the function call was successful.

ID = 2916

Grid_get_y_count(Element elt,Integer &count)
Name
Integer Grid_get_y_count(Element elt,Integer &count)

Description
Get the number of point in y-range of the grid data of the Element elt as Integer count.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of zero indicates the function call was successful.
ID = 2916
Page 688 Grid String and Grid Tin Element

Chapter 5 12dPL Library Calls
Grid_get_x_cells(Element elt,Integer &count)
Name
Integer Grid_get_x_points(Element elt,Integer &count)

Description
Get the number of cells in x-range of the grid data of the Element elt as Integer count.
If the result is valid, it should be 1 less than the result of get points call.

A return value of 10 indicates the Element elt does not have valid grid data.
A return value of zero indicates the function call was successful.

ID = 2917

Grid_get_x_range(Element elt,Integer &count)
Name
Integer Grid_get_x_range(Element elt,Integer &count)

Description
Get the number of cells in x-range of the grid data of the Element elt as Integer count.
If the result is valid, it should be 1 less than the result of get points call.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of zero indicates the function call was successful.

ID = 2917

Grid_get_y_cells(Element elt,Integer &count)
Name
Integer Grid_get_y_points(Element elt,Integer &count)

Description
Get the number of cells in y-range of the grid data of the Element elt as Integer count.
If the result is valid, it should be 1 less than the result of get points call.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of zero indicates the function call was successful.

ID = 2918

Grid_get_y_range(Element elt,Integer &count)
Name
Integer Grid_get_y_range(Element elt,Integer &count)

Description
Get the number of cells in y-range of the grid data of the Element elt as Integer count.
If the result is valid, it should be 1 less than the result of get points call.
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of zero indicates the function call was successful.
Page 689Grid String and Grid Tin Element

12d Model Programming Language Manual
ID = 2918

Relative to the grid data of a grid string or a grid tin element, there are two extra coordinate
systems: grid; and cell coordinate (and also integer version of cell coordinate).
The world coordinate is just normal 12D x-y coordinate system, its values might be quite large
comparing to the grid and cell ones.
The grid and cell coordinate share the same origin "O" which is a point inside nor near the grid.
They also share the x-y axis which are the rotation of x-y axis of the world coordinate by the
rotation of the grid.

The cell coordinate of a point counts the number of cells from the cell to the x-y axis. If the point
is in both grid lines then the coordinates are round number. If the point is in the middle of a grid
cell then the coordinates contain non-zero decimal parts.
The value of a grid coordinate equal one of the cell coordinate multiplying by the spacing of the
direction.
If the cell coordinate of a point "C"(2.5, 3.7), the x-spacing is 6 and y-spacing is 10 then the grid
coordinate of "C" is (15.0, 37.0).

If the world coordinate of "O" is (1000.0, 2000.0) and no rotation then the world coordinate of
"C" is (1015.0, 2037.0). If the rotation of the grid is 90 degree anti-clockwise then the world
coordinate of "C" is (963.0, 2015.0).
The Integer cell coordinate of a point is defined as the Real cell coordinate of the bottom left
corner of the containing grid square, e.g. the "C" point above will be in the integer cell (2, 3).
Note that values of coordinate are round up by 6 decimal points before considering the
containing grid square; e.g. the point of coordinate (1.9999999999998, 2.99999999999997) is
considered in the grid square of the Integer cell (2, 3).

Grid_world_to_grid(Element elt,Real world_x,Real world_y,Real &grid_x,Real
&grid_y)
Name
Integer Grid_world_to_grid(Element elt,Real world_x,Real world_y,Real &grid_x,Real &grid_y)

Description
Transform world coordinate (world_x, world_y) to grid coordinate (grid_x, grid_y) of the grid
data of the Element elt.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2919

Grid_world_to_cell(Element elt,Real world_x,Real world_y,Real &cell_x,Real
&cell_y)
Name
Integer Grid_world_to_cell(Element elt,Real world_x,Real world_y,Real &cell_x,Real &cell_y)

Description
Transform world coordinate (world_x, world_y) to cell coordinate (cell_x, cell_y) of the grid
data of the Element elt.
Page 690 Grid String and Grid Tin Element

Chapter 5 12dPL Library Calls
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2920

Grid_world_to_cell(Element elt,Real world_x,Real world_y,Integer
&cell_x,Integer &cell_y)
Name
Integer Grid_world_to_cell(Element elt,Real world_x,Real world_y,Integer &cell_x,Integer &cell_y)

Description
Transform world coordinate (world_x, world_y) to cell indices (Integer cell_x, Integer cell_y) of
the grid data of the Element elt.
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.
ID = 2921

Grid_grid_to_world(Element elt,Real grid_x,Real grid_y,Real &world_x,Real
&world_y)
Name
Integer Grid_grid_to_world(Element elt,Real grid_x,Real grid_y,Real &world_x,Real &world_y)

Description
Transform grid coordinate (grid_x, grid_y) of the grid data of the Element elt to world coordinate
(world_x, world_y).

A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2922

Grid_grid_to_cell(Element elt,Real grid_x,Real grid_y,Real &cell_x,Real &cell_y)
Name
Integer Grid_grid_to_cell(Element elt,Real grid_x,Real grid_y,Real &cell_x,Real &cell_y)

Description
Transform grid coordinate (grid_x, grid_y) of the grid data of the Element elt to cell coordinate
(cell_x, cell_y).

A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2923

Grid_grid_to_cell(Element elt,Real grid_x,Real grid_y,Integer &cell_x,Integer
Page 691Grid String and Grid Tin Element

12d Model Programming Language Manual
&cell_y)
Name
Integer Grid_grid_to_cell(Element elt,Real grid_x,Real grid_y,Integer &cell_x,Integer &cell_y)

Description
Transform grid coordinate (grid_x, grid_y) to cell indices (Integer cell_x, Integer cell_y) of the
grid data of the Element elt.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2924

Grid_cell_to_world(Element elt,Real cell_x,Real cell_y,Real &world_x,Real
&world_y)
Name
Integer Grid_cell_to_world(Element elt,Real cell_x,Real cell_y,Real &world_x,Real &world_y)

Description
Transform cell coordinate (cell_x, cell_y) of the grid data of the Element elt to world coordinate
(world_x, world_y).
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.
ID = 2925

Grid_cell_to_world(Element elt,Integer cell_x,Integer cell_y,Real &world_x,Real
&world_y)
Name
Integer Grid_cell_to_world(Element elt,Integer cell_x,Integer cell_y,Real &world_x,Real &world_y)

Description
Transform cell indices (cell_x, cell_y) of the grid data of the Element elt to world coordinate
(world_x, world_y).

A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2926

Grid_cell_to_grid(Element elt,Real cell_x,Real cell_y,Real &grid_x,Real &grid_y)
Name
Integer Grid_cell_to_grid(Element elt,Real cell_x,Real cell_y,Real &grid_x,Real &grid_y)

Description
Transform cell coordinate (cell_x, cell_y) of the grid data of the Element elt to grid coordinate
(grid_x, grid_y).
Page 692 Grid String and Grid Tin Element

Chapter 5 12dPL Library Calls
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2927

Grid_cell_to_grid(Element elt,Integer cell_x,Integer cell_y,Real &grid_x,Real
&grid_y)
Name
Integer Grid_cell_to_grid(Element elt,Integer cell_x,Integer cell_y,Real &grid_x,Real &grid_y)

Description
Transform cell indices (cell_x, cell_y) of the grid data of the Element elt to grid coordinate
(grid_x, grid_y).
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.
ID = 2928

Shift_grid_range(Element elt,Integer xshift,Integer yshift)
Name
Integer Shift_grid_range(Element elt,Integer xshift,Integer yshift)

Description
Shift the grid data of the Element elt to world coordinate by (xshift, yshift) cells in the x, y
direction. For example: the new index for minimum grid x equal the old one minus xshift.
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of 11 indicates the shift failed.
A return value of zero indicates the function call was successful.
ID = 2929

Set_grid_heights(Element elt)
Name
Integer Set_grid_heights(Element elt)

Description
Null the heights of the grid data of the Element elt.
A return value of 10 indicates the Element elt does not have valid grid data.

A return value of 11 indicates the nulling action failed.
A return value of zero indicates the function call was successful.
ID = 2930

Set_grid_heights(Element elt,Real value)
Name
Page 693Grid String and Grid Tin Element

12d Model Programming Language Manual
Integer Set_grid_heights(Element elt,Real value)

Description
Set the heights of the grid data of the Element elt to single Real value.

A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the set action failed.
A return value of zero indicates the function call was successful.

ID = 2931

Set_grid_heights(Element elt,Tin tin)
Name
Integer Set_grid_heights(Element elt,Tin tin)

Description
Set the heights of the grid data of the Element elt to levels of Tin tin.

A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.
A return value of zero indicates the function call was successful.

ID = 2932

Set_grid_heights(Element elt,Dynamic_Element list)
Name
Integer Set_grid_heights(Element elt,Dynamic_Element list)

Description
Set the heights of the grid data of the Element elt according to Dynamic_Element list.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the transform failed.

A return value of zero indicates the function call was successful.
ID = 2933

Set_grid_height(Element elt,Integer xc,Integer yc,Real ht)
Name
Integer Set_grid_height(Element elt,Integer xc,Integer yc,Real ht)

Description
Set the height at cell indices (xc, yc) of the grid data of the Element elt with Real ht.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the set action failed.

A return value of zero indicates the function call was successful.
ID = 2934

Get_grid_height(Element elt,Integer xc,Integer yc,Real &ht)
Page 694 Grid String and Grid Tin Element

Chapter 5 12dPL Library Calls
Name
Integer Get_grid_height(Element elt,Integer xc,Integer yc,Real &ht)

Description
Get the height at cell indices (xc, yc) of the grid data of the Element elt to Real ht.
A return value of 10 indicates the Element elt does not have valid grid data.
A return value of 11 indicates the get action failed.

A return value of zero indicates the function call was successful.
ID = 2935

Convert_grid_string_to_grid_tin(Element elt,Text tin_name,Tin &tin)
Name
Integer Convert_grid_string_to_grid_tin(Element elt,Text tin_name,Tin &tin)

Description
Create a new grid Tin tin with name tin_name according to the grid data of element elt.
A return value of 10 indicates there already a tin named tin_name.

A return value of 11 indicates the creation failed.
A return value of zero indicates the function call was successful.
ID = 2936

Convert_grid_tin_to_grid_string(Element tin,Element &elt)
Name
Integer Convert_grid_tin_to_grid_string(Element tin,Element &elt)

Description
Create a new grid string elt according to the grid data of tin Element tin.
A return value of 11 indicates the creation failed.

A return value of zero indicates the function call was successful.
ID = 2937

Convert_grid_to_strings(Element elt,Dynamic_Element &list)
Name
Integer Convert_grid_to_strings(Element elt,Dynamic_Element &list)

Description
Create a list of strings Dynamic_Element list according to the grid data of element elt.
A return value of 11 indicates the creation failed.
A return value of zero indicates the function call was successful.

ID = 2938

Convert_grid_to_tin(Element elt,Text tin_name,Tin &tin)
Name
Page 695Grid String and Grid Tin Element

12d Model Programming Language Manual
Integer Convert_grid_to_tin(Element elt,Text tin_name,Tin &tin)

Description
Create a new grid Tin tin with name tin_name according to the grid data of element elt.
A return value of 10 indicates there already a tin named tin_name.
A return value of 11 indicates the creation failed.
A return value of zero indicates the function call was successful.

ID = 2939

Compute_merged_grid(Dynamic_Element list,Real &origin_x,Real &origin_y,Real
&spacing_x,Real &spacing_y,Real &angle,Integer &xmin,Integer &ymin,Integer
&xmax,Integer &ymax)
Name
Integer Compute_merged_grid(Dynamic_Element list,Real &origin_x,Real &origin_y,Real
&spacing_x,Real &spacing_y,Real &angle,Integer &xmin,Integer &ymin,Integer &xmax,Integer &ymax)

Description
Calculate the data of the geometry and the range of the merging of grid data of a list
Dynamic_Element list.
The values for the geometry data returns at Real x-y coordinate of the origin (origin_x origin_y)
x-y spacing spacing_x spacing_y, grid rotation angle.
The values for the range data return at Integer xmin ymin xmax ymax.
A return value of 11 indicates the list has no element with valid grid data.

A return value of 12 indicates the list has only one element with valid grid data.
A return value of 14 indicates the merging failed.
A return value of zero indicates the function call was successful.

ID = 2940

Merge_grids(Dynamic_Element list,Element &grid)
Name
Integer Merge_grids(Dynamic_Element list,Element &grid)

Description
Merge the grid data of a list Dynamic_Element list to the grid data of Element grid.

A return value of 11 indicates the list has no element with valid grid data.
A return value of 12 indicates the list has only one element with valid grid data.
A return value of 14 indicates the merging failed.

A return value of zero indicates the function call was successful.
ID = 2941
Page 696 Grid String and Grid Tin Element

Chapter 5 12dPL Library Calls
5.48 Face String Element
A face string consists of (x,y,z) values at each vertex of the string. The string can be filled with a
colour or a hatch pattern
The following functions are used to create new face strings and make inquiries and modifications
to existing face strings.

Create_face(Real x[],Real y[],Real z[],Integer num_pts)
Name
Element Create_face(Real x[],Real y[],Real z[],Integer num_pts)

Description
The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[].
The function return value gives the actual Element created.
If the face string could not be created, then the returned Element will be null.

ID = 1215

Create_face(Integer num_npts)
Name
Element Create_face(Integer num_npts)

Description
Create an Element of type face with room for num_pts (x,y,z) points.

The actual x, y and z values of the face string are set after the string is created.
If the face string could not be created, then the returned Element will be null.
ID = 1216

Create_face(Integer num_npts,Element seed)
Name
Element Create_face(Integer num_npts,Element seed)

Description
Create an Element of type face with room for num_pts (x,y) points, and set the colour, name,
style etc. of the new string to be the same as those from the Element seed.
The actual x, y and z values of the face string are set after the string is created.

If the face string could not be created, then the returned Element will be null.
ID = 1217

Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
 &num_pts)
Name
Integer Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)

Description
Get the (x,y,z) data for the first max_pts vertices of the face Element elt.
Page 697Face String Element

12d Model Programming Language Manual
The (x,y,z) values at each string vertex are returned in the Real arrays x[], y[] and z[].
The maximum number of vertices that can be returned is given by max_pts (usually the size of
the arrays). The vertex data returned starts at the first vertex and goes up to the minimum of
max_pts and the number of vertices in the string.
The actual number of vertices returned is returned by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type face, then num_pts is returned as zero and the function return
value is set to a non-zero value.
A function return value of zero indicates the data was successfully returned.

ID = 78

Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
 &num_pts,Integer start_pt)
Name
Integer Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer
start_pt)

Description
For a face Element elt, get the (x,y,z) data for max_pts vertices starting at vertex number
start_pt.
This routine allows the user to return the data from a face string in user specified chunks.

This is necessary if the number of vertices in the string is greater than the size of the arrays
available to contain the information.
As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).
However, for this function, the vertex data returned starts at vertex number start_pt rather than
vertex one.

The (x,y,z) values at each string vertex is returned in the Real arrays x[], y[] and z[].
The actual number of vertices returned is given by Integer num_pts
num_pts <= max_pts

If the Element elt is not of type face, then num_pts is set to zero and the function return value is
set to a non-zero value.
A function return value of zero indicates the data was successfully returned.
Note

A start_pt of one gives the same result as for the previous function.
ID = 79

Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
Name
Integer Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Description
Set the (x,y,z) data for the first num_pts vertices of the face Element elt.
This function allows the user to modify a large number of vertices of the string in one call.
The maximum number of vertices that can be set is given by the number of vertices in the string.
Page 698 Face String Element

Chapter 5 12dPL Library Calls
The (x,y,z) values for each string vertex is given in the Real arrays x[], y[] and z[].
The number of vertices to be set is given by Integer num_pts
If the Element elt is not of type face, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.
Note
This function can not create new face Elements but only modify existing face Elements.

ID = 80

Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer
 start_pt)
Name
Integer Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)

Description
For the face Element elt, set the (x,y,z) data for num_pts vertices, starting at vertex number
start_pt.
This function allows the user to modify a large number of vertices of the string in one call starting
at vertex number start_pt rather than the first vertex (vertex one).

The maximum number of vertices that can be set is given by the difference between the number
of vertices in the string and the value of start_pt.
The (x,y,z) values for the string vertices are given in the Real arrays x[], y[] and z[].
The number of the first string vertex to be modified is start_pt.
The total number of vertices to be set is given by Integer num_pts
If the Element elt is not of type face, then nothing is modified and the function return value is set
to a non-zero value.
A function return value of zero indicates the data was successfully set.

Notes
(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new face Elements but only modify existing face Elements.
ID = 81

Get_face_data(Element elt,Integer i,Real &x,Real &y,Real &z)
Name
Integer Get_face_data(Element elt,Integer i,Real &x,Real &y,Real &z)

Description
Get the (x,y,z) data for the ith vertex of the string.
The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.

A function return value of zero indicates the data was successfully returned.
ID = 82
Page 699Face String Element

12d Model Programming Language Manual
Set_face_data(Element elt,Integer i,Real x,Real y,Real z)
Name
Integer Set_face_data(Element elt,Integer i,Real x,Real y,Real z)

Description
Set the (x,y,z) data for the ith vertex of the string.

The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.
A function return value of zero indicates the data was successfully set.
 ID = 83

Get_face_hatch_distance(Element elt,Real &dist)
Name
Integer Get_face_hatch_distance(Element elt,Real &dist)

Description
Get the distance between the hatch lines for the face string elt. The distance is returned as dist
A function return value of zero indicates the data was successfully returned.

ID = 1218

Set_face_hatch_distance(Element elt,Real dist)
Name
Integer Set_face_hatch_distance(Element elt,Real dist)

Description
Set the distance between the hatch lines for the face string elt to be dist
The distance is given in world units.
A function return value of zero indicates the data was successfully set.

ID = 1219

Get_face_hatch_angle(Element elt,Real &ang)
Name
Integer Get_face_hatch_angle(Element elt,Real &ang)

Description
Get the angle of the hatch lines for the face string elt. The angle is returned as ang.

The angle is given in radians and is measured in the counter-clockwise direction from the x-axis.
A function return value of zero indicates the data was successfully returned.
ID = 1220

Set_face_hatch_angle(Element elt,Real ang)
Name
Integer Set_face_hatch_angle(Element elt,Real ang)
Page 700 Face String Element

Chapter 5 12dPL Library Calls
Description
Set the angle of the hatch lines for the face string elt to be ang
A function return value of zero indicates the data was successfully set.

ID = 1221

Get_face_hatch_colour(Element elt,Integer &colour)
Name
Integer Get_face_hatch_colour(Element elt,Integer &colour)

Description
Get the colour of the solid fill for the face string elt. The colour number is returned as colour.
A function return value of zero indicates the data was successfully returned.
 ID = 1222

Set_face_hatch_colour(Element elt,Integer colour)
Name
Integer Set_face_hatch_colour(Element elt,Integer colour)

Description
Set the colour of the solid fill for the face string elt to the colour number colour.
A function return value of zero indicates the data was successfully set.

ID = 1223

Get_face_edge_colour(Element elt,Integer &colour)
Name
Integer Get_face_edge_colour(Element elt,Integer &colour)

Description
Get the colour of the edge of the face string elt. The colour number is returned as colour.
A function return value of zero indicates the data was successfully returned.
ID = 1224

Set_face_edge_colour(Element elt,Integer colour)
Name
Integer Set_face_edge_colour(Element elt,Integer colour)

Description
Set the colour of the edge of the face string elt to the colour number colour.
A function return value of zero indicates the data was successfully set.
ID = 1225

Get_face_hatch_mode(Element elt,Integer &mode)
Name
Page 701Face String Element

12d Model Programming Language Manual
Integer Get_face_hatch_mode(Element elt,Integer &mode)

Description
Get the mode of the hatch of the face string elt. The value of mode is returned as mode.

If the mode is 1, then the hatch pattern is drawn when the face is on a plan view.
If the mode is 0, then the hatch pattern is not drawn when the face is on a plan view.
A function return value of zero indicates the data was successfully returned.
 ID = 1226

Set_face_hatch_mode(Element elt,Integer mode)
Name
Integer Set_face_hatch_mode(Element elt,Integer mode)

Description
Set the mode of the hatch pattern of the face string elt to the value mode.
If the mode is 1, then the hatch pattern is drawn when the face is on a plan view.
If the mode is 0, then the hatch pattern is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully set.
ID = 1227

Get_face_fill_mode(Element elt,Integer &mode)
Name
Integer Get_face_fill_mode(Element elt,Integer &mode)

Description
Get the mode of the fill of the face string elt. The value of mode is returned as mode.
If the mode is 1, then the face is filled with the face colour when the face is on a plan view.
If the mode is 0, then the face is not filled when the face is on a plan view.

A function return value of zero indicates the data was successfully returned.
ID = 1228

Set_face_fill_mode(Element elt,Integer mode)
Name
Integer Set_face_fill_mode(Element elt,Integer mode)

Description
Set the mode of the fill of the face string elt to the value mode.
If the mode is 1, then the face is filled with the face colour when the face is on a plan view.
If the mode is 0, then the face is not filled when the face is on a plan view.
A function return value of zero indicates the data was successfully set.

ID = 1229

Get_face_edge_mode(Element elt,Integer &mode)
Name
Integer Get_face_edge_mode(Element elt,Integer &mode)
Page 702 Face String Element

Chapter 5 12dPL Library Calls
Description
Get the mode of the edge of the face string elt. The value of mode is returned as mode.
If the mode is 1, then the edge is drawn with the edge colour when the face is on a plan view.
If the mode is 0, then the edge is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully returned.
ID = 1230

Set_face_edge_mode(Element elt,Integer mode)
Name
Integer Set_face_edge_mode(Element elt,Integer mode)

Description
Set the mode for displaying the edge of the face string elt to the value mode.
If the mode is 1, then the edge is drawn with the edge colour when the face is on a plan view.
If the mode is 0, then the edge is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully set.
ID = 1231
Page 703Face String Element

12d Model Programming Language Manual
5.49 Drafting Elements
Leaders, dimensions and tables are called drafting elements.
The following functions are used to create new drafting elements and make inquiries and
modifications to existing drafting elements.
See 5.49.1 Dimension Functions
See 5.49.2 Leader Functions
See 5.49.3 Table Functions
See 5.49.4 Common Draft Functions
Page 704 Drafting Elements

Chapter 5 12dPL Library Calls
5.49.1 Dimension Functions
DRF_dimension_horizontal_points_create(Text style_name,Text format_text,Real
sx,Real sy,Real ex,Real ey,Real dx,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_horizontal_points_create(Text style_name,Text format_text,Real sx,Real sy,Real
ex,Real ey,Real dx,Real dy,Model &model,Element &out)

Description
Create a new dimension as Element out measuring horizontal distance between two points (and
add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of start point sx
sy, end point ex ey, dimension point dx dy
A return value of zero indicates the function call was successful.
ID = 2956

DRF_dimension_vertical_points_create(Text style_name,Text format_text,Real
sx,Real sy,Real ex,Real ey,Real dx,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_vertical_points_create(Text style_name,Text format_text,Real sx,Real sy,Real
ex,Real ey,Real dx,Real dy,Model &model,Element &out)

Description
Create a new dimension as Element out measuring vertical distance between two points (and
add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of start point sx
sy, end point ex ey, dimension point dx dy
A return value of zero indicates the function call was successful.
ID = 2957

DRF_dimension_aligned_points_create(Text style_name,Text format_text,Real
sx,Real sy,Real ex,Real ey,Real dx,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_aligned_points_create(Text style_name,Text format_text,Real sx,Real sy,Real
ex,Real ey,Real dx,Real dy,Model &model,Element &out)

Description
Create a new dimension as Element out measuring aligned distance between two points (and
add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of start point sx
sy, end point ex ey, dimension point dx dy
A return value of zero indicates the function call was successful.
ID = 2958

DRF_dimension_aligned_points_fixoffset_create(Text style_name,Text
format_text,Real sx,Real sy,Real ex,Real ey,Real dx,Real dy,Real fix_offset,Model
&model,Element &out)
Page 705Drafting Elements

12d Model Programming Language Manual
Name
Integer DRF_dimension_aligned_points_fixoffset_create(Text style_name,Text format_text,Real sx,Real
sy,Real ex,Real ey,Real dx,Real dy,Real fix_offset Model &model,Element &out)

Description
Create a new dimension as Element out measuring aligned distance between two points with
fixed offset (and add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of start point sx
sy, end point ex ey, dimension point dx dy; and fixed offset value fix_offset
A return value of zero indicates the function call was successful.

ID = 2959

DRF_dimension_rotated_points_create(Text style_name,Text format_text,Real
sx,Real sy,Real ex,Real ey,Real dx,Real dy,Real rotation_angle,Model
&model,Element &out)
Name
Integer DRF_dimension_rotated_points_create(Text style_name,Text format_text,Real sx,Real sy,Real
ex,Real ey,Real dx,Real dy,Real rotation_angle,Model &model,Element &out)

Description
Create a new dimension as Element out measuring rotated distance between two points (and
add to Model model if the model is valid).

Other input parameters: Text style_name; Text format_text; Real x-y coordinate of start point sx
sy, end point ex ey, dimension point dx dy; and angle for rotation rotation_angle
A return value of zero indicates the function call was successful.
ID = 2960

DRF_dimension_horizontal_segment_create(Text style_name,Text
format_text,Segment base_segment,Real dx,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_horizontal_segment_create(Text style_name,Text format_text,Segment
base_segment,Real dx,Real dy,Model &model,Element &out)

Description
Create a new dimension as Element out measuring horizontal distance between the start and
end points of a Segment base_segment (and add to Model model if the model is valid).

Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy
A return value of zero indicates the function call was successful.
ID = 2961

DRF_dimension_vertical_segment_create(Text style_name,Text format_text,Real
sx,Segment base_segment,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_vertical_points_create(Text style_name,Text format_text,Segment
base_segment,Real dx,Real dy,Model &model,Element &out)

Description
Page 706 Drafting Elements

Chapter 5 12dPL Library Calls
Create a new dimension as Element out measuring vertical distance between the start and end
points of a Segment base_segment (and add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy
A return value of zero indicates the function call was successful.

ID = 2962

DRF_dimension_aligned_segment_create(Text style_name,Text
format_text,Segment base_segment,Real dx,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_aligned_segment_create(Text style_name,Text format_text,Segment
base_segment,Real dx,Real dy,Model &model,Element &out)

Description
Create a new dimension as Element out measuring aligned distance between the start and end
points of a Segment base_segment (and add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy
A return value of zero indicates the function call was successful.
ID = 2963

DRF_dimension_aligned_segment_fixoffset_create(Text style_name,Text
format_text,Segment base_segment,Real dx,Real dy,Real fix_offset,Model
&model,Element &out)
Name
Integer DRF_dimension_aligned_segment_fixoffset_create(Text style_name,Text format_text,Segment
base_segment,Real dx,Real dy,Real fix_offset Model &model,Element &out)

Description
Create a new dimension with fixed offset as Element out measuring aligned distance between
the start and end points of a Segment base_segment (and add to Model model if the model is
valid).

Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy; and fixed offset value fix_offset
A return value of zero indicates the function call was successful.
ID = 2964

DRF_dimension_rotated_segment_create(Text style_name,Text
format_text,Segment base_segment,Real dx,Real dy,Real rotation_angle,Model
&model,Element &out)
Name
Integer DRF_dimension_rotated_segment_create(Text style_name,Text format_text,Segment
base_segment,Real dx,Real dy,Real rotation_angle,Model &model,Element &out)

Description
Create a new dimension as Element out measuring rotated distance between the start and end
points of a Segment base_segment (and add to Model model if the model is valid).
Page 707Drafting Elements

12d Model Programming Language Manual
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy; and rotation angle rotation_angle
A return value of zero indicates the function call was successful.
ID = 2965

DRF_dimension_drop_perpendicular_create(Text style_name,Text
format_text,Real sx,Real sy,Segment base_segment,Real dx,Real dy,Real
fix_offset,Model &model,Element &out)
Name
Integer DRF_dimension_drop_perpendicular_create(Text style_name,Text format_text,Real sx,Real
sy,Segment base_segment,Real dx,Real dy,Real fix_offset,Model &model,Element &out)

Description
Create a new dimension as Element out measuring perpendicular dropping distance from the
start points (of x-y coordinate sx sy) to a Segment base_segment (and add to Model model if
the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy; and value of fixed offset fix_offset
A return value of zero indicates the function call was successful.

ID = 2966

DRF_dimension_length_create(Text style_name,Text format_text,Segment
base_seg,Real dx,Real dy,Model &model,Element &out)
Name
Integer DRF_dimension_length_create(Text style_name,Text format_text,Segment base_seg,Real dx,Real
dy,Model &model,Element &out)

Description
Create a new dimension as Element out measuring the length of a Segment base_segment
(and add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy
A return value of zero indicates the function call was successful.
ID = 2967

DRF_dimension_length_fixoffset_create(Text style_name,Text
format_text,Segment base_seg,Real dx,Real dy,Real fix_offset,Model
&model,Element &out)
Name
Integer DRF_dimension_length_fixoffset_create(Text style_name,Text format_text,Segment base_seg,Real
dx,Real dy,Real fix_offset,Model &model,Element &out)

Description
Create a new dimension with fixed offset as Element out measuring the length of a Segment
base_segment (and add to Model model if the model is valid).

Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy; and fixed offset fix_offset
Page 708 Drafting Elements

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.
ID = 2968

DRF_dimension_angular_points_create(Text style_name,Text format_text,Real
sx,Real sy,Real ax,Real ay,Real ex,Real ey,Real dx,Real dy,Integer dir,Model
&model,Element &out);
Name
Integer DRF_dimension_angular_points_create(Text style_name,Text format_text,Real sx,Real sy,Real
ax,Real ay,Real ex,Real ey,Real dx,Real dy,Integer dir,Model &model,Element &out);

Description
Create a new dimension as Element out measuring the angle of three points (and add to Model
model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of start point sx
sy, angle point ax ay, end point ex ey, dimension point dx dy
A return value of zero indicates the function call was successful.

ID = 2969

DRF_dimension_angular_segment_create(Text style_name,Text
format_text,Segment line1,Segment line2,Real dx,Real dy,Integer i1,Integer
i2,Integer ir,Model &model,Element &out)
Name
Integer DRF_dimension_angular_segment_create(Text style_name,Text format_text,Segment
line1,Segment line2,Real dx,Real dy,Integer i1,Integer i2,Integer ir,Model &model,Element &out)

Description
Create a new dimension as Element out measuring the angle from two lines Segment line1,
line2 (and add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy
direction of the first line i1, 0 is the same as the line, 1 is reverse direction
direction of the second line i2, 0 is the same as the line, 1 is reverse direction
check if reverse dimension ir, 0 is normal dimension, 1 is reverse
A return value of zero indicates the function call was successful.
ID = 2970

DRF_dimension_radial_create(Text style_name,Text format_text,Segment
base_arc,Real dx,Real dy,Integer float_dim,Model &model,Element &out)
Name
Integer DRF_dimension_radial_create(Text style_name,Text format_text,Segment base_arc,Real dx,Real
dy,Integer float_dim,Model &model,Element &out)

Description
Create a dimension s Element out measuring the radius of an arc Segment base_arc (and add
to Model model if the model is valid).

Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
Page 709Drafting Elements

12d Model Programming Language Manual
point dx dy
Integer float_dim indicating if the dimension if floating, 0 is no, 1 is yes
A return value of zero indicates the function call was successful.

ID = 2971

DRF_dimension_diameter_create(Text style_name,Text format_text,Segment
base_arc,Real dx,Real dy,Integer float_dim,Model &model,Element &out)
Name
Integer DRF_dimension_diameter_create(Text style_name,Text format_text,Segment base_arc,Real
dx,Real dy,Integer float_dim,Model &model,Element &out)

Description
Create a dimension s Element out measuring the diameter of an arc Segment base_arc (and
add to Model model if the model is valid).
Other input parameters: Text style_name; Text format_text; Real x-y coordinate of dimension
point dx dy
Integer float_dim indicating if the dimension if floating, 0 is no, 1 is yes

A return value of zero indicates the function call was successful.
ID = 2972

DRF_dimension_area_create(Text style_name,Text format_text,Element
polygon,Model &model,Element &out)
Name
Integer DRF_dimension_area_create(Text style_name,Text format_text,Element polygon,Model
&model,Element &out)

Description
Create a new dimension as Element out measuring the area of a Element polygon (and add to
Model model if the model is valid).

Other input parameters: Text style_name; Text format_text
A return value of zero indicates the function call was successful.
ID = 2973

DRF_dimension_edit_move_dim(Real dx,Real dy,Element &dimension,Integer
move_mode)
Name
Integer DRF_dimension_edit_move_dim(Real dx,Real dy,Element &dimension,Integer move_mode)

Description
Move the dimension point of a dimension Element dimension.
move_mode 1 means: the value of dx dy are added to x-y coordinate of the current dimension
point.
move_mode 0 means: the value of dx dy are the new to x-y coordinate of the dimension point.
A return value of zero indicates the function call was successful.

ID = 2975
Page 710 Drafting Elements

Chapter 5 12dPL Library Calls
DRF_dimension_edit_move_start(Real dx,Real dy,Element &dimension,Integer
move_mode)
Name
Integer DRF_dimension_edit_move_start(Real dx,Real dy,Element &dimension,Integer move_mode)

Description
Move the start point of a dimension Element dimension.
move_mode 1 means: the value of dx dy are added to x-y coordinate of the current start point.
move_mode 0 means: the value of dx dy are the new to x-y coordinate of the start point.
A return value of zero indicates the function call was successful.
ID = 2976

DRF_dimension_edit_move_end(Real dx,Real dy,Element &dimension,Integer
move_mode)
Name
Integer DRF_dimension_edit_move_end(Real dx,Real dy,Element &dimension,Integer move_mode)

Description
Move the end point of a dimension Element dimension.
move_mode 1 means: the value of dx dy are added to x-y coordinate of the current end point.

move_mode 0 means: the value of dx dy are the new to x-y coordinate of the end point.
A return value of zero indicates the function call was successful.

ID = 2977

DRF_get_dimension_styles(Dynamic_Text &styles)
Name
Integer DRF_get_dimension_styles(Dynamic_Text &styles)

Description
Set the list of texts styles with the names of all dimension styles in the current project.

A return value of zero indicates the function call was successful.

ID = 3378

DRF_dimension_style_property(Text style_name,Text property_name,Integer
&value)
Name
Integer DRF_dimension_style_property(Text style_name,Text property_name,Integer &value)

Description
Get the Interger value of the property property_name of a dimension style with given name
style_name.

If there is no dimension style of given name, the return value is 1.
This function is under on going development process.
Page 711Drafting Elements

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 3473

DRF_dimension_style_property(Text style_name,Text property_name,Real
&value)
Name
Integer DRF_dimension_style_property(Text style_name,Text property_name,Real &value)

Description
Get the Real value of the property property_name of a dimension style with given name
style_name.
If there is no dimension style of given name, the return value is 1.

This function is under on going development process.
A return value of zero indicates the function call was successful.
ID = 3474

DRF_dimension_style_property(Text style_name,Text property_name,Text
&value)
Name
Integer DRF_dimension_style_property(Text style_name,Text property_name,Text &value)

Description
Get the Text value of the property property_name of a dimension style with given name
style_name.
If there is no dimension style of given name, the return value is 1.
This function is under on going development process.

A return value of zero indicates the function call was successful.
ID = 3475
Page 712 Drafting Elements

Chapter 5 12dPL Library Calls
5.49.2 Leader Functions
DRF_leader_create(Text style_name,Text leader_text,Real ax,Real ay,Real hx,Real
hy,Model &model,Element &out)
Name
Integer DRF_leader_create(Text style_name,Text leader_text,Real ax,Real ay,Real hx,Real hy,Model
&model,Element &out)

Description
Create a new leader as Element out (and add to Model model if the model is valid).
Other input parameters: Text style_name; Text leader_text; Real x-y coordinate for arrow point
ax ay, hook point hx hy
A return value of zero indicates the function call was successful.
ID = 2974

DRF_leader_edit_move_hook(Real hx,Real hy,Element &leader,Integer
move_mode)
Name
Integer DRF_leader_edit_move_hook(Real hx,Real hy,Element &leader,Integer move_mode)

Description
Mode the hook point of a leader Element leader.
move_mode 1 means: the value of dx dy are added to x-y coordinate of the current hook point.

move_mode 0 means: the value of dx dy are the new to x-y coordinate of the hook point.
A return value of zero indicates the function call was successful.
ID = 2978

DRF_leader_edit_move_arrow(Real hx,Real hy,Element &leader,Integer
move_mode)
Name
Integer DRF_leader_edit_move_arrow(Real hx,Real hy,Element &leader,Integer move_mode)

Description
Mode the arrow point of a leader Element leader.
move_mode 1 means: the value of dx dy are added to x-y coordinate of the current arrow point.
move_mode 0 means: the value of dx dy are the new to x-y coordinate of the arrow point.
A return value of zero indicates the function call was successful.

ID = 2979

DRF_get_leader_arrow(Element leader,Real &arrow_x,Real &arrow_y)
Name
Integer DRF_get_leader_arrow(Element leader,Real &arrow_x,Real &arrow_y)

Description
Get the arrow point xy-coordinate arrow_x arrow_y of a leader Element leader
Page 713Drafting Elements

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 3088

DRF_get_leader_hook(Element leader,Real &hook_x,Real &hook_y)
Name
Integer DRF_get_leader_hook(Element leader,Real &hook_x,Real &hook_y)

Description
Get the hook point xy-coordinate hook_x hook_y of a leader Element leader
A return value of zero indicates the function call was successful.
ID = 3089

DRF_get_leader_text(Element leader,Text &leader_text)
Name
Integer DRF_get_leader_text(Element leader,Text &leader_text)

Description
Get the leader text leader_text of a leader Element leader
A return value of zero indicates the function call was successful.

ID = 3090

DRF_set_leader_hook_angle(Element leader,Real hook_angle)
Name
Integer DRF_set_leader_hook_angle(Element leader,Real hook_angle)

Description
Set the hook angle of a leader Element leader to the new value hook_angle
A return value of zero indicates the function call was successful.
ID = 3483

DRF_get_leader_hook_angle(Element leader,Real &hook_angle)
Name
Integer DRF_get_leader_hook_angle(Element leader,Real &hook_angle)

Description
Get the Real hook_angle of a leader Element leader
A return value of zero indicates the function call was successful.
ID = 3484

DRF_get_leader_styles(Dynamic_Text &styles)
Name
Integer DRF_get_leader_styles(Dynamic_Text &styles)

Description
Set the list of texts styles with the names of all leader styles in the current project.
Page 714 Drafting Elements

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.

ID = 3379

DRF_leader_style_property(Text style_name,Text property_name,Integer &value)
Name
Integer DRF_leader_style_property(Text style_name,Text property_name,Integer &value)

Description
Get the Interger value of the property property_name of a leader style with given name
style_name.

If there is no leader style of given name, the return value is 1.
This function is under on going development process.
A return value of zero indicates the function call was successful.

ID = 3476

DRF_leader_style_property(Text style_name,Text property_name,Real &value)
Name
Integer DRF_leader_style_property(Text style_name,Text property_name,Real &value)

Description
Get the Real value of the property property_name of a leader style with given name
style_name.

If there is no leader style of given name, the return value is 1.
This function is under on going development process.
A return value of zero indicates the function call was successful.

ID = 3477

DRF_leader_style_property(Text style_name,Text property_name,Text &value)
Name
Integer DRF_leader_style_property(Text style_name,Text property_name,Text &value)

Description
Get the Text value of the property property_name of a leader style with given name
style_name.

If there is no leader style of given name, the return value is 1.
This function is under on going development process.
A return value of zero indicates the function call was successful.

ID = 3478
Page 715Drafting Elements

12d Model Programming Language Manual
5.49.3 Table Functions
DRF_table_create(Text table_name,Text style_name,Integer auto_size,Integer
nr,Integer nc,Real cw,Real rh,Integer ti,Integer hi,Real px,Real py,Real ar,Model
&model,Element &table)
Name
Integer DRF_table_create(Text table_name,Text style_name,Integer auto_size,Integer nr,Integer nc,Real
cw,Real rh,Integer ti,Integer hi,Real px,Real py,Real ar,Model &model,Element &table)

Description
Create a drafting Element table (and add to Model model if the model valid)
Table name table_name name of output element

Name of table style style_name
Auto resizing table auto_size 0 for no, 1 for yes
Number of rows nr
Number of column nc
Column width cw
Row height rh
Including title row ti 0 for no, 1 for yes
Including header row hi 0 for no, 1 for yes

Top left x coordinate px
Top left y coordinate py
Rotation angle of the table ar
A return value of zero indicates the function call was successful.
ID = 3059

DRF_table_edit_cell(Integer row, Integer column, Text value, Element &table)
Name
Integer DRF_table_edit_cell(Integer row, Integer column, Text value, Element &table)

Description
Edit a cell of a drafting Element table at given row number row, column number column with the
new value Text value
A return value of one indicates the number row or column is out of bound.
A return value of zero indicates the function call was successful.

ID = 3060

DRF_table_edit_cell(Integer row, Integer column, Real value, Element &table)
Name
Integer DRF_table_edit_cell(Integer row, Integer column, Real value, Element &table)

Description
Edit a cell of a drafting Element table at given row number row, column number column with the
new value Real value
A return value of one indicates the number row or column is out of bound.
Page 716 Drafting Elements

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.
ID = 3061

DRF_table_edit_cell(Integer row, Integer column, Integer value, Element &table)
Name
Integer DRF_table_edit_cell(Integer row, Integer column, Integer value, Element &table)

Description
Edit a cell of a drafting Element table at given row number row, column number column with the
new value Integer value
Note that row 1 is used for the title row and row 2 is used for the header row (even when they are
not used in the table).

A return value of one indicates the number row or column is out of bound.
A return value of zero indicates the function call was successful.
ID = 3062

DRF_table_get_cell(Element table,Integer row,Integer column,Integer
&cell_type,Integer &int_val,Real &real_val,Text &text_val)
Name
Integer DRF_table_get_cell(Element table,Integer row,Integer column,Integer &cell_type,Integer
&int_val,Real &real_val,Text &text_val)

Description
Get a cell of a drafting Element table at given row number row, column number column and
return.

- the type of the cell in cell_type: 2 for Integer; 3 for Real; 4 for Text; 100 for empty cell; 102 for
merged cell of the first row; 103 for merged cell of the first column; 105 for merged cell that not in
the first row nor first column.
- Integer value of the cell int_val.
- Real value of the cell real_val.
- Text value of the cell text_val.
Note that row 1 is used for the title row and row 2 is used for the header row (even when they are
not used in the table).
A return value of one indicates the number row or column is out of bound.

A return value of zero indicates the function call was successful.
ID = 3859

DRF_table_get_number_row_column(Element table,Integer &nr,Integer &nc)
Name
Integer DRF_table_get_number_row_column(Element table,Integer &nr,Integer &nc)

Description
Get the number of rows nr and the number of columns nc of a drafting Element table. Note that
the header and title row (if used) are not counted in nr.
A return value of zero indicates the function call was successful.
Page 717Drafting Elements

12d Model Programming Language Manual
ID = 3095

DRF_table_get_row_height(Element table,Integer row_number,Real &row_height)
Name
Integer DRF_table_get_row_height(Element table,Integer row_number,Real &row_height)

Description
Get row height row_height at row number row_number of a drafting Element table
A return value of zero indicates the function call was successful.
ID = 3096

DRF_table_get_column_width(Element table,Integer col_number,Real
&col_width)
Name
Integer DRF_table_get_column_width(Element table,Integer col_number,Real &col_width)

Description
Get column width col_width at column number col_number of a drafting Element table
A return value of zero indicates the function call was successful.

ID = 3097

DRF_table_get_origin(Element table,Real &x_origin,Real &y_origin)
Name
Integer DRF_table_get_origin(Element table,Real &x_origin,Real &y_origin)

Description
Get X-Y coordinate (x_origin,y_origin) of the origin point (top left corner) of a drafting Element
table.
A return value of zero indicates the function call was successful.
ID = 3203

DRF_table_get_offset(Element table,Real &x_offset,Real &y_offset)
Name
Integer DRF_table_get_offset(Element table,Real &x_offset,Real &y_offset)

Description
Not yet implemented
A return value of zero indicates the function call was successful.

ID = 3205

DRF_table_get_rotation(Element table,Real &rotation)
Name
Integer DRF_table_get_rotation(Element table,Real &rotation)

Description
Page 718 Drafting Elements

Chapter 5 12dPL Library Calls
Get the rotation angle of a drafting Element table.
A return value of zero indicates the function call was successful.
ID = 3207

DRF_table_set_row_height(Element table,Integer row_number,Real row_height)
Name
Integer DRF_table_set_row_height(Element table,Integer row_number,Real row_height)

Description
Set row height to row_height at row number row_number of a drafting Element table
A return value of zero indicates the function call was successful.
ID = 3098

DRF_table_set_column_width(Element table,Integer col_number,Real col_width)
Name
Integer DRF_table_set_column_width(Element table,Integer col_number,Real col_width)

Description
Set column width to col_width at column number col_number of a drafting Element table
A return value of zero indicates the function call was successful.
ID = 3099

DRF_table_set_origin(Element table,Real x_origin,Real y_origin)
Name
Integer DRF_table_set_origin(Element table,Real x_origin,Real y_origin)

Description
Set the X-Y coordinate origin point (top left corner) of a drafting Element table to
(x_origin,y_origin).
A return value of zero indicates the function call was successful.
ID = 3202

DRF_table_set_offset(Element table,Real x_offset,Real y_offset)
Name
Integer DRF_table_set_offset(Element table,Real x_offset,Real y_offset)

Description
Not yet implemented
A return value of zero indicates the function call was successful.

ID = 3204

DRF_table_set_rotation(Element table,Real rotation)
Name
Integer DRF_table_set_rotation(Element table,Real rotation)
Page 719Drafting Elements

12d Model Programming Language Manual
Description
Set the rotation angle of a drafting Element table to Real rotation.
A return value of zero indicates the function call was successful.

ID = 3206

DRF_get_table_styles(Dynamic_Text &styles)
Name
Integer DRF_get_table_styles(Dynamic_Text &styles)

Description
Set the list of texts styles with the names of all table styles in the current project.

A return value of zero indicates the function call was successful.

ID = 3380

DRF_table_style_property(Text style_name,Text property_name,Integer &value)
Name
Integer DRF_table_style_property(Text style_name,Text property_name,Integer &value)

Description
Get the Interger value of the property property_name of a table style with given name
style_name.

If there is no table style of given name, the return value is 1.
This function is under on going development process.
A return value of zero indicates the function call was successful.

ID = 3470

DRF_table_style_property(Text style_name,Text property_name,Real &value)
Name
Integer DRF_table_style_property(Text style_name,Text property_name,Real &value)

Description
Get the Real value of the property property_name of a table style with given name style_name.

If there is no table style of given name, the return value is 1.
This function is under on going development process.
A return value of zero indicates the function call was successful.

ID = 3471

DRF_table_style_property(Text style_name,Text property_name,Text &value)
Name
Integer DRF_table_style_property(Text style_name,Text property_name,Text &value)

Description
Get the Text value of the property property_name of a table style with given name style_name.

If there is no table style of given name, the return value is 1.
Page 720 Drafting Elements

Chapter 5 12dPL Library Calls
This function is under on going development process.
A return value of zero indicates the function call was successful.
ID = 3472

DRF_table_edit_resize(Integer nr,Integer nc,Element &table)
Name
Integer DRF_table_edit_resize(Integer nr,Integer nc,Element &table)

Description
Resize the number of row and column of a drafting Element table to Integers nr and nc
respectively.

A return value of zero indicates the resize was successful.
ID = 3816

DRF_table_edit_resize_column(Integer nc,Element &table)
Name
Integer DRF_table_edit_resize_column(Integer nc,Element &table)

Description
Resize the number of column of a drafting Element table to Integer nr
A return value of zero indicates the resize was successful.
ID = 3817

DRF_table_edit_resize_row(Integer nr,Element &table)
Name
Integer DRF_table_edit_resize_row(Integer nr,Element &table)

Description
Resize the number of row of a drafting Element table to Integer nr
A return value of zero indicates the resize was successful.

ID = 3818
Page 721Drafting Elements

12d Model Programming Language Manual
5.49.4 Common Draft Functions
DRF_recalc(Element &draft)
Name
Integer DRF_recalc(Element &draft)

Description
Recalculate a drafting element draft
A return value of zero indicates the function call was successful.
ID = 3100

DRF_get_style(Element draft,Text &style)
Name
Integer DRF_get_style(Element draft,Text &style)

Description
Get the style name style of a drafting element draft
A return value of zero indicates the function call was successful.
ID = 3091

DRF_drafting_edit_set_style(Text style_name,Element &draft)
Name
Integer DRF_drafting_edit_set_style(Text style_name,Element &draft)

Description
Change the style of a drafting Element draft to a new style with the name Text style_name.

A return value of zero indicates the function call was successful.
ID = 2980

DRF_drafting_edit_set_format_text(Text new_text,Element &draft)
Name
Integer DRF_drafting_edit_set_format_text(Text new_text,Element &draft)

Description
Update the text format of a dimension or leader text of a leader Element draft to a new Text
new_text.
A return value of zero indicates the function call was successful.
ID = 2981

DRF_get_override_names(Element drf,Integer &count,Dynamic_Text
&names,Dynamic_Integer &types)
Name
Integer DRF_get_override_names(Element drf,Integer &count,Dynamic_Text &names,Dynamic_Integer
&types)
Page 722 Drafting Elements

Chapter 5 12dPL Library Calls
Description
Get all the style overriding information of a drafting element drf, including: the number count of
fields being override, the list of all those field names, the list of types for the value of those
overrides. The sizes the two lists names and types should equal count. The value in the list
types should be 2 - Integer or 3 - Real or 4 - Text.
A return value of zero indicates the function call was successful.

ID = 3463

DRF_get_override_value(Element drf,Text name,Integer &value)
Name
Integer DRF_get_override_value(Element drf,Text name,Integer &value)

Description
Get the Integer value of override of a drafting element drf with the field of given name.
If the input is not a drafting element, the return value is 1.
If the input drafting elment has no override, the return value is 8.

If name is not a valid override field name, the return value is 9 for leader; 10 for table; 11 for
dimension.
If there is no override of the given name, the return value is 15.
If the override of the given name is not of Integer type, the return value is 16.

If the value of the override is invalid, the return value is 17
A return value of zero indicates the function call was successful.
ID = 3464

DRF_get_override_value(Element drf,Text name,Real &value)
Name
Integer DRF_get_override_value(Element drf,Text name,Real &value)

Description
Get the Real value of override of a drafting element drf with the field of given name.
If the input is not a drafting element, the return value is 1.

If the input drafting elment has no override, the return value is 8.
If name is not a valid override field name, the return value is 9 for leader; 10 for table; 11 for
dimension.
If there is no override of the given name, the return value is 15.

If the override of the given name is not of Real type, the return value is 16.
If the value of the override is invalid, the return value is 17
A return value of zero indicates the function call was successful.

ID = 3465

DRF_get_override_value(Element drf,Text name,Text &value)
Name
Integer DRF_get_override_value(Element drf,Text name,Text &value)
Page 723Drafting Elements

12d Model Programming Language Manual
Description
Get the Text value of override of a drafting element drf with the field of given name.
If the input is not a drafting element, the return value is 1.

If the input drafting elment has no override, the return value is 8.
If name is not a valid override field name, the return value is 9 for leader; 10 for table; 11 for
dimension.
If there is no override of the given name, the return value is 15.

If the override of the given name is not of Text type, the return value is 16.
If the value of the override is invalid, the return value is 17
A return value of zero indicates the function call was successful.

ID = 3466

DRF_set_override_value(Element drf,Text name,Integer value)
Name
Integer DRF_set_override_value(Element drf,Text name,Integer value)

Description
Set the Integer value of the override of given name in a drafting element drf.
If the input is not a drafting element, the return value is 1.
If name is not a valid override field name, the return value is 9 for leader; 10 for table; 11 for
dimension.

If the override of the given name is not of Integer type, the return value is 16.
A return value of zero indicates the function call was successful.
ID = 3467

DRF_set_override_value(Element drf,Text name,Real value)
Name
Integer DRF_set_override_value(Element drf,Text name,Real value)

Description
Set the Real value of the override of given name in a drafting element drf.
If the input is not a drafting element, the return value is 1.

If name is not a valid override field name, the return value is 9 for leader; 10 for table; 11 for
dimension.
If the override of the given name is not of Real type, the return value is 16.
A return value of zero indicates the function call was successful.

ID = 3468

DRF_set_override_value(Element drf,Text name,Text value)
Name
Integer DRF_set_override_value(Element drf,Text name,Text value)

Description
Set the Text value of the override of given name in a drafting element drf.
Page 724 Drafting Elements

Chapter 5 12dPL Library Calls
If the input is not a drafting element, the return value is 1.
If name is not a valid override field name, the return value is 9 for leader; 10 for table; 11 for
dimension.
If the override of the given name is not of Text type, the return value is 16.

A return value of zero indicates the function call was successful.
ID = 3469

DRF_clear_overrides(Element drf)
Name
Integer DRF_clear_overrides(Element drf)

Description
Clear all overrides of a drafting elment drf.
A return value of zero indicates the function call was successful.

ID = 3482
Page 725Drafting Elements

12d Model Programming Language Manual
5.50 Trimesh Element
A trimesh element contains a list of 3d points and a list of faces where each face is a triple of
indices of points from the point list.
The direction of the normal to each triangle points away from the inside of the trimesh.
Looking down onto the triangle from the opposite direction to the normal, the three points (p1, p2
and p3) in the triple of the triangle are in a counter clockwise order around the triangle.

Note that this is the opposite to the order of points in a triangle in a tin. See
Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3).

The following functions are used to create new trimeshes and make inquiries and modifications
to existing trimeshes.

Trimesh_number_of_points(Element trimesh,Integer &number_points)
Name
Integer Trimesh_number_of_points(Element trimesh,Integer &number_points)

Description
Get the number of points number_points of a trimesh Element trimesh.

A return value of zero indicates the function call was successful.
ID = 3005

Trimesh_number_of_triangles(Element trimesh,Integer &number_triangles)
Name
Integer Trimesh_number_of_triangles(Element trimesh,Integer &number_triangles)

Description
Get the number of triangles number_triangles of a trimesh Element trimesh.
A return value of zero indicates the function call was successful.
ID = 3006

Trimesh_number_of_edges(Element e,Integer &number_edges)
Name
Integer Trimesh_number_of_edges(Element e,Integer &number_edges)

Description
Get the number of edges number_edges of a trimesh Element trimesh.

p1

p3

p2 normal to the triangle which points away
from the inside of the trimesh
Page 726 Trimesh Element

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.
ID = 3525

Trimesh_get_point_coord(Element trimesh,Integer point_index,Real &x,Real
&y,Real &z)
Name
Integer Trimesh_get_point_coord(Element trimesh,Integer point_index,Real &x,Real &y,Real &z)

Description
Get the xyz-coordinate x y z of the point with index point_index of a trimesh Element trimesh.
A return value of zero indicates the function call was successful.

ID = 3007

Trimesh_get_triangle_points(Element trimesh,Integer triangle_index,Integer
&p1_index,Integer &p2_index,Integer &p3_index)
Name
Integer Trimesh_get_triangle_points(Element trimesh,Integer triangle_index,Integer &p1_index,Integer
&p2_index,Integer &p3_index)

Description
Get three point indices p1_index p2_index p3_index of the triangle with index triangle_index
of a trimesh Element trimesh.
The points in the triangles p1_index, p2_index and p3_index are in a counter clockwise order
around the triangle. See 5.50 Trimesh Element.

A return value of zero indicates the function call was successful.
ID = 3008

Trimesh_get_triangle_points_coords(Element trimesh,Integer
triangle_index,Integer &p1_index,Integer &p2_index,Integer &p3_index,Real
&x1,Real &y1,Real &z1,Real &x2,Real &y2,Real &z2,Real &x3,Real &y3,Real
&z3)
Name
Integer Trimesh_get_triangle_points_coords(Element trimesh,Integer triangle_index,Integer
&p1_index,Integer &p2_index,Integer &p3_index,Real &x1,Real &y1,Real &z1,Real &x2,Real &y2,Real
&z2,Real &x3,Real &y3,Real &z3)

Description
Get three point indices p1_index p2_index p3_index of the triangle with index triangle_index
of a trimesh Element trimesh; and also the xyz-coordinate of the three point x1 y1 z1, x2 y2 z2,

p1_index

p3_index

p2_index normal pointing
out
Page 727Trimesh Element

12d Model Programming Language Manual
x3, y3, z3.
The points p1_index, p2_index and p3_index are in a counter clockwise order around the
triangle. See 5.50 Trimesh Element

A return value of zero indicates the function call was successful.
ID = 3009

Trimesh_get_triangle_edges(Element trimesh,Integer triangle_index,Integer
&e1_index,Integer &e2_index,Integer &e3_index)
Name
Integer Trimesh_get_triangle_edges(Element trimesh,Integer triangle_index,Integer &e1_index,Integer
&e2_index,Integer &e3_index)

Description
Get three indices e1_index e2_index e3_index of the three edges of the triangle with index
triangle_index of a trimesh Element trimesh.

A return value of zero indicates the function call was successful.
ID = 3526

Trimesh_get_edge_triangles_points(Element e,Integer edge_index,Integer
&triangles_count,Integer &triangle1_index,Integer &triangle2_index,Integer
&vertex1_index,Integer &vertex2_index)
Name
Integer Trimesh_get_edge_triangles_points(Element e,Integer edge_index,Integer
&triangles_count,Integer &triangle1_index,Integer &triangle2_index,Integer &vertex1_index,Integer
&vertex2_index)

Description
Get the details of edge with given edge_index of a Element e
Number of triangles contain that edge triangles_count. On a "good" closed trimesh, this number
should be always 2.
The indices of the two triangles containing the edge: triangle1_index, triangle2_index.
The indices of the two vertices at the two end of the edge: vertex1_index, vertex2_index.

A return value of zero indicates the function call was successful.
ID = 3527

Is_trimesh(Element e)

p1_index

p3_index

p2_index

Plan View

normal pointing
out
Page 728 Trimesh Element

Chapter 5 12dPL Library Calls
Name
Integer Is_trimesh(Element e)

Description
Return 1 if the input Element e is a trimesh; return 0 for otherwise.
ID = 3010

Get_trimesh_centroid(Element trimesh,Real ¢roid_x,Real ¢roid_y,Real
¢roid_z)
Name
Integer Get_trimesh_centroid(Element trimesh,Real ¢roid_x,Real ¢roid_y,Real ¢roid_z)

Description
Get the xyz-coordinate centroid_x centroid_y centroid_z of the centroid of the trimesh
A return value of zero indicates the function call was successful.
ID = 3019

Get_trimesh_surface_area(Element trimesh,Real &area)
Name
Integer Get_trimesh_surface_area(Element trimesh,Real &area)

Description
Get surface area of an trimesh Element trimesh
A return value of zero indicates the function call was successful.
ID = 3020

Get_trimesh_volume(Element trimesh,Real &volume)
Name
Integer Get_trimesh_volume(Element trimesh,Real &volume)

Description
Get Real volume of a trimesh Element trimesh.
A return value of zero indicates the function call was successful.

ID = 3033

Trimesh_closed(Element trimesh,Integer &is_closed)
Name
Integer Trimesh_closed(Element trimesh,Integer &is_closed)

Description
Set the value is_closed to 1 if trimesh Element trimesh l is closed; 0 otherwise

A return value of zero indicates the function call was successful.
ID = 3021
Page 729Trimesh Element

12d Model Programming Language Manual
Form_trimesh_from_tin(Tin tin,Text mesh_name,Real mesh_offset,Real
mesh_depth,Integer colour,Element &trimesh_out)
Name
Integer Form_trimesh_from_tin(Tin tin,Text mesh_name,Real mesh_offset,Real mesh_depth,Integer
colour,Element &trimesh_out)

Description
Do not use this one as the output only the first one from the list.
Use Form_trimeshes_from_tin instead
Form a trimesh trimesh_out with name mesh_name, colour, from a tin, offset mesh_offset,
depth mesh_depth
A return value of zero indicates the function call was successful.
ID = 3023

Form_trimeshes_from_tin(Tin tin,Text mesh_name,Real mesh_offset,Real
mesh_depth,Integer colour,Dynamic_Element &trimeshes_out)
Name
Integer Form_trimeshes_from_tin(Tin tin,Text mesh_name,Real mesh_offset,Real mesh_depth,Integer
colour,Dynamic_Element &trimeshes_out)

Description
Form a trimesh trimesh_out with name mesh_name, colour, from a tin, offset mesh_offset,
depth mesh_depth
A return value of zero indicates the function call was successful.
ID = 3092

Form_trimesh_from_points(Dynamic_Real xyzs,Dynamic_Integer face_ix,Element
&trimesh_out)
Name
Integer Form_trimesh_from_points(Dynamic_Real xyzs,Dynamic_Integer face_ix,Element &trimesh_out)

Description
Form a trimesh trimesh_out from a list of xyz-coordinates xyzs, and a list of vertex index for
faces face_ix
A return value of zero indicates the function call was successful.

Note that the two list number are grouped by triple, the first one as the xyz of point, the second
one as index of three corners of triangle
Example of xyzs {0 1 0 1 0 0 0 -1 0 -1 0 0 0 0 1} defines a square with four points on z = 0
plane and a top point in the middle
face_ix {3 2 1 4 3 1 1 2 5 2 3 5 3 4 5 4 1 5} define 6 faces of the pyramid: 2 at the base,
and 4 on four sides

ID = 3093

Form_trimesh_from_points(Dynamic_Real xyzs,Dynamic_Integer
face_ix,Dynamic_Integer colour_lists,Dynamic_Integer colour_ix,Element
&trimesh_out)
Page 730 Trimesh Element

Chapter 5 12dPL Library Calls
Name
Integer Form_trimesh_from_points(Dynamic_Real xyzs,Dynamic_Integer face_ix,Dynamic_Integer
colour_lists,Dynamic_Integer colour_ix,Element &trimesh_out)

Description
Form a trimesh trimesh_out from a list of xyz-coordinates xyzs, and a list of vertex index for
faces face_ix
Faces of trimesh are coloured according to the index colour_ix as referring to the list of colours
colour_lists
A return value of zero indicates the function call was successful.

Note that the two list number are grouped by triple, the first one as the xyz of point, the second
one as index of three corners of triangle
Example of xyzs {0 1 0 1 0 0 0 -1 0 -1 0 0 0 0 1} defines a square with four points on z = 0
plane and a top point in the middle

face_ix {3 2 1 4 3 1 1 2 5 2 3 5 3 4 5 4 1 5} define 6 faces of the pyramid: 2 at the base,
and 4 on four sides
colour_lists {5 9} assume that 5 means blue and 9 means green
The size of colour_ix must equal one third of the size of face_ix
colour_ix {1 1 2 2 2 2} defines that the two base triangles of the pyramid are blue and the four
sides are green
ID = 3094

Trimesh_get_face_colour(Element trimesh,Integer face_index,Integer &colour)
Name
Integer Trimesh_get_face_colour(Element trimesh,Integer face_index,Integer &colour)

Description
Get the colour of a face with index face_index of a trimesh Element trimesh.
A return value of zero indicates the function call was successful.
ID = 3032

Form_trimeshes_from_element(Element e,Integer flags,Integer
copy_attributes,Text name_prepost,Dynamic_Element &trimeshes_list)
Name
Integer Form_trimeshes_from_element(Element e,Integer flags,Integer copy_attributes,Text
name_prepost,Dynamic_Element &trimeshes_list)

Description
Create a list trimeshes trimeshes_list from the Element e
Creation flag Integer flag: 0 for everything, or a sum of a subset of

0x001 Extrude
0x002 OBJ-mesh

0x004 Billboard
0x008 Super String Pipe

0x010 Super String Culvert
0x020 Drainage String
Page 731Trimesh Element

12d Model Programming Language Manual
0x040 Super Alignment
0x080 Pipeline String

Flag for copying attribute from input element to result trimesh copy_attributes: 0 not copy
attributes, 1 copy attributes

Pre*post rule for naming result trimeshes name_prepost based on the name of input element
A return value of zero indicates the function call was successful.
ID = 3050

Form_trimesh_from_polygons(Dynamic_Element polygons, Integer vertex_info,
Integer edge_info, Integer face_info, Text mesh_name, Integer mesh_colour,
Element &trimesh_out, Text &return_message)
Name
Integer Form_trimesh_from_polygons(Dynamic_Element polygons, Integer vertex_info, Integer
edge_info, Integer face_info, Text mesh_name, Integer mesh_colour, Element &trimesh_out, Text
&return_message)

Description
Form a trimesh trimesh_out using a list of input 3D polygons polygon
Flag vertex_info (0 no 1 yes) for copy vertex ids of polygons to vertex info of result trimesh
Flag edge_info (0 no 1 yes) for copy segment names of polygons to edge info of result trimesh

Flag face_info (0 no 1 yes) for copy face colour of polygons to face colours of result trimesh
Name of result mesh mesh_name
Colour of result mesh mesh_colour
Output message return_message
A return value of zero indicates the function call was successful.

ID = 3063

Trimesh_section(Element trimesh,Real point_x,Real point_y,Real point_z,Real
point_direction,Real point_grade,Real width, Real height,Integer
&internal_return, Integer &result_closed,Integer
&size_section_points,Dynamic_Real §ion_xs,Dynamic_Real
§ion_ys,Dynamic_Real §ion_world_xs,Dynamic_Real
§ion_world_ys,Dynamic_Real §ion_world_zs,Dynamic_Integer
§ion_edge_indexes,Dynamic_Text §ion_edge_names,Dynamic_Integer
§ion_edge_colours,Dynamic_Integer §ion_vertex_indexes,Dynamic_Text
§ion_vertex_names,Dynamic_Integer §ion_vertex_colours)
Name
Integer Trimesh_section(Element trimesh,Real point_x,Real point_y,Real point_z,Real
point_direction,Real point_grade,Real width, Real height,Integer &internal_return, Integer
&result_closed,Integer &size_section_points,Dynamic_Real §ion_xs,Dynamic_Real
§ion_ys,Dynamic_Real §ion_world_xs,Dynamic_Real §ion_world_ys,Dynamic_Real
§ion_world_zs,Dynamic_Integer §ion_edge_indexes,Dynamic_Text
§ion_edge_names,Dynamic_Integer §ion_edge_colours,Dynamic_Integer
§ion_vertex_indexes,Dynamic_Text §ion_vertex_names,Dynamic_Integer
§ion_vertex_colours)
Page 732 Trimesh Element

Chapter 5 12dPL Library Calls
Description
Section through the trimesh using a given 3D rectangle.
The centre of the rectangle is given by the X-Y-Z coordinate (point_x, point_y, point_z). The
rotation angle of the rectangle in the X-Y plane (in radian anticlockwise from the X-axis) is given
by point_direction. The tilt angle of the rectangle in relative to the Z-axis (in radian) is given by
point_grade. The sizes of the rectangle are given by width and height.
Integer internal_return might give some indication why the sectioning failed, the list of values
are given bellow.
If the sectioning is a closed cut, then result_closed is 1; and 0 otherwise.
The number of points of the result sectioning is given in size_section_points.

The last 11 parameters are details about those sectioning points. All of them should be list with
exactly size_section_points items in each. The first items on those list are information about the
first point of the sectioning; and the second items on those list are information about the second
point of the sectioning; and so forth.
section_xs, section_ys: x-y-coordinate of the section points on the section plane (where the
origin is of the world coordinate (point_x, point_y, point_z)).

section_world_xs, section_world_ys, section_world_zs: world x-y-z-coordinate of the
section points
section_edge_indexes: if none zero, then it is the edge index of the trimesh edge that the
section point is in; and then the names and colours of those edge are given in
section_edge_names and section_edge_colours.
section_vertex_indexes: if none zero, then it is the vertex index of the trimesh vertex that the
section point is in; and then the names and colours of those vertices are given in
section_vertex_names and section_vertex_colours.

A return value of 0 indicates the function call was successful.
A return value of 1 indicates Element trimesh is not a trimesh nor a trimesh reference.
A return value of 2 indicates Element trimesh is not valid.

A return value of -1, -2, -3, or -4 indicates there are internal error with the Element trimesh.

A return value of 12 indicates the sectioning was not successful. The Integer internal_return
coming from the list might indicate the reason.

0 Ok,
1 Not A Vertical Section,
2 Null Data,

3 Non Manifold,
4 Not Closed,
5 Not Connected,

6 No Intersection,
7 Partial Intersection,
8 Multiple Intersection,

9 Unknown,

ID = 3208

Trimesh_get_blend_factor(Element trimesh,Real &blend_factor)
Page 733Trimesh Element

12d Model Programming Language Manual
Name
Integer Trimesh_get_blend_factor(Element trimesh,Real &blend_factor)

Description
Get the blend_factor of a trimesh Element trimesh.
A return value of zero indicates the function call was successful.
ID = 3382

Trimesh_set_blend_factor(Element trimesh,Real blend_factor)
Name
Integer Trimesh_set_blend_factor(Element trimesh,Real blend_factor)

Description
Set new value for the blend_factor of a trimesh Element trimesh.
A return value of zero indicates the function call was successful.

ID = 3383

Trimesh_get_face_infos_count(Element e,Integer &infos_count)
Name
Integer Trimesh_get_face_infos_count(Element e,Integer &infos_count)

Description
Get the size infos_count of the face information list of a trimesh e.
The function returns 9 if the trimesh has no face information.
A return value of zero indicates the function call was successful.

ID = 3489

Trimesh_get_face_info_by_index(Element e,Integer info_index,Integer
&colour,Text &name)
Name
Integer Trimesh_get_face_info_by_index(Element e,Integer info_index,Integer &colour,Text &name)

Description
Get the colour and name of the item with given index info_index in the face information list of a
trimesh e.
The function returns 9 if the trimesh has no face information.
The function returns 3 if the given index info_index is out of bound.

A return value of zero indicates the function call was successful.
ID = 3490

Trimesh_set_face_info_by_index(Element e,Integer info_index,Integer colour,Text
name)
Name
Integer Trimesh_set_face_info_by_index(Element e,Integer info_index,Integer colour,Text name)
Page 734 Trimesh Element

Chapter 5 12dPL Library Calls
Description
Set the colour and name of the item with given index info_index in the face information list of a
trimesh e.
The function returns 9 if the trimesh has no face information.

The function returns 3 if the given index info_index is out of bound.
A return value of zero indicates the function call was successful.
ID = 3491

Trimesh_append_face_info(Element e,Integer colour,Text name)
Name
Integer Trimesh_append_face_info(Element e,Integer colour,Text name)

Description
Append a new information item with given colour and name to the end of the face information
list of a trimesh e.

A return value of zero indicates the function call was successful.
ID = 3492

Trimesh_get_face_info_index(Element e,Integer face_number,Integer &info_index)
Name
Integer Trimesh_get_face_info_index(Element e,Integer face_number,Integer &info_index)

Description
Get the info_index of a face with given number face_number of a trimesh e.
The function returns 9 if the trimesh has no face information.
The function returns 3 if the given face_number is out of bound.

A return value of zero indicates the function call was successful.
ID = 3493

Trimesh_set_face_info_index(Element e,Integer face_number,Integer info_index)
Name
Integer Trimesh_set_face_info_index(Element e,Integer face_number,Integer info_index)

Description
Set the info_index of a face with given number face_number of a trimesh e.
The function returns 9 if the trimesh has no face information.
The function returns 3 if the given face_number is out of bound.

A return value of zero indicates the function call was successful.
ID = 3494

Trimesh_set_face_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text
names,Dynamic_Integer flags)
Name
Page 735Trimesh Element

12d Model Programming Language Manual
Integer Trimesh_set_face_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text
names,Dynamic_Integer flags)

Description
Replace all the face information in a trimesh e with new details from two lists colours, names.

The two list must be of the same sizes or the function returns 5.
Also set all the infomation index of all faces to the values in the list flags, if the size of flags is
different from the number of faces in the trimesh, the function returns 6.
If any index in the list flags is not valid, the function returns 7; a valid index can be 0 (meaning no
information used for that face) or any value in the range 1 to the size of colours.

A return value of zero indicates the function call was successful.
ID = 3495

Trimesh_get_edge_infos_count(Element e,Integer &infos_count)
Name
Integer Trimesh_get_edge_infos_count(Element e,Integer &infos_count)

Description
Get the size infos_count of the edge information list of a trimesh e.
The function returns 9 if the trimesh has no edge information.
A return value of zero indicates the function call was successful.

ID = 3496

Trimesh_get_edge_info_by_index(Element e,Integer info_index,Integer
&colour,Text &name)
Name
Integer Trimesh_get_edge_info_by_index(Element e,Integer info_index,Integer &colour,Text &name)

Description
Get the colour and name of the item with given index info_index in the edge information list of
a trimesh e.
The function returns 9 if the trimesh has no edge information.

The function returns 3 if the given index info_index is out of bound.
A return value of zero indicates the function call was successful.
ID = 3497

Trimesh_set_edge_info_by_index(Element e,Integer info_index,Integer colour,Text
name)
Name
Integer Trimesh_set_edge_info_by_index(Element e,Integer info_index,Integer colour,Text name)

Description
Set the colour and name of the item with given index info_index in the edge information list of a
trimesh e.

The function returns 9 if the trimesh has no edge information.
The function returns 3 if the given index info_index is out of bound.
Page 736 Trimesh Element

Chapter 5 12dPL Library Calls
A return value of zero indicates the function call was successful.
ID = 3498

Trimesh_append_edge_info(Element e,Integer colour,Text name)
Name
Integer Trimesh_append_edge_info(Element e,Integer colour,Text name)

Description
Append a new information item with given colour and name to the end of the edge information
list of a trimesh e.
A return value of zero indicates the function call was successful.

ID = 3499

Trimesh_get_edge_info_index(Element e,Integer edge_number,Integer
&info_index)
Name
Integer Trimesh_get_edge_info_index(Element e,Integer edge_number,Integer &info_index)

Description
Get the info_index of an edge with given number edge_number of a trimesh e.
The function returns 9 if the trimesh has no edge information.
The function returns 3 if the given edge_number is out of bound.

A return value of zero indicates the function call was successful.
ID = 3500

Trimesh_set_edge_info_index(Element e,Integer edge_number,Integer info_index)
Name
Integer Trimesh_set_edge_info_index(Element e,Integer edge_number,Integer info_index)

Description
Set the info_index of an edge with given number edge_number of a trimesh e.
The function returns 9 if the trimesh has no edge information.
The function returns 3 if the given edge_number is out of bound.

A return value of zero indicates the function call was successful.
ID = 3501

Trimesh_set_edge_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text
names,Dynamic_Integer flags)
Name
Integer Trimesh_set_edge_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text
names,Dynamic_Integer flags)

Description
Replace all the edge information in a trimesh e with new details from two lists colours, names.
Page 737Trimesh Element

12d Model Programming Language Manual
The two list must be of the same sizes or the function returns 5.
Also set all the infomation index of all edges to the values in the list flags, if the size of flags is
different from the number of edges in the trimesh, the function returns 6.
If any index in the list flags is not valid, the function returns 7; a valid index can be 0 (meaning no
information used for that edge) or any value in the range 1 to the size of colours.

A return value of zero indicates the function call was successful.
ID = 3502

Trimesh_get_vertex_infos_count(Element e,Integer &infos_count)
Name
Integer Trimesh_get_vertex_infos_count(Element e,Integer &infos_count)

Description
Get the size infos_count of the vertices information list of a trimesh e.
The function returns 9 if the trimesh has no vertex information.
A return value of zero indicates the function call was successful.

ID = 3764

Trimesh_get_vertex_info_by_index(Element e,Integer info_index,Integer
&colour,Text &name)
Name
Integer Trimesh_get_vertex_info_by_index(Element e,Integer info_index,Integer &colour,Text &name)

Description
Get the colour and name of the item with given index info_index in the vertex information list of
a trimesh e.
The function returns 9 if the trimesh has no vertex information.

The function returns 3 if the given index info_index is out of bound.
A return value of zero indicates the function call was successful.
ID = 3765

Trimesh_set_vertex_info_by_index(Element e,Integer info_index,Integer
colour,Text name)
Name
Integer Trimesh_set_vertex_info_by_index(Element e,Integer info_index,Integer colour,Text name)

Description
Set the colour and name of the item with given index info_index in the vertex information list of
a trimesh e.

The function returns 9 if the trimesh has no vertex information.
The function returns 3 if the given index info_index is out of bound.
A return value of zero indicates the function call was successful.

ID = 3766
Page 738 Trimesh Element

Chapter 5 12dPL Library Calls
Trimesh_append_vertex_info(Element e,Integer colour,Text name)
Name
Integer Trimesh_append_vertex_info(Element e,Integer colour,Text name)

Description
Append a new information item with given colour and name to the end of the vertex information
list of a trimesh e.

A return value of zero indicates the function call was successful.
ID = 3767

Trimesh_get_vertex_info_index(Element e,Integer vertex_number,Integer
&info_index)
Name
Integer Trimesh_get_vertex_info_index(Element e,Integer vertex_number,Integer &info_index)

Description
Get the info_index of a vertex with given number vertex_number of a trimesh e.

The function returns 9 if the trimesh has no vertex information.
The function returns 3 if the given vertex_number is out of bound.
A return value of zero indicates the function call was successful.

ID = 3768

Trimesh_set_vertex_info_index(Element e,Integer vertex_number,Integer
info_index)
Name
Integer Trimesh_set_vertex_info_index(Element e,Integer vertex_number,Integer info_index)

Description
Set the info_index of a vertex with given number vertex_number of a trimesh e.
The function returns 9 if the trimesh has no vertex information.
The function returns 3 if the given vertex_number is out of bound.

A return value of zero indicates the function call was successful.
ID = 3769

Trimesh_set_vertex_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text
names,Dynamic_Integer flags)
Name
Integer Trimesh_set_vertex_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text
names,Dynamic_Integer flags)

Description
Replace all the vertex information in a trimesh e with new details from two lists colours, names.
The two list must be of the same sizes or the function returns 5.

Also set all the infomation index of all vertices to the values in the list flags, if the size of flags is
different from the number of vertices in the trimesh, the function returns 6.
Page 739Trimesh Element

12d Model Programming Language Manual
If any index in the list flags is not valid, the function returns 7; a valid index can be 0 (meaning no
information used for that vertex) or any value in the range 1 to the size of colours.
A return value of zero indicates the function call was successful.
ID = 3770

Trimesh_drop_point_3d(Element trimesh,Real point_x,Real point_y,Real
point_z,Integer &vert_ix,Real &vert_o,Real &vert_dr_x,Real &vert_dr_y,Real
&vert_dr_z,Integer &edge_ix,Real &edge_o,Real &edge_dr_x,Real
&edge_dr_y,Real &edge_dr_z,Integer &face_ix,Real &face_o,Real
&face_dr_x,Real &face_dr_y,Real &face_dr_z)
Name
Integer Trimesh_drop_point_3d(Element trimesh,Real point_x,Real point_y,Real point_z,Integer
&vert_ix,Real &vert_o,Real &vert_dr_x,Real &vert_dr_y,Real &vert_dr_z,Integer &edge_ix,Real
&edge_o,Real &edge_dr_x,Real &edge_dr_y,Real &edge_dr_z,Integer &face_ix,Real &face_o,Real
&face_dr_x,Real &face_dr_y,Real &face_dr_z)

Description
Drop a point with xyz coordinate (point_x,point_y,point_z) to a trimesh Element to get the
results on:

Vertex: index vert_ix, offset vert_o, drop to position (vert_dr_z,vert_dr_y,vert_dr_z)
Edge: index edge_ix, offset edge_o, drop to position (edge_dr_z,edge_dr_y,edge_dr_z)

Face: index face_ix, offset face_o, drop to position (face_dr_z,face_dr_y,face_dr_z)
A return value of zero indicates the function call was successful.
ID = 3503

Trimesh_edit_set_vertex(Element e,Integer i,Real x,Real y,Real z,Text &error)
Name
Integer Trimesh_edit_set_vertex(Element e,Integer i,Real x,Real y,Real z,Text &error)

Description
Set the vertex index i of a trimesh element e to a new xyz coordinate (x,y,z)
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3504

Trimesh_edit_move_vertex(Element e,Integer i,Real x,Real y,Real z,Text &error)
Name
Integer Trimesh_edit_move_vertex(Element e,Integer i,Real x,Real y,Real z,Text &error)

Description
Move the xyz coordinate of vertex index i of a trimesh element e by (dx,dy,dz)
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3505
Page 740 Trimesh Element

Chapter 5 12dPL Library Calls
Trimesh_edit_move_edge(Element e,Integer i,Real x,Real y,Real z,Text &error)
Name
Integer Trimesh_edit_move_edge(Element e,Integer i,Real x,Real y,Real z,Text &error)

Description
Move the xyz coordinates of the two ends of the edge with index i of a trimesh element e by
(dx,dy,dz)

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3506

Trimesh_edit_move_face(Element e,Integer i,Real x,Real y,Real z,Text &error)
Name
Integer Trimesh_edit_move_face(Element e,Integer i,Real x,Real y,Real z,Text &error)

Description
Move the xyz coordinates of the three conners of the face with index i of a trimesh element e by
(dx,dy,dz)

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3507

Trimesh_edit_move_vertices(Element e,Dynamic_Integer is,Real dx,Real dy,Real
dz,Text &error)
Name
Integer Trimesh_edit_move_vertices(Element e,Dynamic_Integer is,Real dx,Real dy,Real dz,Text &error)

Description
Move the xyz coordinates of all vertices with index given in the list is of a trimesh element e by
(dx,dy,dz)

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3508

Trimesh_edit_move_vertices(Element e,Real dx,Real dy,Real dz,Text &error)
Name
Integer Trimesh_edit_move_vertices(Element e,Real dx,Real dy,Real dz,Text &error)

Description
Move the xyz coordinates of all vertices of a trimesh element e by (dx,dy,dz)
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3509
Page 741Trimesh Element

12d Model Programming Language Manual
Trimesh_edit_hide_vertex(Element e,Integer i,Text &error)
Name
Integer Trimesh_edit_hide_vertex(Element e,Integer i,Text &error)

Description
Hide the vertex with index i of a trimesh element e.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3510

Trimesh_edit_hide_edge(Element e,Integer i,Text &error)
Name
Integer Trimesh_edit_hide_edge(Element e,Integer i,Text &error)

Description
Hide the edge with index i of a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3511

Trimesh_edit_hide_face(Element e,Integer i,Text &error)
Name
Integer Trimesh_edit_hide_face(Element e,Integer i,Text &error)

Description
Hide the face with index i of a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3512

Trimesh_edit_hide_vertices(Element e,Dynamic_Integer is,Text &error)
Name
Integer Trimesh_edit_hide_vertices(Element e,Dynamic_Integer is,Text &error)

Description
Hide the vertices with indices given by the list is of a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3513

Trimesh_edit_hide_edges(Element e,Dynamic_Integer is,Text &error)
Name
Integer Trimesh_edit_hide_edges(Element e,Dynamic_Integer is,Text &error)
Page 742 Trimesh Element

Chapter 5 12dPL Library Calls
Description
Hide the edges with indices given by the list isof a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3514

Trimesh_edit_hide_faces(Element e,Dynamic_Integer is,Text &error)
Name
Integer Trimesh_edit_hide_faces(Element e,Dynamic_Integer is,Text &error)

Description
Hide the faces with indices given by the list is of a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3515

Trimesh_edit_remove_vertex(Element e,Integer i,Text &error)
Name
Integer Trimesh_edit_remove_vertex(Element e,Integer i,Text &error)

Description
Remove the vertex with index i of a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3516

Trimesh_edit_remove_edge(Element e,Integer i,Text &error)
Name
Integer Trimesh_edit_remove_edge(Element e,Integer i,Text &error)

Description
Remove the edge with index i of a trimesh element e.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3517

Trimesh_edit_remove_face(Element e,Integer i,Text &error)
Name
Integer Trimesh_edit_remove_face(Element e,Integer i,Text &error)

Description
Remove the face with index i of a trimesh element e.

The Text error would be set to the corresponding error message if the function failed.
Page 743Trimesh Element

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 3518

Trimesh_edit_remove_vertices(Element e,Dynamic_Integer is,Text &error)
Name
Integer Trimesh_edit_remove_vertices(Element e,Dynamic_Integer is,Text &error)

Description
Remove the vertices with indices given by the list is of a trimesh element e.
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3519

Trimesh_edit_remove_edges(Element e,Dynamic_Integer is,Text &error)
Name
Integer Trimesh_edit_remove_edges(Element e,Dynamic_Integer is,Text &error)

Description
Remove the edges with indices given by the list isof a trimesh element e.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3520

Trimesh_edit_remove_faces(Element e,Dynamic_Integer is,Text &error)
Name
Integer Trimesh_edit_remove_faces(Element e,Dynamic_Integer is,Text &error)

Description
Remove the faces with indices given by the list is of a trimesh element e.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3521

Trimesh_edit_add_vertex(Element e,Real x,Real y,Real z,Text &error)
Name
Integer Trimesh_edit_add_vertex(Element e,Real x,Real y,Real z,Text &error)

Description
Add a new the vertex with xyz coordinate (x,y,z) to the trimesh element e.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3522
Page 744 Trimesh Element

Chapter 5 12dPL Library Calls
Trimesh_edit_add_face(Element e,Integer i,Integer j,Integer k,Text &error)
Name
Integer Trimesh_edit_add_face(Element e,Integer i,Integer j,Integer k,Text &error)

Description
Add a new the face with the three corners as vertices with indices i,j,k to the trimesh element e.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3523

Trimesh_edit_split_edge(Element e,Integer i,Real x,Real y,Real z,Text &error)
Name
Integer Trimesh_edit_split_edge(Element e,Integer i,Real x,Real y,Real z,Text &error)

Description
Split the edge with index i of a trimesh element e at a point with xyz coordinate (x,y,z).

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3524

Trimesh_boolean_union(Element trimesh1,Element trimesh2,Integer
keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text
output_trimesh_name,Integer output_trimesh_colour,Element &trimesh_out,Text
&error)
Name
Integer Trimesh_boolean_union(Element trimesh1,Element trimesh2,Integer keep_vertex_info,Integer
keep_edge_info,Integer keep_face_info,Text output_trimesh_name,Integer output_trimesh_colour,Element
&trimesh_out,Text &error)

Description
Find the boolean union of trimesh1 and trimesh2 and assign the result to (trimesh) Element
trimesh_out. The name output_trimesh_name and the colour output_trimesh_colour will be
used for the result. The result trimesh will also keep the vertices, edges, faces information of the
original trimeshes if the respective values of keep_vertex_info, keep_edge_info,
keep_face_info are non zero.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3803

Trimesh_boolean_difference(Element trimesh1,Element trimesh2,Integer
keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text
output_trimesh_name,Integer output_trimesh_colour,Element &trimesh_out,Text
&error)
Name
Integer Trimesh_boolean_difference(Element trimesh1,Element trimesh2,Integer keep_vertex_info,Integer
keep_edge_info,Integer keep_face_info,Text output_trimesh_name,Integer output_trimesh_colour,Element
Page 745Trimesh Element

12d Model Programming Language Manual
&trimesh_out,Text &error)

Description
Find the boolean difference between trimesh1 and trimesh2 and assign the result to (trimesh)
Element trimesh_out. The name output_trimesh_name and the colour
output_trimesh_colour will be used for the result. The result trimesh will also keep the vertices,
edges, faces information of the original trimeshes if the respective values of keep_vertex_info,
keep_edge_info, keep_face_info are non zero.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3804

Trimesh_boolean_intersection(Element trimesh1,Element trimesh2,Integer
keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text
output_trimesh_name,Integer output_trimesh_colour,Element &trimesh_out,Text
&error)
Name
Integer Trimesh_boolean_intersection(Element trimesh1,Element trimesh2,Integer
keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text output_trimesh_name,Integer
output_trimesh_colour,Element &trimesh_out,Text &error)

Description
Find the boolean intersection of trimesh1 and trimesh2 and assign the result to (trimesh)
Element trimesh_out. The name output_trimesh_name and the colour
output_trimesh_colour will be used for the result. The result trimesh will also keep the vertices,
edges, faces information of the original trimeshes if the respective values of keep_vertex_info,
keep_edge_info, keep_face_info are non zero.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3805

Get_trimesh_areas(Element trimesh,Integer &has_top_area,Real
has_surrounding_area,Real &surrounding_area,Integer &has_surface_area,Real
&surface_area,Integer &has_top_plan_area,Real &top_plan_area,Integer
&&top_area,Integer &has_bottom_area,Real &bottom_area,Integer
&has_bottom_plan_area,Real &bottom_plan_area,Text &error)
Name
Integer Get_trimesh_areas(Element trimesh,Integer &has_top_area,Real &top_area,Integer
&has_bottom_area,Real &bottom_area,Integer &has_surrounding_area,Real
&surrounding_area,Integer &has_surface_area,Real &surface_area,Integer &has_top_plan_area,Real
&top_plan_area,Integer &has_bottom_plan_area,Real &bottom_plan_area,Text &error)

Description
Get various area information of a simple trimesh Element trimesh and assign the result to
variables of corresponding names.

For each type of area there is a corresponding Integer flag indicate that it is valid. For example:
the Real top_area only valid when Integer has_top_area is 1.
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
Page 746 Trimesh Element

Chapter 5 12dPL Library Calls
ID = 3806

Get_trimesh_top_faces(Element trimesh,Integer faces_count,Dynamic_Integer
&face_indices,Text &error)
Name
Integer Get_trimesh_top_faces(Element trimesh,Integer faces_count,Dynamic_Integer &face_indices,Text
&error)

Description
Get all the top faces of a simple trimesh Element trimesh and assign the total number to Integer
faces_count and the list of face indices to Dynamic_Integer face_indices.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3807

Get_trimesh_bottom_faces(Element trimesh,Integer faces_count,Dynamic_Integer
&face_indices,Text &error)
Name
Integer Get_trimesh_bottom_faces(Element trimesh,Integer faces_count,Dynamic_Integer
&face_indices,Text &error)

Description
Get all the bottom faces of a simple trimesh Element trimesh and assign the total number to
Integer faces_count and the list of face indices to Dynamic_Integer face_indices.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3808

Get_trimesh_surrounding_faces(Element trimesh,Integer
faces_count,Dynamic_Integer &face_indices,Text &error)
Name
Integer Get_trimesh_surrounding_faces(Element trimesh,Integer faces_count,Dynamic_Integer
&face_indices,Text &error)

Description
Get all the surrounding faces of a simple trimesh Element trimesh and assign the total number
to Integer faces_count and the list of face indices to Dynamic_Integer face_indices.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3809

Get_trimesh_collapsing_faces(Element trimesh,Integer
faces_count,Dynamic_Integer &face_indices,Text &error)
Name
Integer Get_trimesh_collapsing_faces(Element trimesh,Integer faces_count,Dynamic_Integer
Page 747Trimesh Element

12d Model Programming Language Manual
&face_indices,Text &error)

Description
A face of a trimesh is called collapsing if its area is zero, in another word the normal vector of a
collapsing face is undefined.

Get all the collapsing faces of a simple trimesh Element trimesh and assign the total number to
Integer faces_count and the list of face indices to Dynamic_Integer face_indices.
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3810

Get_trimesh_areas(Element trimesh,Real tolerance,Integer &has_top_area,Real
has_surrounding_area,Real &surrounding_area,Integer &has_surface_area,Real
&surface_area,Integer &has_top_plan_area,Real &top_plan_area,Integer
&&top_area,Integer &has_bottom_area,Real &bottom_area,Integer
&has_bottom_plan_area,Real &bottom_plan_area,Text &error)
Name
Integer Get_trimesh_areas(Element trimesh,Real tolerance,Integer &has_top_area,Real
&top_area,Integer &has_bottom_area,Real &bottom_area,Integer &has_surrounding_area,Real
&surrounding_area,Integer &has_surface_area,Real &surface_area,Integer &has_top_plan_area,Real
&top_plan_area,Integer &has_bottom_plan_area,Real &bottom_plan_area,Text &error)

Description
Get various areas information of a simple trimesh Element trimesh based on given tolerance
and assign the result to variables of corresponding names.
For each type of area there is a corresponding Integer flag indicate that it is valid. For example:
the Real top_area only valid when Integer has_top_area is 1.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3826

Get_trimesh_top_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer
&faces_count,Dynamic_Integer &face_indices,Text &error)
Name
Integer Get_trimesh_top_faces(Element trimesh,Real tolerance,Integer &patches_count,Dynamic_Integer
&patch_sizes,Integer &faces_count,Dynamic_Integer &face_indices,Text &error)

Description
Get all the top faces of a simple trimesh Element trimesh based on given tolerance and assign
the total number to Integer faces_count and the list of face indices to Dynamic_Integer
face_indices. These indices are grouped into continuous patches, the number of patches is
returned in patches_count, and the sizes for indivisual patches are returned in patch_sizes.
For example: faces_count = 8 and face_indices = { 1,3, 5,9,6, 12,13,7 }
patches_count = 3 and patch_sizes = {3, 2, 3}.

There are 8 top faces which are grouped into 3 patches, the first patch contains three triangles
{1,3,5}, the second patch contains two triangles {9,6}, and the third patch contain three triangles
{13,7}.
Page 748 Trimesh Element

Chapter 5 12dPL Library Calls
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.
ID = 3830

Get_trimesh_bottom_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer
&faces_count,Dynamic_Integer &face_indices,Text &error)
Name
Integer Get_trimesh_bottom_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer
&face_indices,Text &error)

Description
Get all the bottom faces of a simple trimesh Element trimesh based on given tolerance and
assign the total number to Integer faces_count and the list of face indices to Dynamic_Integer
face_indices. These indices are grouped into continuous patches, the number of patches is
returned in patches_count, and the sizes for indivisual patches are returned in patch_sizes.
For example: faces_count = 8 and face_indices = { 1,3, 5,9,6, 12,13,7 }

patches_count = 3 and patch_sizes = {3, 2, 3}.
There are 8 bottom faces which are grouped into 3 patches, the first patch contains three
triangles {1,3,5}, the second patch contains two triangles {9,6}, and the third patch contain three
triangles {13,7}.
The Text error would be set to the corresponding error message if the function failed.

A return value of zero indicates the function call was successful.
ID = 3827

Get_trimesh_collapsing_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer
&faces_count,Dynamic_Integer &face_indices,Text &error)
Name
Integer Get_trimesh_collapsing_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer
&face_indices,Text &error)

Description
Get all the collapsing faces of a simple trimesh Element trimesh based on given tolerance and
assign the total number to Integer faces_count and the list of face indices to Dynamic_Integer
face_indices. These indices are grouped into continuous patches, the number of patches is
returned in patches_count, and the sizes for indivisual patches are returned in patch_sizes.
For example: faces_count = 8 and face_indices = { 1,3, 5,9,6, 12,13,7 }
patches_count = 3 and patch_sizes = {3, 2, 3}.
There are 8 collapsing faces which are grouped into 3 patches, the first patch contains three
triangles {1,3,5}, the second patch contains two triangles {9,6}, and the third patch contain three
triangles {13,7}.

The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3828
Page 749Trimesh Element

12d Model Programming Language Manual
Get_trimesh_surrounding_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer
&faces_count,Dynamic_Integer &face_indices,Text &error)
Name
Integer Get_trimesh_surrounding_faces(Element trimesh,Real tolerance,Integer
&patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer
&face_indices,Text &error)

Description
Get all the surrounding faces of a simple trimesh Element trimesh based on given tolerance
and assign the total number to Integer faces_count and the list of face indices to
Dynamic_Integer face_indices. These indices are grouped into continuous patches, the number
of patches is returned in patches_count, and the sizes for indivisual patches are returned in
patch_sizes.
For example: faces_count = 8 and face_indices = { 1,3, 5,9,6, 12,13,7 }
patches_count = 3 and patch_sizes = {3, 2, 3}.

There are 8 surrounding faces which are grouped into 3 patches, the first patch contains three
triangles {1,3,5}, the second patch contains two triangles {9,6}, and the third patch contain three
triangles {13,7}.
The Text error would be set to the corresponding error message if the function failed.
A return value of zero indicates the function call was successful.

ID = 3829

Get_sub_trimesh(Element trimesh,Dynamic_Integer &sub_faces_ix,Element
&sub_mesh)
Name
Integer Get_sub_trimesh(Element trimesh,Dynamic_Integer &sub_faces_ix,Element &sub_mesh)

Description
Form a new Element sub_mesh from a given trimesh Element trimesh based on given patch of
face indices Dynamic_Integer sub_face_ix.
A return value of zero indicates the function call was successful.

ID = 3831
Page 750 Trimesh Element

Chapter 5 12dPL Library Calls
5.51 Plot Frame Element
A Plot Frame string consists of data for producing plan plots.
The following functions are used to create new plot frames and make inquiries and modifications
to existing plot frames.

Create_plot_frame(Text name)
Name
Element Create_plot_frame(Text name)

Description
Create an Element of type Plot_Frame.
The function return value gives the actual Element created.
If the plot frame could not be created, then the returned Element will be null.

ID = 607

Get_plot_frame_name(Element elt,Text &name)
Name
Integer Get_plot_frame_name(Element elt,Text &name)

Description
Get the name of the plot frame in Element elt.
The name value is returned in Text name.
A function return value of zero indicates the data was successfully returned.
ID = 608

Get_plot_frame_scale(Element elt,Real &scale)
Name
Integer Get_plot_frame_scale(Element elt,Real &scale)

Description
Get the scale of the plot frame in Element elt.
The scale value is returned in Real scale. The value for scale is 1:scale.

A function return value of zero indicates the data was successfully returned.
ID = 609

Get_plot_frame_rotation(Element elt,Real &rotation)
Name
Integer Get_plot_frame_rotation(Element elt,Real &rotation)

Description
Get the rotation of the plot frame in Element elt.
The name value is returned in Real rotation. The units for rotation are radians.

A function return value of zero indicates the data was successfully returned.
ID = 610
Page 751Plot Frame Element

12d Model Programming Language Manual
Get_plot_frame_origin(Element elt,Real &x,Real &y)
Name
Integer Get_plot_frame_origin(Element elt,Real &x,Real &y)

Description
Get the origin of the plot frame in Element elt.
The x origin value is returned in Real x.

The y origin value is returned in Real y.
A function return value of zero indicates the data was successfully returned.
ID = 611

Get_plot_frame_sheet_size(Element elt,Real &w,Real &h)
Name
Integer Get_plot_frame_sheet_size(Element elt,Real &w,Real &h)

Description
Get the sheet size of the plot frame in Element elt.
The width value is returned in Real w.

The height value is returned in Real h.
A function return value of zero indicates the data was successfully returned.

ID = 612

Get_plot_frame_sheet_size(Element elt,Text &size)
Name
Integer Get_plot_frame_sheet_size(Element elt,Text &size)

Description
Get the sheet size of the plot frame in Element elt.
The sheet size is returned in Text size.
A function return value of zero indicates the data was successfully returned.
ID = 613

Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t)
Name
Integer Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t)

Description
Get the sheet margins of the plot frame in Element elt.
The left margin value is returned in Real l.
The bottom margin value is returned in Real b.
The right margin value is returned in Real r.
The top margin value is returned in Real t.
Page 752 Plot Frame Element

Chapter 5 12dPL Library Calls
A function return value of zero indicates the data was successfully returned.
ID = 614

Get_plot_frame_text_size(Element elt,Real &text_size)
Name
Integer Get_plot_frame_text_size(Element elt,Real &text_size)

Description
Get the text size of the plot frame in Element elt.
The text size is returned in Text text_size.

A function return value of zero indicates the data was successfully returned.
ID = 615

Get_plot_frame_draw_border(Element elt,Integer &draw_border)
Name
Integer Get_plot_frame_draw_border(Element elt,Integer &draw_border)

Description
Get the draw border of the plot frame in Element elt.
The draw border flag is returned in Integer draw_border.
A function return value of zero indicates the data was successfully returned.

ID = 616

Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport)
Name
Integer Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport)

Description
Get the draw viewport of the plot frame in Element elt.
The draw viewport flag is returned in Integer draw_viewport.
A function return value of zero indicates the data was successfully returned.
ID = 617

Get_plot_frame_draw_title_file(Element elt,Integer &draw_title)
Name
Integer Get_plot_frame_draw_title_file(Element elt,Integer &draw_title)

Description
Get the draw title file of the plot frame in Element elt.
The draw title file flag is returned in Integer draw_title.

A function return value of zero indicates the data was successfully returned.
ID = 618
Page 753Plot Frame Element

12d Model Programming Language Manual
Get_plot_frame_colour(Element elt,Integer &colour)
Name
Integer Get_plot_frame_colour(Element elt,Integer &colour)

Description
Get the colour of the plot frame in Element elt.
The colour value is returned Integer colour.
A function return value of zero indicates the data was successfully returned.
ID = 619

Get_plot_frame_textstyle(Element elt,Text &textstyle)
Name
Integer Get_plot_frame_textstyle(Element elt,Text &textstyle)

Description
Get the textstyle of the plot frame in Element elt.
The textstyle value is returned in Text textstyle.

A function return value of zero indicates the data was successfully returned.
ID = 620

Get_plot_frame_plotter(Element elt,Integer &plotter)
Name
Integer Get_plot_frame_plotter(Element elt,Integer &plotter)

Description
Get the plotter of the plot frame in Element elt.
The plotter value is returned in Integer plotter.
A function return value of zero indicates the data was successfully returned.
ID = 621

Get_plot_frame_plotter_name(Element elt,Text &plotter_name)
Name
Integer Get_plot_frame_plotter_name(Element elt,Text &plotter_name)

Description
Get the plotter name of the plot frame in Element elt.
The plotter name is returned in the Text plotter_name.
A function return value of zero indicates the plotter _name was returned successfully.

ID = 686

Get_plot_frame_plot_file(Element elt,Text &plot_file)
Name
Integer Get_plot_frame_plot_file(Element elt,Text &plot_file)
Page 754 Plot Frame Element

Chapter 5 12dPL Library Calls
Description
Get the plot file of the plot frame in Element elt.
The plot file value is returned in Text plot_file.

A function return value of zero indicates the data was successfully returned.
ID = 622

Get_plot_frame_title_1(Element elt,Text &title)
Name
Integer Get_plot_frame_title_1(Element elt,Text &title)

Description
Get the first title line of the plot frame in Element elt.
The title line value is returned in Text title.

A function return value of zero indicates the data was successfully returned.
ID = 623

Get_plot_frame_title_2(Element elt,Text &title)
Name
Integer Get_plot_frame_title_2(Element elt,Text &title)

Description
Get the second title line of the plot frame in Element elt.
The title line value is returned in Text title.
A function return value of zero indicates the data was successfully returned.

ID = 624

Get_plot_frame_title_file(Element elt,Text &title_file)
Name
Integer Get_plot_frame_title_file(Element elt,Text &title_file)

Description
Get the title file of the plot frame in Element elt.
The title file value is returned in Text title_file.
A function return value of zero indicates the data was successfully returned.
ID = 625

Set_plot_frame_name(Element elt,Text name)
Name
Integer Set_plot_frame_name(Element elt,Text name)

Description
Set the name of the plot frame in Element elt.
The name value is defined in Text name.
Page 755Plot Frame Element

12d Model Programming Language Manual
A function return value of zero indicates the data was successfully set.
ID = 626

Set_plot_frame_scale(Element elt,Real scale)
Name
Integer Set_plot_frame_scale(Element elt,Real scale)

Description
Set the scale of the plot frame in Element elt.
The scale value is defined in Real scale.
A function return value of zero indicates the data was successfully set.

ID = 627

Set_plot_frame_rotation(Element elt,Real rotation)
Name
Integer Set_plot_frame_rotation(Element elt,Real rotation)

Description
Set the rotation of the plot frame in Element elt.

The rotation value is defined in Real rotation.
A function return value of zero indicates the data was successfully set.

ID = 628

Set_plot_frame_origin(Element elt,Real x,Real y)
Name
Integer Set_plot_frame_origin(Element elt,Real x,Real y)

Description
Set the origin of the plot frame in Element elt.
The x origin value is defined in Real x.
The y origin value is defined in Real y.
A function return value of zero indicates the data was successfully set.

ID = 629

Set_plot_frame_sheet_size(Element elt,Real w,Real h)
Name
Integer Set_plot_frame_sheet_size(Element elt,Real w,Real h)

Description
Set the sheet size of the plot frame in Element elt.
The width value is defined in Real w.
The height value is defined in Real h.
A function return value of zero indicates the data was successfully set.
Page 756 Plot Frame Element

Chapter 5 12dPL Library Calls
ID = 630

Set_plot_frame_sheet_size(Element elt,Text size)
Name
Integer Set_plot_frame_sheet_size(Element elt,Text size)

Description
Set the sheet size of the plot frame in Element elt.
The sheet size is defined in Text size.
A function return value of zero indicates the data was successfully set.

ID = 631

Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t)
Name
Integer Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t)

Description
Set the sheet margins of the plot frame in Element elt.
The left margin value is defined in Real l.
The bottom margin value is defined in Real b.
The right margin value is defined in Real r.
The top margin value is defined in Real t.
A function return value of zero indicates the data was successfully set.
ID = 632

Set_plot_frame_text_size(Element elt,Real text_size)
Name
Integer Set_plot_frame_text_size(Element elt,Real text_size)

Description
Set the text size of the plot frame in Element elt.
The text size is defined in Text text_size.

A function return value of zero indicates the data was successfully set.
ID = 633

Set_plot_frame_draw_border(Element elt,Integer draw_border)
Name
Integer Set_plot_frame_draw_border(Element elt,Integer draw_border)

Description
Set the draw border of the plot frame in Element elt.
The draw border flag is defined in Integer draw_border.
A function return value of zero indicates the data was successfully set.
Page 757Plot Frame Element

12d Model Programming Language Manual
ID = 634

Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport)
Name
Integer Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport)

Description
Set the draw viewport of the plot frame in Element elt.
The draw viewport flag is defined in Integer draw_viewport.
A function return value of zero indicates the data was successfully set.
ID = 635

Set_plot_frame_draw_title_file(Element elt,Integer draw_title)
Name
Integer Set_plot_frame_draw_title_file(Element elt,Integer draw_title)

Description
Set the draw title file of the plot frame in Element elt.
The draw title file flag is defined in Integer draw_title.

A function return value of zero indicates the data was successfully set.
ID = 636

Set_plot_frame_colour(Element elt,Integer colour)
Name
Integer Set_plot_frame_colour(Element elt,Integer colour)

Description
Set the colour of the plot frame in Element elt.
The colour value is defined Integer colour.
A function return value of zero indicates the data was successfully set.
ID = 637

Set_plot_frame_textstyle(Element elt,Text textstyle)
Name
Integer Set_plot_frame_textstyle(Element elt,Text textstyle)

Description
Set the textstyle of the plot frame in Element elt.
The textstyle value is defined in Text textstyle
A function return value of zero indicates the data was successfully set.

ID = 638

Set_plot_frame_plotter(Element elt,Integer plotter)
Page 758 Plot Frame Element

Chapter 5 12dPL Library Calls
Name
Integer Set_plot_frame_plotter(Element elt,Integer plotter)

Description
Set the plotter of the plot frame in Element elt.
The plotter value is defined in Integer plotter.
A function return value of zero indicates the data was successfully set.

ID = 639

Set_plot_frame_plotter_name(Element elt,Text plotter_name)
Name
Integer Set_plot_frame_plotter_name(Element elt,Text plotter_name)

Description
Set the plotter name of the plot frame in Element elt.
The plotter name is given in the Text plotter_name.
A function return value of zero indicates the plotter name was successfully set.

ID = 687

Set_plot_frame_plot_file(Element elt,Text plot_file)
Name
Integer Set_plot_frame_plot_file(Element elt,Text plot_file)

Description
Set the plot file of the plot frame in Element elt
The plot file value is defined in Text plot_file.
A function return value of zero indicates the data was successfully set.
ID = 640

Set_plot_frame_title_1(Element elt,Text title_1)
Name
Integer Set_plot_frame_title_1(Element elt,Text title_1)

Description
Set the first title line of the plot frame in Element elt.
The title line value is defined in Text title_1.

A function return value of zero indicates the data was successfully set.
ID = 641

Set_plot_frame_title_2(Element elt,Text title_2)
Name
Integer Set_plot_frame_title_2(Element elt,Text title_2)

Description
Page 759Plot Frame Element

12d Model Programming Language Manual
Set the second title line of the plot frame in Element elt.
The title line value is defined in Text title_2.
A function return value of zero indicates the data was successfully set.

ID = 642

Set_plot_frame_title_file(Element elt,Text title_file)
Name
Integer Set_plot_frame_title_file(Element elt,Text title_file)

Description
Set the title file of the plot frame in Element elt
The title file value is defined in Text title_file.
A function return value of zero indicates the data was successfully set.
ID = 643
Page 760 Plot Frame Element

Chapter 5 12dPL Library Calls
5.52 Strings Replaced by Super Strings
From 12d Model 9 onwards, super strings are replacing many of the earlier string types used in
earlier versions of 12d Model.
See 5.52.1 2d Strings
See 5.52.2 3d Strings
See 5.52.3 4d Strings
See 5.52.4 Pipe Strings
See 5.52.5 Polyline Strings
Page 761Strings Replaced by Super Strings

12d Model Programming Language Manual
5.52.1 2d Strings
A 2d string consists of (x,y) values at each point of the string and a constant height for the entire
string.

The following functions are used to create new 2d strings and make inquiries and modifications
to existing 2d strings.
Note: From 12d Model 9 onwards, 2d strings have been replaced by Super strings.
For setting up a Super 2d String rather than the superseded 2d string see 5.38.1 2d Super String.

Create_2d(Real x[],Real y[],Real zvalue,Integer num_pts)
Name
Element Create_2d(Real x[],Real y[],Real zvalue,Integer num_pts)

Description
Create an Element of type 2d.
The Element has num_pts points with (x,y) values given in the Real arrays x[] and y[].
The height of the string is given by the Real zvalue.

The function return value gives the actual Element created.
If the 2d string could not be created, then the returned Element will be null.
ID = 77

Create_2d(Integer num_pts)
Name
Element Create_2d(Integer num_pts)

Description
Create an Element of type 2d with room for num_pts (x,y) points.

The actual x and y values and the height of the 2d string are set after the string is created.
If the 2d string could not be created, then the returned Element will be null.
ID = 448

Create_2d(Integer num_pts,Element seed)
Name
Element Create_2d(Integer num_pts,Element seed)

Description
Create an Element of type 2d with room for num_pts (x,y) points, and set the colour, name, style
etc. of the new string to be the same as those from the Element seed.
The actual x and y values and the height of the 2d string are set after the string is created.

If the 2d string could not be created, then the returned Element will be null.
ID = 665

Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pts,Integer
&num_pts)
Name
Integer Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pts,Integer &num_pts)
Page 762 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Description
Get the string height and the (x,y) data for the first max_pts points of the 2d Element elt.
The x and y values at each string point are returned in the Real arrays x[] and y[].
The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.
The actual number of points returned is given by Integer num_pts
num_pts <= max_pts

The height of the 2d string is returned in the Real zvalue.
If the Element elt is not of type 2d, then num_pts is returned as zero and the function return value
is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
ID = 69

Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pt,Integer
&num_pts,Integer start_pt)
Name
Integer Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pt,Integer
&num_pts,Integer start_pt)

Description
For a 2d Element elt, get the string height and the (x,y) data for max_pts points starting at point
number start_pt.
This routine allows the user to return the data from a 2d string in user specified chunks. This is
necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).
However, for this function, the point data returned starts at point number start_pt rather than
point one.
The (x,y) values at each string point are returned in the Real arrays x[] and y[].
The actual number of points returned is given by Integer num_pts
num_pts <= max_pts
The height of the 2d string is returned in the Real zvalue.

If the Element elt is not of type 2d, then num_pts is set to zero and the function return value is set
to a non-zero value.
A function return value of zero indicates the data was successfully returned.
Note

A start_pt of one gives the same result as for the previous function.

ID = 70

Get_2d_data(Element elt,Integer i,Real &x,Real &y)
Name
Integer Get_2d_data(Element elt,Integer i,Real &x,Real &y)
Page 763Strings Replaced by Super Strings

12d Model Programming Language Manual
Description
Get the (x,y) data for the ith point of the string.
The x value is returned in Real x.

The y value is returned in Real y.
A function return value of zero indicates the data was successfully returned.
ID = 73

Get_2d_data(Element elt,Real &z)
Name
Integer Get_2d_data(Element elt,Real &z)

Description
Get the height of the 2d string given by Element elt.
The height of the string is returned in Real z.

A function return value of zero indicates the height was successfully returned.
ID = 75

Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts)
Name
Integer Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts)

Description
Set the (x,y) data for the first num_pts points of the 2d Element elt.
This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.
The (x,y) values at each string point are given in the Real arrays x[] and y[].
The number of points to be set is given by Integer num_pts
If the Element elt is not of type 2d, then nothing is modified and the function return value is set to
a non-zero value.
A function return value of zero indicates the data was successfully set.
Note

This function can not create new 2d Elements - it only modifies existing 2d Elements.
ID = 71

Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts,Integer start_pt)
Name
Integer Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts,Integer start_pt)

Description
For the 2d Element elt, set the (x,y) data for num_pts points starting at point number start_pt.
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.
The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
Page 764 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
The (x,y) values for the string points are given in the Real arrays x[] and y[].
The number of the first string point to be modified is start_pt.
The total number of points to be set is given by Integer num_pts
If the Element elt is not of type 2d, then nothing is modified and the function return value is set to
a non-zero value.
A function return value of zero indicates the data was successfully set.
Notes

(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new 2d Elements but only modify existing 2d Elements.

ID = 72

Set_2d_data(Element elt,Integer i,Real x,Real y)
Name
Integer Set_2d_data(Element elt,Integer i,Real x,Real y)

Description
Set the (x,y) data for the ith point of the string.
The x value is given in Real x.
The y value is given in Real y.

A function return value of zero indicates the data was successfully set.
ID = 74

Set_2d_data(Element elt,Real z)
Name
Integer Set_2d_data(Element elt,Real z)

Description
Modify the height of the 2d Element elt.
The new height is given in the Real z.
A function return value of zero indicates the height was successfully set.

ID = 76
Page 765Strings Replaced by Super Strings

12d Model Programming Language Manual
5.52.2 3d Strings
A 3d string consists of (x,y,z) values at each point of the string.

The following functions are used to create new 3d strings and make inquiries and modifications
to existing 3d strings.
Note: From 12d Model 9 onwards, 3d strings have been replaced by Super strings.
For setting up a Super 3d String rather than the superseded 3d string see 5.38.3 3d Super String.

Create_3d(Line line)
Name
Element Create_3d(Line line)

Description
Create an Element of type 3d from the Line line.
The created Element will have two points with co-ordinates equal to the end points of the Line
line.
The function return value gives the actual Element created.

If the 3d string could not be created, then the returned Element will be null.
ID = 295

Create_3d(Real x[],Real y[],Real z[],Integer num_pts)
Name
Element Create_3d(Real x[],Real y[],Real z[],Integer num_pts)

Description
Create an Element of type 3d.
The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[].
The function return value gives the actual Element created.
If the 3d string could not be created, then the returned Element will be null.
ID = 84

Create_3d(Integer num_pts)
Name
Element Create_3d(Integer num_pts)

Description
Create an Element of type 3d with room for num_pts (x,y,z) points.
The actual x, y and z values of the 3d string are set after the string is created.

If the 3d string could not be created, then the returned Element will be null.
ID = 449

Create_3d(Integer num_pts,Element seed)
Name
Element Create_3d(Integer num_pts,Element seed)

Description
Page 766 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Create an Element of type 3d with room for num_pts (x,y) points, and set the colour, name, style
etc. of the new string to be the same as those from the Element seed.
The actual x, y and z values of the 3d string are set after the string is created.
If the 3d string could not be created, then the returned Element will be null.

ID = 666

Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts)
Name
Integer Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)

Description
Get the (x,y,z) data for the first max_pts points of the 3d Element elt.
The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].
The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.
The actual number of points returned is returned by Integer num_pts
num_pts <= max_pts

If the Element elt is not of type 3d, then num_pts is returned as zero and the function return value
is set to a non-zero value.
A function return value of zero indicates the data was successfully returned.

Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts,Integer start_pt)
Name
Integer Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer
start_pt)

Description
For a 3d Element elt, get the (x,y,z) data for max_pts points starting at point number start_pt.
This routine allows the user to return the data from a 3d string in user specified chunks. This is
necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).
However, for this function, the point data returned starts at point number start_pt rather than
point one.
The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].
The actual number of points returned is given by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type 3d, then num_pts is set to zero and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
Note

A start_pt of one gives the same result as for the previous function.
Page 767Strings Replaced by Super Strings

12d Model Programming Language Manual
Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z)
Name
Integer Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z)

Description
Get the (x,y,z) data for the ith point of the string.
The x value is returned in Real x.

The y value is returned in Real y.
The z value is returned in Real z.
A function return value of zero indicates the data was successfully returned.

Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
Name
Integer Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Description
Set the (x,y,z) data for the first num_pts points of the 3d Element elt.
This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.
The (x,y,z) values for each string point are given in the Real arrays x[], y[] and z[].
The number of points to be set is given by Integer num_pts
If the Element elt is not of type 3d, then nothing is modified and the function return value is set to
a non-zero value.
A function return value of zero indicates the data was successfully set.

Note
This function can not create new 3d Elements but only modify existing 3d Elements.
ID = 80

Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer
start_pt)
Name
Integer Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)

Description
For the 3d Element elt, set the (x,y,z) data for num_pts points, starting at point number start_pt.
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.
The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
The (x,y,z) values for the string points are given in the Real arrays x[], y[] and z[].
The number of the first string point to be modified is start_pt.
The total number of points to be set is given by Integer num_pts
If the Element elt is not of type 3d, then nothing is modified and the function return value is set to
Page 768 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
a non-
zero value.
A function return value of zero indicates the data was successfully set.

Notes
(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new 3d Elements but only modify existing 3d Elements.

Set_3d_data(Element elt,Integer i,Real x,Real y,Real z)
Name
Integer Set_3d_data(Element elt,Integer i,Real x,Real y,Real z)

Description
Set the (x,y,z) data for the ith point of the string.
The x value is given in Real x.

The y value is given in Real y.
The z value is given in Real z.
A function return value of zero indicates the data was successfully set.

ID = 83
Page 769Strings Replaced by Super Strings

12d Model Programming Language Manual
5.52.3 4d Strings
A 4d string consists of (x,y,z,text) values at each vertex of the 4d string.

All the texts in a 4d string have the same text parameters and the parameters can be individually
set, or all set at once by setting a Textstyle_Data.
The current parameters contained in the Textstyle_Data structure and used for the texts of a 4d
String are:

the text itself, text style, colour, height, offset, raise, justification, angle, slant, xfactor, italic,
strikeout, underlines, weight, whiteout, border and a name.

The parameters are described in the section 5.9 Textstyle Data

The following functions are used to create new 4d strings and make inquiries and modifications
to existing 4d strings.
Note: From 12d Model 9 onwards, 4d strings have been replaced by Super strings.
For setting up a Super 4d String rather than the superseded 4d string see 5.38.8 4d Super String.

Create_4d(Real x[],Real y[],Real z[],Text t[],Integer num_pts)
Name
Element Create_4d(Real x[],Real y[],Real z[],Text t[],Integer num_pts)

Description
Create an Element of type 4d. The Element has num_pts points with (x,y,z,text) values given in
the Real arrays x[], y[], z[] and Text array t[].
The function return value gives the actual Element created.
If the 4d string could not be created, then the returned Element will be null.
ID = 91

Create_4d(Integer num_pts)
Name
Element Create_4d(Integer num_pts)

Description
Create an Element of type 4d with room for num_pts (x,y,z,text) points.
The actual x, y, z and text values of the 4d string are set after the string is created.

If the 4d string could not be created, then the returned Element will be null.

Fred

.position of
4d string vertex

the position of the
text justification
point for the text

angle

offset raise angle, offset and raise
from the 4d string vertex

is defined by the

4d String

line giving the direction
of the text
Page 770 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
ID = 450

Create_4d(Integer num_pts,Element seed)
Name
Element Create_4d(Integer num_pts,Element seed)

Description
Create an Element of type 4d with room for num_pts (x,y) points, and set the colour, name, style
etc. of the new string to be the same as those from the Element seed.

The actual x, y, z and text values of the 4d string are set after the string is created.
If the 4d string could not be created, then the returned Element will be null.

ID = 667

Set_4d_data(Element elt,Real x[],Real y[],Real z[], Text t[],Integer num_pts)
Name
Integer Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts)

Description
Set the (x,y,z,text) data for the first num_pts points of the 4d Element elt.
This function allows the user to modify a large number of points of the string in one call.
The maximum number of points that can be set is given by the number of points in the string.
The (x,y,z,text) values at each string point are given in the Real arrays x[], y[], z[] and Text array
t[].
The number of points to be set is given by Integer num_pts
If the Element elt is not of type 4d, then nothing is modified and the function return value is set to
a non-zero value.
A function return value of zero indicates the data was successfully set.

Note
This function can not create new 4d Elements but only modify existing 4d Elements.
ID = 87

Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts,Integer
start_pt)
Name
Integer Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts,Integer start_pt)

Description
For the 4d Element elt, set the (x,y,z,text) data for num_pts points, starting at point number
start_pt.
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.
The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
The (x,y,z,text) values for the string points are given in the Real arrays x[], y[], z[] and Text array
t[].
Page 771Strings Replaced by Super Strings

12d Model Programming Language Manual
The number of the first string point to be modified is start_pt.
The total number of points to be set is given by Integer num_pts
If the Element elt is not of type 4d, then nothing is modified and the function return value is set to
a non-zero value.

A function return value of zero indicates the data was successfully set.
Notes
(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new 4d Elements but only modify existing 4d Elements.
 ID = 88

Set_4d_data(Element elt,Integer i,Real x,Real y,Real z,Text t)
Name
Integer Set_4d_data(Element elt,Integer i,Real x,Real y,Real z,Text t)

Description
Set the (x,y,z,text) data for the ith point of the string.

The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.

The text value is given in Text t.
A function return value of zero indicates the data was successfully set.

ID = 90

Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer
&num_pts)
Name
Integer Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer &num_pts)

Description
Get the (x,y,z,text) data for the first max_pts points of the 4d Element elt.
The (x,y,z,text) values at each string point are returned in the Real arrays x[], y[], z[] and Text
array t[].
The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type 4d, then num_pts is set to zero and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
ID = 85

Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer
&num_pts,Integer start_pt)
Page 772 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Name
Integer Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Description
For a 4d Element elt, get the (x,y,z,text) data for max_pts points starting at point number
start_pt.
This routine allows the user to return the data from a 4d string in user specified chunks. This is
necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.
As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.
The (x,y,z,text) values at each string point are returned in the Real arrays x[], y[], z[] and Text
array t[].
The actual number of points returned is given by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type 4d, then num_pts is returned as zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
Note
A start_pt of one gives the same result as for the previous function.

ID = 86

Get_4d_data(Element elt,Integer i,Real &x,Real &y,Real &z,Text &t)
Name
Integer Get_4d_data(Element elt,Integer i,Real &x,Real &y,Real &z,Text &t)

Description
Get the (x,y,z,text) data for the ith point of the string.

The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.

The text value is returned in Text t.
A function return value of zero indicates the data was successfully returned.
ID = 89

Set_4d_textstyle_data(Element elt,Textstyle_Data d)
Name
Integer Set_4d_textstyle_data(Element elt,Textstyle_Data d)

Description
For the Element elt of type 4d, set the Textstyle_Data to be d.

Setting a Textstyle_Data means that all the individual values that are contained in the
Textstyle_Data are set rather than having to set each one individually.
Page 773Strings Replaced by Super Strings

12d Model Programming Language Manual
If the value is blank in the Textstyle_Data d then the value in the 4d string would be left
unchanged.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates the Textstyle_Data was successfully set.

ID = 1667

Get_4d_textstyle_data(Element elt,Textstyle_Data &d)
Name
Integer Get_4d_textstyle_data(Element elt,Textstyle_Data &d)

Description
For the Element elt of type 4d, get the Textstyle_Data for the string and return it as d.

A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates the Textstyle_Data was successfully returned.
ID = 1668

Set_4d_units(Element elt,Integer units_mode)
Name
Integer Set_4d_units(Element elt,Integer units_mode)

Description
Set the units used for the text parameters of the 4d Element elt.
The mode is given as Integer units_mode.
For the values of units_mode, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully set.

ID = 447

Get_4d_units(Element elt,Integer &units_mode)
Name
Integer Get_4d_units(Element elt,Integer &units_mode)

Description
Get the units used for the text parameters of the 4d Element elt.
The mode is returned as Integer units_mode.
For the values of units_mode, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.

ID = 441

Set_4d_size(Element elt,Real size)
Name
Integer Set_4d_size(Element elt,Real size)

Description
Set the size of the characters of the 4d text of the Element elt.
Page 774 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
The text size is given as Real size.
A function return value of zero indicates the data was successfully set.
ID = 442

Get_4d_size(Element elt,Real &size)
Name
Integer Get_4d_size(Element elt,Real &size)

Description
Get the size of the characters of the 4d text of the Element elt.
The text size is returned as Real size.
A function return value of zero indicates the data was successfully returned.
ID = 436

Set_4d_justify(Element elt,Integer justify)
Name
Integer Set_4d_justify(Element elt,Integer justify)

Description
Set the justification used for the text parameters of the 4d Element elt.
The justification is given as Integer justify.

For the values of justify and their meaning, see 5.9 Textstyle Data.
A function return vale of zero indicates the data was successfully set.
ID = 446

Get_4d_justify(Element elt,Integer &justify)
Name
Integer Get_4d_justify(Element elt,Integer &justify)

Description
Get the justification used for the text parameters of the 4d Element elt.
The justification is returned as Integer justify.

For the values of justify and their meaning, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.
ID = 440

Set_4d_angle(Element elt,Real angle)
Name
Integer Set_4d_angle(Element elt,Real angle)

Description
Set the angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d Element elt.
The angle is given as Real angle.
Page 775Strings Replaced by Super Strings

12d Model Programming Language Manual
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully set.
ID = 445

Get_4d_angle(Element elt,Real &angle)
Name
Integer Get_4d_angle(Element elt,Real &angle)

Description
Get the angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d Element elt.
angle is measured in an anti-clockwise direction from the horizontal axis.
The angle is returned as Real angle.

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.
ID = 439

Set_4d_angle2(Element elt,Real angle2)
Name
Integer Set_4d_angle2(Element elt,Real angle2)

Description
Set the 3D beta angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d
Element elt.
The angle is given as Real angle2.
A function return value of zero indicates the data was successfully set.
ID = 3573

Get_4d_angle2(Element elt,Real &angle2)
Name
Integer Get_4d_angle2(Element elt,Real &angle2)

Description
Get the 3D beta angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d
Element elt..
The angle is returned as Real angle2.

A function return value of zero indicates the data was successfully returned.
ID = 3570

Set_4d_angle3(Element elt,Real angle3)
Name
Integer Set_4d_angle3(Element elt,Real angle3)

Description
Set the 3D gamma angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d
Element elt.
Page 776 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
The angle is given as Real angle3.
A function return value of zero indicates the data was successfully set.
ID = 3574

Get_4d_angle3(Element elt,Real &angle3)
Name
Integer Get_4d_angle2(Element elt,Real &angle3)

Description
Get the 3D gamma angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d
Element elt.
The angle is returned as Real angle2.
A function return value of zero indicates the data was successfully returned.
ID = 3571

Set_4d_offset(Element elt,Real offset)
Name
Integer Set_4d_offset(Element elt,Real offset)

Description
Set the offset distance of the text to be used for each 4d point (x,y) for the 4d Element elt.
The offset is returned as Real offset.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.
ID = 443

Get_4d_offset(Element elt,Real &offset)
Name
Integer Get_4d_offset(Element elt,Real &offset)

Description
Get the offset distance of the text to be used for each 4d point (x,y) for the 4d Element elt.
The offset is returned as Real offset.
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.
ID = 437

Set_4d_rise(Element elt,Real rise)
Name
Integer Set_4d_rise(Element elt,Real rise)

Description
Set the rise distance of the text to be used for each 4d point (x,y) for the 4d Element elt.
The rise is given as Real rise.
Page 777Strings Replaced by Super Strings

12d Model Programming Language Manual
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully set.
ID = 444

Get_4d_rise(Element elt,Real &rise)
Name
Integer Get_4d_rise(Element elt,Real &rise)

Description
Get the rise distance of the text to be used for each 4d point (x,y) for the 4d Element elt.
The rise is returned as Real rise.

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the data was successfully returned.
ID = 438

Set_4d_height(Element elt,Real height)
Name
Integer Set_4d_height(Element elt,Real height)

Description
Set the height of the characters of the 4d text of the Element elt.
The text height is given as Real height.
A function return value of zero indicates the data was successfully set.
ID = 648

Get_4d_height(Element elt,Real &height)
Name
Integer Get_4d_height(Element elt,Real &height)

Description
Get the height of the characters of the 4d text of the Element elt.
The text height is returned as Real height.
A function return value of zero indicates the data was successfully returned.
ID = 644

Set_4d_slant(Element elt,Real slant)
Name
Integer Set_4d_slant(Element elt,Real slant)

Description
Set the slant of the characters of the 4d text of the Element elt.
The text slant is given as Real slant.
A function return value of zero indicates the data was successfully set.
ID = 649
Page 778 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Get_4d_slant(Element elt,Real &slant)
Name
Integer Get_4d_slant(Element elt,Real &slant)

Description
Get the slant of the characters of the 4d text of the Element elt.
The text slant is returned as Real slant.
A function return value of zero indicates the data was successfully returned.
ID = 645

Set_4d_x_factor(Element elt,Real xfact)
Name
Integer Set_4d_x_factor(Element elt,Real xfact)

Description
Set the x factor of the characters of the 4d text of the Element elt.
The text x factor is given as Real xfact.
A function return value of zero indicates the data was successfully set.
ID = 650

Get_4d_x_factor(Element elt,Real &xfact)
Name
Integer Get_4d_x_factor(Element elt,Real &xfact)

Description
Get the x factor of the characters of the 4d text of the Element elt.
The text x factor is returned as Real xfact.
A function return value of zero indicates the data was successfully returned.

ID = 646

Set_4d_style(Element elt,Text style)
Name
Integer Set_4d_style(Element elt,Text style)

Description
Set the style of the characters of the 4d text of the Element elt.
The text style is given as Text style.
A function return value of zero indicates the data was successfully set.
ID = 651

Get_4d_style(Element elt,Text &style)
Name
Page 779Strings Replaced by Super Strings

12d Model Programming Language Manual
Integer Get_4d_style(Element elt,Text &style)

Description
Get the style of the characters of the 4d text of the Element elt.
The text style is returned as Text style.
A function return value of zero indicates the data was successfully returned.
ID = 647

Set_4d_ttf_underline(Element elt,Integer underline)
Name
Integer Set_4d_ttf_underline(Element elt,Integer underline)

Description
For the Element elt of type 4d, set the underline state to underline.
If underline = 1, then for a true type font the text will be underlined.

If underline = 0, then text will not be underlined.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates underlined was successfully set.
ID = 2588

Get_4d_ttf_underline(Element elt,Integer &underline)
Name
Integer Get_4d_ttf_underline(Element elt,Integer &underline)

Description
For the Element elt of type 4d, get the underline state and return it in underline.
If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates underlined was successfully returned.

ID = 2584

Set_4d_ttf_strikeout(Element elt,Integer strikeout)
Name
Integer Set_4d_ttf_strikeout(Element elt,Integer strikeout)

Description
For the Element elt of type 4d, set the strikeout state to strikeout.
If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
Page 780 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
A function return value of zero indicates strikeout was successfully set.
ID = 2589

Get_4d_ttf_strikeout(Element elt,Integer &strikeout)
Name
Integer Get_4d_ttf_strikeout(Element elt,Integer &strikeout)

Description
For the Element elt of type 4d, get the strikeout state and return it in strikeout.
For a diagram, see 5.9 Textstyle Data.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates strikeout was successfully returned.

 ID = 2585

Set_4d_ttf_weight(Element elt,Integer weight)
Name
Integer Set_4d_ttf_weight(Element elt,Integer weight)

Description
For the Element elt of type 4d, set the font weight to weight.
For the list of allowable weights, go to Allowable Weights
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates weight was successfully set.

ID = 2591

Get_4d_ttf_weight(Element elt,Integer &weight)
Name
Integer Get_4d_ttf_weight(Element elt,Integer &weight)

Description
For the Element elt of type 4d, get the font weight and return it in weight.
Allowable Weights
The allowable numbers for weight are:
0 = FW_DONTCARE
100 = FW_THIN
200 = FW_EXTRALIGHT
300 = FW_LIGHT
400 = FW_NORMAL
500 = FW_MEDIUM
600 = FW_SEMIBOLD
700 = FW_BOLD
800 = FW_EXTRABOLD
900 = FW_HEAVY
Page 781Strings Replaced by Super Strings

12d Model Programming Language Manual
Note that in the distributed file set_ups.h these are defined as:
#define FW_DONTCARE 0
#define FW_THIN 100
#define FW_EXTRALIGHT 200
#define FW_LIGHT 300
#define FW_NORMAL 400
#define FW_MEDIUM 500
#define FW_SEMIBOLD 600
#define FW_BOLD 700
#define FW_EXTRABOLD 800
#define FW_HEAVY 900
#define FW_ULTRALIGHT FW_EXTRALIGHT
#define FW_REGULAR FW_NORMAL
#define FW_DEMIBOLD FW_SEMIBOLD
#define FW_ULTRABOLD FW_EXTRABOLD
#define FW_BLACK FW_HEAVY

A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates weight was successfully returned.
ID = 2587

Set_4d_ttf_italic(Element elt,Integer italic)
Name
Integer Set_4d_ttf_italic(Element elt,Integer italic)

Description
For the Element elt of type 4d, set the italic state to italic.
If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates italic was successfully set.

 ID = 2590

Get_4d_ttf_italic(Element elt,Integer &italic)
Name
Integer Get_4d_ttf_italic(Element elt,Integer &italic)

Description
For the Element elt of type 4d, get the italic state and return it in italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates italic was successfully returned.
ID = 2586
Page 782 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Set_4d_ttf_outline(Element elt,Integer outline)
Name
Integer Set_4d_ttf_outline(Element elt,Integer outline)

Description
For the Element elt of type 4d, set the outline state to outline.

If outline = 1, then for a true type font the text will be only shown in outline.
If outline = 0, then text will not be only shown in outline.
For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates outline was successfully set.
 ID = 2770

Get_4d_ttf_outline(Element elt,Integer &outline)
Name
Integer Get_4d_ttf_outline(Element elt,Integer &outline)

Description
For the Element elt of type 4d, get the outline state and return it in outline.
If outline = 1, then for a true type font the text will be shown only in outline.
If outline = 0, then text will not be only shown in outline.

For a diagram, see 5.9 Textstyle Data.
A non-zero function return value is returned if elt is not of type 4d.
A function return value of zero indicates outline was successfully returned.

ID = 2769

Set_4d_whiteout(Element element,Integer colour)
Name
Integer Set_4d_whiteout(Element element,Integer colour)

Description
For the 4d Element elt, set the colour number of the colour used for the whiteout box around
vertex text, to be colour.
If no text whiteout is required, then set the colour number to NO_COLOUR.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.

A function return value of zero indicates the colour number was successfully set.
ID = 2750

Get_4d_whiteout(Element element,Integer &colour)
Name
Integer Get_4d_whiteout(Element element,Integer &colour)

Description
For the 4d Element elt, get the colour number that is used for the whiteout box around vertex
Page 783Strings Replaced by Super Strings

12d Model Programming Language Manual
text. The whiteout colour is returned as Integer colour.
NO_COLOUR is the returned as the colour number if whiteout is not being used.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully returned.
ID = 2749

Set_4d_border(Element element,Integer colour)
Name
Integer Set_4d_border(Element element,Integer colour)

Description
For the 4d Element elt, set the colour number of the colour used for the border of the whiteout
box around vertex text, to be colour.
If no whiteout border is required, then set the colour number to NO_COLOUR.

Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff).
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully set.

ID = 2760

Get_4d_border(Element element,Integer &colour)
Name
Integer Get_4d_border(Element element,Integer &colour)

Description
For the 4d Element elt, get the colour number that is used for the border of the whiteout box
around vertex text. The whiteout border colour is returned as Integer colour.
NO_COLOUR is the returned as the colour number if there is no whiteout border.
Note: The colour number for "view colour" is VIEW_COLOUR (or 2147483647 - that is 0x7fffffff)

For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully returned.
ID = 2759

Set_4d_border_style(Element element,Integer style)
Name
Integer Set_4d_border_style(Element element,Integer style)

Description
For the 4d Element elt, set the border style of the whiteout box around vertex text, according to
Integer style.
Rectangle 1

Circle 2
Capsule 3
Bevel 4
Page 784 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully set.
ID = 3575

Get_4d_border_style(Element element,Integer &style)
Name
Integer Get_4d_border_style(Element element,Integer &style)

Description
For the 4d Element elt, get the style that is used for the border of the whiteout box around vertex
text. The value is returned as Integer style.

Rectangle 1
Circle 2
Capsule 3

Bevel 4
For a diagram, see 5.9 Textstyle Data.
A function return value of zero indicates the colour number was successfully returned.

ID = 3572
Page 785Strings Replaced by Super Strings

12d Model Programming Language Manual
5.52.4 Pipe Strings
A pipe string consists of (x,y,z) values at each point of the string and a diameter for the entire
string.

The following functions are used to create new pipe strings and make inquiries and modifications
to existing pipe strings.
Note: From 12d Model 9 onwards, pipe strings have been replaced by Super strings.

Create_pipe(Real x[],Real y[],Real z[],Integer num_pts)
Name
Element Create_pipe(Real x[],Real y[],Real z[],Integer num_pts)

Description
Create an Element of type pipe.
The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[].
The function return value gives the actual Element created.

If the pipe string could not be created, then the returned Element will be null.
ID = 676

Create_pipe(Integer num_pts)
Name
Element Create_pipe(Integer num_pts)

Description
Create an Element of type pipe with room for num_pts (x,y,z) points.
The actual x, y and z values of the pipe string are set after the string is created.

If the pipe string could not be created, then the returned Element will be null.
ID = 677

Create_pipe(Integer num_pts,Element seed)
Name
Element Create_pipe(Integer num_pts,Element seed)

Description
Create an Element of type pipe with room for num_pts (x,y) points, and set the colour, name,
style etc. of the new string to be the same as those from the Element seed.
The actual x, y and z values of the pipe string are set after the string is created.
If the pipe string could not be created, then the returned Element will be null.

ID = 678

Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts)
Name
Integer Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)

Description
Page 786 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Get the (x,y,z) data for the first max_pts points of the pipe Element elt.
The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].
The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type pipe, then num_pts is returned as zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
Name
Integer Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Description
Set the (x,y,z) data for the first num_pts points of the pipe Element elt.
This function allows the user to modify a large number of points of the string in one call.
The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z) values for each string point are given in the Real arrays x[], y[] and z[].
The number of points to be set is given by Integer num_pts
If the Element elt is not of type pipe, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.
Note
This function can not create new pipe Elements but only modify existing pipe Elements.

ID = 80

Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts,Integer start_pt)
Name
Integer Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer
start_pt)

Description
For a pipe Element elt, get the (x,y,z) data for max_pts points starting at point number start_pt.
This routine allows the user to return the data from a pipe string in user specified chunks.
This is necessary if the number of points in the string is greater than the size of the arrays
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).
However, for this function, the point data returned starts at point number start_pt rather than
point one.

The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].
The actual number of points returned is given by Integer num_pts
Page 787Strings Replaced by Super Strings

12d Model Programming Language Manual
num_pts <= max_pts
If the Element elt is not of type pipe, then num_pts is set to zero and the function return value is
set to a non-zero value.
A function return value of zero indicates the data was successfully returned.

Note
A start_pt of one gives the same result as for the previous function.

Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer
start_pt)
Name
Integer Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)

Description
For the pipe Element elt, set the (x,y,z) data for num_pts points, starting at point number
start_pt.
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
The (x,y,z) values for the string points are given in the Real arrays x[], y[] and z[].
The number of the first string point to be modified is start_pt.
The total number of points to be set is given by Integer num_pts
If the Element elt is not of type pipe, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.
Notes
(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new pipe Elements but only modify existing pipe Elements.

Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z)
Name
Integer Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z)

Description
Get the (x,y,z) data for the ith point of the string.
The x value is returned in Real x.

The y value is returned in Real y.
The z value is returned in Real z.
A function return value of zero indicates the data was successfully returned.

Set_pipe_data(Element elt,Integer i,Real x,Real y,Real z)
Name
Integer Set_pipe_data(Element elt,Integer i,Real x,Real y,Real z)

Description
Page 788 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Set the (x,y,z) data for the ith point of the string.
The x value is given in Real x.
The y value is given in Real y.

The z value is given in Real z.
A function return value of zero indicates the data was successfully set.
ID = 83

Get_pipe_diameter(Element elt,Real &diameter)
Name
Integer Get_pipe_diameter(Element elt,Real &diameter)

Description
Get the pipe diameter of the string Element elt.
The pipe diameter is returned in Real diameter.
A function return value of zero indicates the data was successfully returned.
ID = 681

Set_pipe_diameter(Element elt,Real diameter)
Name
Integer Set_pipe_diameter(Element elt,Real diameter)

Description
Set the pipe diameter of the string Element elt.
The pipe diameter is given as Real diameter.
A function return value of zero indicates the data was successfully set.
ID = 679

Get_pipe_justify(Element elt,Integer &justify)
Name
Integer Get_pipe_justify(Element elt,Integer &justify)

Description
Get the justification used for the pipe Element elt
The justification is returned as Integer justify.
A function return value of zero indicates the data was successfully returned.

ID = 682

Set_pipe_justify(Element elt,Integer justify)
Name
Integer Set_pipe_justify(Element elt,Integer justify)

Description
Set the justification used for the text parameter of the pipe Element elt.
Page 789Strings Replaced by Super Strings

12d Model Programming Language Manual
The justification is given as Integer justify.
A function return value of zero indicates the data was successfully set.
ID = 680
Page 790 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
5.52.5 Polyline Strings
A polyline string consists of (x,y,z,radius,bulge) values at each point of the string.

For a given point, (x,y,z) defines the co-ordinates of the point, and (radius,bulge) defines an arc
of radius radius between the point and the and the next point.
The sign of radius defines which side of the line joining the consecutive points that the arc is on
(positive - on the left; negative - on the right) and bulge specifies whether the arc is a minor or
major arc (0 for a minor arc < 180 degrees; 1 for a major arc > 180 degrees). The minor/major
value is given in Integer bulge.

The following functions are used to create new polyline strings and make inquiries and
modifications to existing polyline strings.
Note: From 12d Model 9 onwards, Polyline strings have been replaced by Super strings.

For setting up a Super Polyline String rather than the superseded polyline string see 5.38.3 3d
Super String.

Create_polyline(Real x[],Real y[],Real z[],Real r[],Integer bulge[],Integer num_pts)
Name
Element Create_polyline(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)

Description
Create an Element of type polyline.
The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[], and
arcs between consecutive points given in the Real array r[] and the Integer array bulge[].
The radius of the arc between the nth and the n+1 point is given by r[n] and the arc is on the right
of the line joining the nth and n+1 point if r[n] is positive, and on the left if r[n] is negative. Hence
the absolute value of r[n] gives the radius of the curve between the nth and n+1 point and the
sign of r[n] defines what side the curve lies on.
The value of bulge[n] defines whether the arc is a minor or major arc. A value of 0 denotes a
minor arc and 1 a major arc.
The function return value gives the actual Element created.

If the polyline string could not be created, then the returned Element will be null.
ID = 481

Create_polyline(Integer num_pts)
Name
Element Create_polyline(Integer num_pts)

Description
Create an Element of type Polyline with room for num_pts (x,y,z,r,bulge) points.
The actual x, y, z, r, and bulge values of the polyline string are set after the string is created.
If the polyline string could not be created, then the returned Element will be null.

ID = 482

Create_polyline(Integer num_pts,Element seed)
Name
Element Create_polyline(Integer num_pts,Element seed)
Page 791Strings Replaced by Super Strings

12d Model Programming Language Manual
Description
Create an Element of type Polyline with room for num_pts (x,y,z,r,bulge) points, and set the
colour, name, style etc. of the new string to be the same as those from the Element seed.
The actual x, y, z, r, and bulge values of the polyline string are set after the string is created.

If the polyline string could not be created, then the returned Element will be null.
ID = 669

Create_polyline(Segment seg)
Name
Element Create_polyline(Segment seg)

Description
Create an Element of type Polyline from the Segment seg. The segment may be a Line, or Arc.
The created Element will have two points with co-ordinates equal to the end points of the
Segment seg.
The function return value gives the actual Element created.

If the polyline string could not be created, then the returned Element will be null.
ID = 554

Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
max_pts,Integer &num_pts)
Name
Integer Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer
max_pts,Integer &num_pts)

Description
Get the (x,y,z,r,b) data for the first max_pts points of the polyline Element elt.
The (x,y,z,r,b) values at each string point are returned in the Real arrays x[], y[], z[], r[] and b[].
The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.
The actual number of points returned is returned by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type Polyline, then num_pts is returned as zero and the function
return value is set to a non-zero value.
A function return value of zero indicates the data was successfully returned.

ID = 483

Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)
Name
Integer Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)

Description
Page 792 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
For a polyline Element elt, get the (x,y,z,r,f) data for max_pts points starting at point number
start_pt.
This routine allows the user to return the data from a polyline string in user specified chunks. This
is necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.
As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.
The (x,y,z,r,f) values at each string point are returned in the Real arrays x[], y[], z[], r[] and f[].
The actual number of points returned is given by Integer num_pts
num_pts <= max_pts
If the Element elt is not of type Polyline, then num_pts is set to zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
Note
A start_pt of one gives the same result as for the previous function.

ID = 484

Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer
&f)
Name
Integer Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)

Description
Get the (x,y,z,r,f) data for the ith point of the Polyline Element elt.
The x value is returned in Real x.
The y value is returned in Real y.

The z value is returned in Real z.
The radius value is returned in Real r.
The minor/major value is returned in Integer f.
A function return value of zero indicates the data was successfully returned.
ID = 485

Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts)
Name
Integer Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)

Description
Set the (x,y,z,r,f) data for the first num_pts points of the polyline Element elt.
This function allows the user to modify a large number of points of the string in one call.
The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z,r,f) values for each string point are given in the Real arrays x[], y[], z[], r[] and f[].
The number of points to be set is given by Integer num_pts
Page 793Strings Replaced by Super Strings

12d Model Programming Language Manual
If the Element elt is not of type Polyline, then nothing is modified and the function return value is
set to a non-zero value.
A function return value of zero indicates the data was successfully set.
Note
This function can not create new Polyline Elements but only modify existing Polyline Elements.
ID = 486

Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)
Name
Integer Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)

Description
For the polyline Element elt, set the (x,y,z,r,f) data for num_pts points, starting at point number
start_pt.
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
The (x,y,z,r,f) values for the string points are given in the Real arrays x[], y[], z[], r[]
 and f[].
The number of the first string point to be modified is start_pt.
The total number of points to be set is given by Integer num_pts
If the Element elt is not of type Polyline, then nothing is modified and the function return value is
set to a non-zero value.
A function return value of zero indicates the data was successfully set.
Notes

(a) A start_pt of one gives the same result as the previous function.
(b) This function can not create new Polyline Elements but only modify existing Polyline

Elements.
ID = 487

Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)
Name
Integer Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Description
Set the (x,y,z,r,f) data for the ith point of the string.
The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.
The radius value is given in Real r.
The minor/major value is given in Integer f.
A function return value of zero indicates the data was successfully set.

ID = 488
Page 794 Strings Replaced by Super Strings

Chapter 5 12dPL Library Calls
Page 795Strings Replaced by Super Strings

12d Model Programming Language Manual
5.53 Alignment String Element
An Alignment string holds both the horizontal and vertical information needed in defining entities
such as the centre line of a road.
Horizontal intersection points (hips), arcs and spirals are used to define the plan geometry.
Vertical intersection points (vips) and parabolic and circular curves are used to define the vertical
geometry.

The process to define an Alignment string is
(a) create an Alignment Element
(b) add the horizontal geometry
(c) perform a Calc_alignment on the string
(d) add the vertical geometry
(e) perform a Calc_alignment
For an existing Alignment string, there are functions to get the positions of all critical points (such
as horizontal and vertical tangent points, spiral points, curve centres) for the string.

The functions used to create new Alignment strings and make inquiries and modifications to
existing Alignment strings now follow.
Note: From 12d Model 9 onwards, Alignment strings have been replaced by Super Alignment
strings.

Element Create_align()
Name
Element Create_align()

Description
Create an Element of type Alignment.
The function return value gives the actual Element created.
If the Alignment string could not be created, then the returned Element will be null.

ID = 92

Create_align(Element seed)
Name
Element Create_align(Element seed)

Description
Create an Element of type Alignment, and set the colour, name, style etc. of the new string to be
the same as those from the Element seed.

If the alignment string could not be created, then the returned Element will be null.
ID = 670

Append_hip(Element elt,Real x,Real y)
Name
Integer Append_hip(Element elt,Real x,Real y)

Description
Append a horizontal intersection point (hip) with plan co-ordinates (x,y) to the Element elt
Page 796 Alignment String Element

Chapter 5 12dPL Library Calls
. The radius and spiral lengths are set to zero.
The order in which the hips are appended is taken as the order of the hips in the Alignment
string.
The hips must be appended in order of increasing chainage along the Alignment string.

Append_hip is used to place the first hip as well as the subsequent hips.
A function return value of zero indicates that the hip was successfully appended.
ID = 93

Append_hip(Element elt,Real x,Real y,Real rad)
Name
Integer Append_hip(Element elt,Real x,Real y,Real rad)

Description
Append a horizontal intersection point (hip) with plan co-ordinates (x,y) and curve radius rad to
the Element elt. The spiral lengths are set to zero.

A zero curve radius indicates that no curve is present.
A function return value of zero indicates that the hip was successfully appended.
ID = 94

Append_hip(Element elt,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
Name
Integer Append_hip(Element elt,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Description
Append to the Element elt a horizontal intersection point (hip) with co-ordinates (x,y), curve
radius rad and left and right spirals of length left_spiral and right_spiral respectively.
A zero curve radius indicates that no curve is present.

A zero spiral length indicates that a spiral is not present.
A function return value of zero indicates that the hip was successfully appended.
ID = 95

Get_hip_points(Element elt,Integer &num_pts)
Name
Integer Get_hip_points(Element elt,Integer &num_pts)

Description
Get the number of hips, num_pts, in the Alignment Element elt.
A function return value of zero indicates the number of hip points was successfully returned.

ID = 100

Get_hip_data(Element elt,Integer i,Real &x,Real &y)
Name
Integer Get_hip_data(Element elt,Integer i,Real &x,Real &y)
Page 797Alignment String Element

12d Model Programming Language Manual
Description
Get the plan co-ordinates (x,y) of the ith hip point of the Alignment string elt.
A function return value of zero indicates the hip data was successfully returned.

ID = 101

Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad)
Name
Integer Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad)

Description
Get the plan co-ordinates (x,y) and the curve radius, rad, for the ith hip point of the Alignment
string elt.
If the radius is:
positive, it is a right hand curve
negative, it is a left hand curve.
zero, there is no curve.
A function return value of zero indicates the hip data was successfully returned.

ID = 102

Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad,Real
&left_spiral,Real &right_spiral)
Name
Integer Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad,Real &left_spiral,Real
&right_spiral)

Description
Get the plan co-ordinates (x,y), the curve radius rad, and the left and right spiral lengths,
left_spiral and right_spiral for the ith hip point of the Alignment Element elt.
If the radius is:

positive, it is a right hand curve
negative, it is a left hand curve.
zero, there is no curve.
A spiral length of zero indicates that there is no spiral.
A function return value of zero indicates the hip data was successfully returned.

ID = 103

Set_hip_data(Element elt,Integer i,Real x,Real y)
Name
Integer Set_hip_data(Element elt,Integer i,Real x,Real y)

Description
Modify the plan co-ordinates (x,y) of the ith hip point of the Alignment string elt. The existing
curve radius and spiral lengths are not altered.

The ith hip point must already exist.
A function return value of zero indicates the hip was successfully set.
Page 798 Alignment String Element

Chapter 5 12dPL Library Calls
ID = 104

Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad)
Name
Integer Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad)

Description
Modify the plan co-ordinates (x,y) and the curve radius, rad, of the ith hip point of the Alignment
string elt. The spiral lengths are not altered.

The ith hip point must already exist.
A function return value of zero indicates the hip was successfully set.

ID = 105

Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real
right_spiral)
Name
Integer Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Description
Modify the plan co-ordinates (x,y), the curve radius rad, and the left and right spiral lengths,
left_spiral and right_spiral for the ith hip point of the Alignment string elt.
The ith hip point must already exist.
A function return value of zero indicates the hip was successfully set.

ID = 106

Insert_hip(Element elt,Integer i,Real x,Real y)
Name
Integer Insert_hip(Element elt,Integer i,Real x,Real y)

Description
Insert a new hip with plan co-ordinates (x,y) before the existing ith hip point.

The curve radius and spiral lengths are set to zero.
The inserted hip becomes the ith hip and the position of all subsequent hip's increases by one.
If i is greater than number of hips, then the new hip is appended to the string.

If i is less than one, then the new hip is prepended to the string.
A function return value of zero indicates the hip was inserted successfully.
ID = 107

Insert_hip(Element elt,Integer i,Real x,Real y,Real rad)
Name
Integer Insert_hip(Element elt,Integer i,Real x,Real y,Real rad)

Description
Insert a new hip with plan co-ordinates (x,y) and curve radius rad before the existing ith hip
point.
Page 799Alignment String Element

12d Model Programming Language Manual
The spiral lengths are set to zero.
The inserted hip becomes the ith hip and the position of all subsequent hip's increases by one.
If i is greater than number of hips, then the new hip is appended to the string.

If i is less than one, then the new hip is prepended to the string.
A function return value of zero indicates the hip was inserted successfully.
ID = 108

Insert_hip(Element elt,Integer i, Real x,Real y,Real rad,Real left_spiral,Real
right_spiral)
Name
Integer Insert_hip(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Description
Insert a new hip with plan co-ordinates (x,y), curve radius rad and left and right spirals of length
left_spiral and right_spiral respectively, before the existing ith hip point.

The inserted hip becomes the ith hip and the position of all subsequent hip's increases by one.
If i is greater than number of hips, then the new hip is appended to the string.
If i is less than one, then the new hip is prepended to the string.

A function return value of zero indicates the hip was inserted successfully.
ID = 109

Delete_hip(Element elt,Integer i)
Name
Integer Delete_hip(Element elt,Integer i)

Description
Delete the ith hip from the Alignment string elt.
The position of all subsequent hips is decreased by one.

A function return value of zero indicates the hip was successfully deleted.
ID = 110

Get_hip_type(Element elt,Integer hip_no,Text &type)
Name
Integer Get_hip_type(Element elt,Integer hip_no,Text &type)

Description
Get the type of the horizontal intersection point number hip_no for the Alignment string elt.
The Text type has a returned value of
Spiral if there is spiral/s and horizontal curve at the hip.
Curve if there is a horizontal curve with no spirals at the hip.
IP if there are no spirals or horizontal curves at the hip.

A function return value of zero indicates the hip information was successfully returned.
ID = 397
Page 800 Alignment String Element

Chapter 5 12dPL Library Calls
Get_hip_geom(Element elt,Integer hip_no,Integer mode, Real &x,Real &y)
Name
Integer Get_hip_geom(Element elt,Integer hip_no,Integer mode,Real &x,Real &y)

Description
Return the (x,y) co-ordinates of the critical horizontal points around the horizontal intersection
point hip_no (i.e. tangent spiral points, spiral curve points etc.) for the Alignment string elt.
The type of critical point (x,y) returned is specified by mode and depends on the type of the hip.
The following table gives the description of the returned co-ordinate (x,y) and whether or not the
mode is applicable for the given HIP type (Y means applicable, N means not applicable).

 HIP Type
Mode Returned co-ordinate HIP Curve Spiral
0 HIP co-ords Y Y Y
1 start tangent N Y TC Y TS
2 end tangent N Y CT Y ST
3 curve centre N Y Y
4 spiral-curve N N Y
5 curve-spiral N N Y
A function return value of zero indicates the hip information was successfully returned and that
the mode was appropriate for the HIP type of the hip hip_no.

ID = 395

Append_vip(Element elt,Real ch,Real ht)
Name
Integer Append_vip(Element elt,Real ch,Real ht)

Description
Append a vertical intersection point (vip) with chainage-height co-ordinates (ch,ht) to the
Element elt. The parabolic curve length is set to zero.

The order in which the vips are appended is taken as the order of the vips in the Alignment string.
The vips must be appended in order of increasing chainage along the Alignment string.
Append_vip is used to place the first vip as well as the subsequent vips.

A function return value of zero indicates the vip was appended successfully.
ID = 96

Append_vip(Element elt,Real ch,Real ht,Real parabolic)
Name
Integer Append_vip(Element elt,Real ch,Real ht,Real parabolic)

Description
Append to the Element elt a vertical intersection point (vip) with chainage-height co-ordinates
(ch,ht) and a parabolic curve of length parabolic.
A parabolic curve length of zero indicates no curve is present.
A function return value of zero indicates the vip was appended successfully.

ID = 97
Page 801Alignment String Element

12d Model Programming Language Manual
Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode)
Name
Integer Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode)

Description
Append to the Element elt a vertical intersection point (vip) with chainage-height co-ordinates
(ch,ht) and a curve of length length.

If mode = 0 or 1, the curve is a parabolic vertical curve
If mode = 2, the curve is a circular vertical curve
A curve length of zero indicates no curve is present.
A function return value of zero indicates the vip was appended successfully.

ID = 98

Get_vip_points(Element elt,Integer &num_pts)
Name
Integer Get_vip_points(Element elt,Integer &num_pts)

Description
Get the number of vips, num_pts, in the Alignment string elt.
A function return value of zero indicates the number of vip points was successfully returned.
ID = 111

Get_vip_data(Element elt,Integer i,Real &ch,Real &ht)
Name
Integer Get_vip_data(Element elt,Integer i,Real &ch,Real &ht)

Description
Get the chainage-height co-ordinates (ch,ht) of the ith vip point for the Alignment string elt.
A function return value of zero indicates the vip data was successfully returned.

ID = 112

Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real ¶bolic)
Name
Integer Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real ¶bolic)

Description
Get the chainage-height co-ordinates (ch,ht) and the parabolic curve length parabolic for the ith
vip point of the Alignment string elt.
A function return value of zero indicates the vip data was successfully returned.
ID = 113

Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer
&mode)
Name
Page 802 Alignment String Element

Chapter 5 12dPL Library Calls
Integer Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer &mode)

Description
Get the chainage-height co-ordinates (ch,ht) and the curve length value for the ith vip point of
the Alignment string elt.
If mode = 0 or 1, the curve is a parabolic vertical curve
If mode = 2, the curve is a circular vertical curve
A curve length of zero indicates no curve is present.
A function return value of zero indicates the vip data was successfully returned.

ID = 114

Set_vip_data(Element elt,Integer i,Real ch,Real ht)
Name
Integer Set_vip_data(Element elt,Integer i,Real ch,Real ht)

Description
Modify the chainage-height co-ordinates (ch,ht) of the ith vip point for the Alignment string elt.
The existing parabolic curve length is not altered.
The ith vip point must already exist.
A function return value of zero indicates the vip data was successfully set.

ID = 115

Set_vip_data(Element elt,Integer i, Real ch,Real ht,Real parabolic)
Name
Integer Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real parabolic)

Description
Modify the chainage-height co-ordinates (ch,ht) and the parabolic curve length parabolic, for the
ith vip point of the Alignment string elt.
The ith vip point must already exist.
A function return value of zero indicates the vip data was successfully set.
ID = 116

Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)
Name
Integer Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)

Description
Modify the chainage-height co-ordinates (ch,ht) and the curve length value, for the i’th vip point
of the Alignment string elt.
If mode = 0 or 1, the curve is set to be a parabolic vertical curve
If mode = 2, the curve is set to be a circular vertical curve

A curve length of zero indicates no curve is present.
A function return value of zero indicates the vip data was successfully returned.

ID = 117
Page 803Alignment String Element

12d Model Programming Language Manual
Insert_vip(Element elt,Integer i,Real ch,Real ht)
Name
Integer Insert_vip(Element elt,Integer i,Real ch,Real ht)

Description
Insert a new vip with chainage-height co-ordinates (ch,ht) before the existing i’th vip point.

The parabolic curve length is set to zero.
The inserted vip becomes the ith vip and the position of all subsequent vips increases by one.
If i is greater than number of vips, then the new vip is appended to the string.

If i is less than one, then the new vip is prepended to the string.
A function return value of zero indicates that the vip was successfully inserted.
ID = 118

Insert_vip(Element elt,Integer i,Real ch,Real ht,Real parabolic)
Name
Integer Insert_vip(Element elt,Integer i,Real ch,Real ht,Real parabolic)

Description
Insert a new vip with chainage-height co-ordinates (ch,ht) and parabolic length parabolic before
the existing ith vip point.

The inserted vip becomes the ith vip and the position of all subsequent vips increases by one.
If i is greater than number of vips, then the new vip is appended to the string.
If i is less than one, then the new vip is prepended to the string.

A function return value of zero indicates that the vip was successfully inserted.
ID = 119

Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)
Name
Integer Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)

Description
Insert a new vip with chainage-height co-ordinates (ch,ht) and curve length value before the
existing i’th vip point.
The inserted vip becomes the ith vip and the position of all subsequent vips increases by one.
If i is greater than number of vips, then the new vip is appended to the string.

If i is less than one, then the new vip is prepended to the string.
If mode = 0 or 1, the curve is set to be a parabolic vertical curve
If mode = 2, the curve is set to be a circular vertical curve
A curve length of zero indicates no curve is present.

A function return value of zero indicates that the vip was successfully inserted.
ID = 120

Delete_vip(Element elt,Integer i)
Name
Page 804 Alignment String Element

Chapter 5 12dPL Library Calls
Integer Delete_vip(Element elt,Integer i)

Description
Delete the ith vip from the Alignment string elt.
The position of all subsequent vips is decreased by one.
A function return value of zero indicates that the vip was successfully deleted.
ID = 121

Calc_alignment(Element elt)
Name
Integer Calc_alignment(Element elt)

Description
Use all the horizontal and vertical data to calculate the full geometry for the Alignment string.

A Calc_alignment must be done before the Alignment string can be used in 12d Model.
A function return value of zero indicates the geometry of the alignment was successfully
calculated.
ID = 99

Get_vip_type(Element elt,Integer vip_no,Text &type)
Name
Integer Get_vip_type(Element elt,Integer vip_no,Text &type)

Description
Get the type of the vertical intersection point number vip_no for the Alignment string elt.
The Text type has a returned value of

VC if there is a parabolic curve at the vip.
Curve if there is a circular curve at the vip.
IP if there is no vertical curves at the vip.
A function return value of zero indicates the vip information was successfully returned.
ID = 398

Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real
&height)
Name
Integer Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real &height)

Description
Return the chainage and height co-ordinates of the critical points (tangent points, curve centre)
for vertical intersection point number vip_no of the Alignment string elt.
The type of critical point (chainage,height) returned is given by mode and depends on the type of
the vip.
The following table gives the description of the returned co-ordinates (chainage,height) and
states whether the mode is applicable or not for the given VIP type (Y means applicable, N
means not applicable).

 VIP Type
Page 805Alignment String Element

12d Model Programming Language Manual
Mode Returned co-ordinate VIP VC Curve
0 VIP co-ords Y Y Y
1 start tangent N Y TC Y TC

2 end tangent N Y CT Y CT
3 curve centre N N Y
A function return value of zero indicates that the vip information was successfully returned and
that the mode was appropriate for the VIP type of the vip number vip_no.

ID = 396

Get_hip_id(Element elt,Integer position,Integer &id)
Name
 Integer Get_hip_id(Element elt,Integer position,Integer &id)

Description
<no description>

ID = 1451

Get_vip_id(Element elt,Integer position,Integer &id)
Name
 Integer Get_vip_id(Element elt,Integer position,Integer &id)

Description
<no description>

ID = 1452
Page 806 Alignment String Element

Chapter 5 12dPL Library Calls
5.54 General Element Operations
See 5.54.1 Selecting Strings
See 5.54.2 Drawing Elements
See 5.54.3 Open and Closing Strings
See 5.54.4 Length and Area of Strings
See 5.54.5 Position and Drop Point on Strings
See 5.54.6 Parallel Strings
See 5.54.7 Self Intersection of String
See 5.54.8 Loop Clean Up for String
See 5.54.9 Check Element Locks

5.54.1 Selecting Strings
Select_string(Text msg,Element &string)
Name
Integer Select_string(Text msg,Element &string)

Description
Write the message msg to the 12d Model Output Window and wait until a selection is made.
If a pickable Element is selected, then return the Element picked by the user in string and the
function return value is 1.

If no pickable Element is picked and the function returns, then the function returns codes are:
 -1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick
ID = 29

Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real
&ht)
Name
Integer Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description
Write the message msg to the 12d Model Output Window and then return the Element picked
by the user. The co-ordinates of the picked point are also returned.
The picked Element is returned in the Element string.

The co-ordinates and chainage of the picked point on the Element string are (x,y,z) and ch
respectively.
The value ht is reserved for future use and should be ignored.
A function return value of

-1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick
ID = 214
Page 807General Element Operations

12d Model Programming Language Manual
Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real
&ht,Integer &dir)
Name
Integer Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht, Integer
&dir)

Description
Write the message msg to the 12d Model Output Window and then return the Element picked by
the user. The co-ordinates of the picked point are also returned plus whether the string selecting
was picked in the same direction as the string, or the opposite direction to the string.
The picked Element is returned in the Element string.
The co-ordinates and chainage of the picked point on the Element string are (x,y,z) and ch
respectively.

The value ht is reserved for future use and should be ignored.
The value dir indicates if the picking motion was in the same direction as the selected string, or
in the opposite direction.
 dir = when the picking motion was in the same direction as the selected string.
 dir = when the picking motion was in the opposite direction as the selected string.

A function return value of
-1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick

ID = 547

5.54.2 Drawing Elements
Element_draw(Element elt,Integer col_num)
Name
Integer Element_draw(Element elt,Integer col_num)

Description
Draw the Element elt in the colour number col_num on all the views that elt is displayed on.
A function return value of zero indicates that elt was drawn successfully.
ID = 372

Element_draw(Element elt)
Name
Integer Element_draw(Element elt)

Description
Draw the Element elt in its natural colour on all the views that elt is displayed on.
A function return value of zero indicates that elt was drawn successfully.

ID = 371
Page 808 General Element Operations

Chapter 5 12dPL Library Calls
5.54.3 Open and Closing Strings
String_closed(Element elt,Integer &closed)
Name
Integer String_closed(Element elt,Integer &closed)

Description
Checks to see if the Element elt is closed. That is, check if the first and the last points of the
element are the same. The close status is returned as closed.

If closed is
1 then elt is closed

0 then elt is not closed (i.e. open)
A zero function return value indicates that the closure check was successful.
ID = 368

String_open(Element elt)
Name
Integer String_open(Element elt)

Description
Open the Element elt.
That is, if the first and the last points of the elt are the same, then delete the last point of elt.
A function return value of zero indicates that elt was successfully opened.
ID = 366

String_close(Element elt)
Name
Integer String_close(Element elt)

Description
Close the Element elt.

That is, if the first and the last points of elt are not the same, then add a point to the end of elt
which is the same as the first point of elt.
A function return value of zero indicates that elt was successfully closed.
ID = 367

5.54.4 Length and Area of Strings

Get_length(Element string,Real &length)
Name
Integer Get_length(Element string,Real &length)

Description
Get the plan length of the Element string (which equals the end chainage minus the start
chainage) and return the plan length in length.
Page 809General Element Operations

12d Model Programming Language Manual
A function return value of zero indicates the plan length was successfully returned.
ID = 122

Get_length_3d(Element string,Real &length)
Name
Integer Get_length_3d(Element string,Real &length)

Description
Get the 3d length of the Element string and return the 3d length in length.
A function return value of zero indicates the 3d length was successfully returned.
ID = 359

Get_length_3d(Element string,Real ch,Real &length)
Name
Integer Get_length_3d(Element string,Real ch,Real &length)

Description
Get the 3d length of the Element string from the start of the string up the given chainage ch.
Return the 3d length in length.
A function return value of zero indicates the 3d length was successfully returned.

ID = 2681

Plan_area(Element string, Real &plan_area)
Name
Integer Plan_area(Element string,Real &plan_area)

Description
Calculate the plan area of the Element string. If the Element is not closed, then the first and last
points are joined before calculating the area. For an arc, the plan area of the sector is returned.
The plan area is returned in the Real plan_area.

A function return value of zero indicates the plan area was successfully returned.
ID = 221

Plan_area_signed(Element string,Real &plan_area)
Name
Integer Plan_area_signed(Element string,Real &plan_area)

Description
Calculate the signed plan area of the Element string. If the Element is not closed, then the first
and last points are joined before calculating the area. For an arc, the plan area of the sector is
returned.
The signed plan area is returned in the Real plan_area.
A function return value of zero indicates the signed plan area was successfully returned.

ID = 3137
Page 810 General Element Operations

Chapter 5 12dPL Library Calls
Surface_area_tin_polygon(Tin tin,Element polygon,Real &slope_area,Real
&plan_area)
Name
Integer Surface_area_tin_polygon(Tin tin,Element polygon,Real &slope_area,Real &plan_area)

Description
Calculate the slop area and plan area of the Element polygon within given Tin tin. If the Element
is not closed, then the first and last points are joined before calculating the area.

The slop area is returned in the Real slop_area.
The plan area is returned in the Real plan_area.

A function return value of zero indicates the signed plan area was successfully returned.
ID = 3736

5.54.5 Position and Drop Point on Strings
Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir)
Name
Integer Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir)

Description
For the Element elt, get the (x,y,z) position and instantaneous direction (inst_dir - as an angle,
measured in radians) of the point at chainage ch on elt.
A function return value of zero indicates success.
ID = 190

Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real
&rad, Real &inst_grade)
Name
Integer Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real &rad,Real
&inst_grade)

Description
For a Element, elt, of type Alignment only, get the (x,y,z) position, radius rad, instantaneous
direction (inst_dir - as an angle, measured in radians) and instantaneous grade (inst_grade) of
a point on elt at chainage ch.
A function return value of zero indicates success.

ID = 471

Get_position(Element string,Real ch,Real &x,Real &y,Real &z,Real &dir,Integer
&vertex,Real &distance)
Name
Integer Get_position(Element string,Real ch,Real &x,Real &y,Real &z,Real &dir,Integer &vertex,Real
&distance)
Page 811General Element Operations

12d Model Programming Language Manual
Description
For the Element string, find the point at the chainage ch. Return the coordinate of the point in
(x,y,z); the direction (the angle of the tangent) of the point in dir; the index of the vertex before
the point in vertex; and the distance past that vertex distance.
A return value of zero indicates the function call was successful.

Not implemented for all strings.
ID = 1775

Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real
&ch,Real &inst_dir,Real &off)
Name
Integer Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf,Real &zf,Real &ch,Real
&inst_dir,Real &off)

Description
In plan, drop the point (xd,yd) perpendicularly onto the Element elt. If the point cannot be
dropped onto any segment of the Element, then the point is dropped onto the closest end point.
A z-value for the dropped point is created by interpolation.
The position of the dropped point on the Element is returned in xf, yf and zf. The chainage of the
dropped point on the string is ch and inst_dir the instantaneous direction (as an angle,
measured in radians) at the dropped point.

Off is the plan distance from the original point to the dropped point on the string.
A function return value of zero indicates that the drop was successful.

ID = 191

Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real
&ch,Real &inst_dir,Real &off,Segment &segment)
Name
Integer Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf,Real &zf,Real &ch,Real
&inst_dir,Real &off,Segment &segment)

Description
In plan, drop the point (xd,yd) perpendicularly onto the Element elt. If the point cannot be
dropped onto any segment of the Element, then the point is dropped onto the closest end point.
A z-value for the dropped point is created by interpolation.
The position of the dropped point on the Element is returned in xf, yf and zf. The chainage of the
dropped point on the string is ch and inst_dir the instantaneous direction (as an angle,
measured in radians) at the dropped point.
Off is the plan distance from the original point to the dropped point on the string.

Segment segment is the link of the string that the point drops onto.
A function return value of zero indicates that the drop was successful.
ID = 302

5.54.6 Parallel Strings
The parallel command is a plan parallel and is used for all Elements except Tin and Text.
Page 812 General Element Operations

Chapter 5 12dPL Library Calls
The sign of the distance to parallel the object is used to indicate whether the object is parallelled
to the left or to the right.
A positive distance means to parallel the object to the right.
A negative distance means to parallel the object to the left.

Parallel(Element elt,Real distance,Element ¶llelled)
Name
Integer Parallel(Element elt,Real distance,Element ¶llelled)

Description
Plan parallel the Element elt by the distance distance.

The parallelled Element is returned as the Element parallelled. The z-values are not modified,
i.e. they are the same as for elt.
A function return value of zero indicates the parallel was successful.
ID = 365

5.54.7 Self Intersection of String
String_self_intersects(Element elt,Integer &intersects)
Name
Integer String_self_intersects(Element elt,Integer &intersects)

Description
Find the number of self intersections for the Element elt.
The number of self intersections is returned as intersects.
A function return value of zero indicates that there were no errors in the function.

Note
For Elements of type Alignment, Arc, Circle and Text the number of intersects is set to negative.
ID = 328

5.54.8 Loop Clean Up for String
Loop_clean(Element elt,Point ok_pt,Element &new_elt)
Name
Integer Loop_clean(Element elt,Point ok_pt,Element &new_elt)

Description
This routine tries to remove any plan loops in the Element elt.
If elt is closed, then the function assumes that the Point ok_pt is near a segment of the string
that will also be in the cleaned string.
If elt is open, then the function starts cleaning from the end of the string closest to the Point
ok_pt.
The cleaned Element is returned as Element new_elt.
Page 813General Element Operations

12d Model Programming Language Manual
A function return value of zero indicates the clean was successful.
Note
Loop_clean is not defined for the Elements of type Alignment, Arc, Circle and Text

ID = 329

5.54.9 Check Element Locks
Get_read_locks(Element elt,Integer &num_locks)
Name
Integer Get_read_locks(Element elt,Integer &num_locks)

Description
For a valid Element elt, return the number of read locks on elt in num_locks.
Note: There are no 12dPL functions that a macro programmer can use to set read locks. They
are automatically assigned and removed as required by various 12dPL functions.

A function return value of zero indicates the number of read locks was successfully returned.
ID = 1453

Get_write_locks(Element elt,Integer &num_locks)
Name
Integer Get_write_locks(Element elt,Integer &num_locks)

Description
For a valid Element elt, return the number of write locks on elt in num_locks.
Note: There are no 12dPL functions that a macro programmer can use to set write locks. They
are automatically assigned and removed as required by various 12dPL functions.

A function return value of zero indicates the number of write locks was successfully returned.
ID = 1454

5.54.10 Miscellaneous Element Functions
String_replace(Element from,Element &to)
Name
Integer String_replace(Element from,Element &to)

Description
Copy the contents of the Element from and use them to replace the contents of the Element to.
The id/Uid of to is not replaced.
The Elements to and from must be strings and also be the same string types. For example,
both of type Super.
Note: this will not work for Elements of type Tin.

A function return value of zero indicates the replace was successful.
ID = 1176
Page 814 General Element Operations

Chapter 5 12dPL Library Calls
Page 815General Element Operations

12d Model Programming Language Manual
5.55 Creating Valid Names
Valid_string_name(Text old_name,Text &valid_name)
Name
Integer Valid_string_name(Text old_name,Text &valid_name)

Description
Convert the Text old_name to a valid string name by substituting spaces for any illegal
characters in old_name; leading and trailing spaces in the new name also being removed. The
new name is returned in valid_name.

A function return the number of characters being substitued if there is no leading nor trailing
spaces being removed.
 ID = 2277

Valid_model_name(Text old_name,Text &valid_name)
Name
Integer Valid_model_name(Text old_name,Text &valid_name)

Description
Convert the Text old_name to a valid model name by substituting spaces for any illegal
characters in old_name; leading and trailing spaces in the new name also being removed. The
new name is returned in valid_name.
A function return the number of characters being substitued if there is no leading nor trailing
spaces being removed.

ID = 2278

Valid_tin_name(Text old_name,Text &valid_name)
Name
Integer Valid_tin_name(Text old_name,Text &valid_name)

Description
Convert the Text old_name to a valid tin name by substituting spaces for any illegal characters in
old_name; leading and trailing spaces in the new name also being removed. The new name is
returned in valid_name.

A function return the number of characters being substitued if there is no leading nor trailing
spaces being removed.
ID = 2279

Valid_attribute_name(Text old_name,Text &valid_name)
Name
Integer Valid_attribute_name(Text old_name,Text &valid_name)

Description
Convert the Text old_name to a valid attribute name by substituting spaces for any illegal
characters in old_name; leading and trailing spaces in the new name also being removed. The
new name is returned in valid_name.
A function return the number of characters being substitued if there is no leading nor trailing
Page 816 Creating Valid Names

Chapter 5 12dPL Library Calls
spaces being removed.
 ID = 2280

Valid_attribute_path(Text old_path,Text &valid_path)
Name
Integer Valid_attribute_path(Text old_path,Text &valid_path)

Description
Convert the Text old_path to a valid attribute path by substituting spaces for any illegal
characters in old_path. The new path is returned in valid_path.
The function returns one if all the characters in the old_path are valid; no substituting needed.

The function returns two if the old_path contains mixture of valid and invalid characters .
The function returns three if all the characters in the old_path are invalid or spaces.
 ID = 3722

Valid_attribute_xpath(Text old_path,Text &valid_path)
Name
Integer Valid_attribute_xpath(Text old_path,Text &valid_path)

Description
Convert the Text old_path to a valid attribute path with potentially array syntax by substituting
spaces for any illegal characters in old_path. The new path is returned in valid_path.
The function returns one if all the characters in the old_path are valid; no substituting needed.

The function returns two if the old_path contains mixture of valid and invalid characters .
The function returns three if all the characters in the old_path are invalid or spaces.
The function returns four if the path containing any invalid array syntax.

 ID = 3723

Valid_linestyle_name(Text old_name,Text &valid_name)
Name
Integer Valid_linestyle_name(Text old_name,Text &valid_name)

Description
Convert the Text old_name to a valid linestyle name by substituting spaces for any illegal
characters in old_name; leading and trailing spaces in the new name also being removed. The
new name is returned in valid_name.

A function return the number of characters being substitued if there is no leading nor trailing
spaces being removed.
ID = 2281

Valid_symbol_name(Text old_name,Text &valid_name)
Name
Integer Valid_symbol_name(Text old_name,Text &valid_name)

Description
Page 817Creating Valid Names

12d Model Programming Language Manual
Convert the Text old_name to a valid symbol name by substituting spaces for any illegal
characters in old_name; leading and trailing spaces in the new name also being removed. The
new name is returned in valid_name.
A function return the number of characters being substitued if there is no leading nor trailing
spaces being removed.
ID = 2282
Page 818 Creating Valid Names

Chapter 5 12dPL Library Calls
5.56 XML
The XML macro calls allow the user to read or write xml files from 12dPL in a DOM based
manner. This will be effective for small to mid size XML files, but very large XML files may not be
supported.
For more information on the XML standard, see http://www.w3.org/XML/

Create_XML_document()
Name
XML_Document Create_XML_document()

Description
This call creates a new XML document. This is the entry point for all macro code that works with
XML. Existing files can then be read into the document, or the code may start to build up nodes
into the document.
ID = 2436

Read_XML_document(XML_Document doc,Text file)
Name
Integer Read_XML_document(XML_Document doc,Text file)

Description
Reads the supplied file and loads the nodes into the supplied XML Document object.
Returns 0 if successful.

ID = 2419

Write_XML_document(XML_Document doc,Text file)
Name
Integer Write_XML_document(XML_Document doc,Text file)

Description
Writes the supplied XML Document to the given file name.

Returns 0 if successful.
ID = 2420

Get_XML_declaration(XML_Document doc,Text &version,Text &encoding,
Integer &standalone)
Name
Integer Get_XML_declaration(XML_Document doc,Text &version,Text &encoding,Integer &standalone)

Description
Finds and returns the values from the XML declaration in the given document. Not all documents
may contain XML declarations.

Returns 0 if successful.
ID = 2437
Page 819XML

12d Model Programming Language Manual
Set_XML_declaration(XML_Document doc,Text version,Text encoding,
 Integer standalone)
Name
Integer Set_XML_declaration(XML_Document doc,Text version,Text encoding,Integer standalone)

Description
This call sets the details for the XML declaration. If the document does not already contain an
XML declaration, one will be added to the top of the document.

Returns 0 if successful.
ID = 2438

Create_node(Text name)
Name
XML_Node Create_node(Text name)

Description
This call creates a new XML node. This node can have its value set, or have other children
nodes appended to it. It must also be either set as the root node (see Set_Root_Node) or
appended to another node (see Append_Node) to become part of a document.
ID = 2435

Get_root_node(XML_Document doc,XML_Node &node)
Name
Integer Get_root_node(XML_Document doc,XML_Node &node)

Description
This call finds and retrieves the node at the root of the document. This is the top level node. If
there is no root node, the call will return non 0.
Returns 0 if successful.

ID = 2421

Set_root_node(XML_Document,XML_Node &node)
Name
Integer Set_root_node(XML_Document,XML_Node &node)

Description
This call sets the root node (the top level node) for the given document. There must be at most
one root node in a document.

ID = 2422

Get_number_of_nodes(XML_Node node)
Name
Integer Get_number_of_nodes(XML_Node node)

Description
Page 820 XML

Chapter 5 12dPL Library Calls
This call returns the number of children nodes for the given nodes. A node may contain 0 or more
children.
ID = 2423

Get_child_node(XML_Node node,Integer index,XML_Node &child_node)
Name
Integer Get_child_node(XML_Node node,Integer index,XML_Node &child_node)

Description
This call retrieves the n'th child, as specified by index, of a parent node and stores it in the
child_node argument.
Returns 0 if successful.

ID = 2424

Get_child_node(XML_Node node,Text name,XML_Node &child_node)
Name
Integer Get_child_node(XML_Node node,Text name,XML_Node &child_node)

Description
This call retrieves the first instance of a child of a parent node, by its name. If there is more than
one element of the same name, this call will only return the first. The retrieved node will be stored
in the child_node argument.

This call will return 0 if successful.
ID = 2439

Append_node(XML_Node parent,XML_Node new_node)
Name
Integer Append_node(XML_Node parent,XML_Node new_node)

Description
This call appends a child node to a parent node. A parent node may contain 0 or more children
nodes. The new_node cannot already being a child of another node; if it is the call will fail with
the return value 1.
This call will return 0 if successful.
ID = 2425

Remove_node(XML_Node parent,Integer index)
Name
Integer Remove_node(XML_Node parent,Integer index)

Description
This call removes the n'th child node, as given by index, from the supplied parent node.
This call will return 0 if successful.

ID = 2426
Page 821XML

12d Model Programming Language Manual
Get_parent_node(XML_Node child,XML_Node &parent)
Name
Integer Get_parent_node(XML_Node child,XML_Node &parent)

Description
This call will find the parent node of the supplied child and store it in the parent argument.

This call will return 0 if successful.
ID = 2427

Get_next_sibling_node(XML_Node node,XML_Node &sibling)
Name
Integer Get_next_sibling_node(XML_Node node,XML_Node &sibling)

Description
Given a node, this call will retrieve the next sibling, or same level node.
In the following example, Child2 is the next sibling of Child1.

<Parent>
 <Child1/>
 <Child2/>
</Parent>

This call will return 0 if successful.

ID = 2428

Get_prev_sibling_node(XML_Node node,XML_Node &sibling)
Name
Integer Get_prev_sibling_node(XML_Node node,XML_Node &sibling)

Description
Given a node, this call will retrieve the previous sibling, or same level node.
In the following example, Child1 is the previous sibling of Child2.

<Parent>
 <Child1/>
 <Child2/>
</Parent>

This call will return 0 if successful.

ID = 2429

Get_node_name(XML_Node node,Text &name)
Name
Integer Get_node_name(XML_Node node,Text &name)

Description
This call will retrieve the name of a supplied node and store it in the name argument.

The name of a node is the value within the brackets or tags. In the following example, MyNode is
the name of the node.

<MyNode>1234</MyNode>
This call will return 0 if successful.
Page 822 XML

Chapter 5 12dPL Library Calls
ID = 2433

Get_node_attribute(XML_Node node,Text name,Text &value)
Name
Integer Get_node_attribute(XML_Node node,Text name,Text &value)

Description
This call will try find an attribute of given name belonging to the supplied node, and will store the
value in the value attribute.

In the following example, the data stored in value will be: MyAttributeData
<MyNode MyAttribute="MyAttributeData" />

This call will return 0 if successful.

ID = 2440

Set_node_attribute(XML_Node node,Text name,Text value)
Name
Integer Set_node_attribute(XML_Node node,Text name,Text value)

Description
This call will set the value of an attribute attached to a node. If it does not exist, the attribute will
be created.

This call will return 0 if successful.
ID = 2441

Remove_node_attribute(XML_Node node,Text name)
Name
Integer Remove_node_attribute(XML_Node node,Text name)

Description
This call will attempt to remove a node of a given name from the supplied node.
This call will return 0 if successful.
ID = 2442

Is_text_node(XML_node &node)
Name
Integer Is_text_node(XML_node &node)

Description
This call will attempt to determine if a node is a text only node or not.
A text node is one that contains only text, and no other child nodes.

This call will return 1 if the node is a text node.
ID = 2430

Get_node_text(XML_Node &node,Text &text)
Page 823XML

12d Model Programming Language Manual
Name
Integer Get_node_text(XML_Node &node,Text &text)

Description
This call will attempt to retrieve the internal text value of a node and store it in text.
Not all nodes may contain text.
In the following example, the value of text will be set to MyText

<MyNode>MyText</MyNode>
This call will return 0 if successful.
ID = 2431

Set_node_text(XML_Node &node,Text value)
Name
Integer Set_node_text(XML_Node &node,Text value)

Description
This call will set the internal text of node to the value.
This call will return 0 if successful.
ID = 2432

Create_text_node(Text name,Text value)
Name
XML_Node Create_text_node(Text name,Text value)

Description
This call will create a new text node of the given name and set the internal text to the given value.

This call will return the created node.
ID = 2434

Get_node_attributes(XML_Node node, Integer &attributes_count)
Name
Integer Get_node_attributes(XML_Node node, Integer &attributes_count)

Description
Count the number of attributes attributes_count of an XML_Node node
A return value of zero indicates the function call was successful.
ID = 3056

Get_node_attributes(XML_Node node, Integer &attributes_count, Dynamic_Text
&names, Dynamic_Text &values)
Name
Integer Get_node_attributes(XML_Node node, Integer &attributes_count, Dynamic_Text &names,
Dynamic_Text &values)

Description
Page 824 XML

Chapter 5 12dPL Library Calls
Count the number of attributes attributes_count of an XML_Node node
Output the list of attribute names to names
Output the list of attribute values to values
A return value of zero indicates the function call was successful.
ID = 3057

Get_node_attribute (XML_Node node, Integer attribute_index, Text &name, Text
&value)
Name
Integer Get_node_attribute (XML_Node node, Integer attribute_index, Text &name, Text &value)

Description
Get the Text name and Text value of an attribute with given index attribute_index of an
XML_Node node
Return 0 for success -2 if attribute index is out of bound.
ID = 3058

Write_XML_Document(XML_Document doc,File &file)
Name
Integer Write_XML_Document(XML_Document doc,File &file)

Description
Write XML_Document doc to File file.
A return value of -1 indicates the File file did not exist.
A return value of -2 indicates the XML_Document doc did not exist.

A return value of -3 indicates the XML_Document doc was not valid.
A return value of -4 indicates the saving failed.
A return value of zero indicates the function call was successful.

ID = 2951

Write_XML(Model model,Text filename,Integer precision,Integer
output_model_name,Integer bool_flags,Real null_value)
Name
Integer Write_XML(Model model,Text filename,Integer precision,Integer output_model_name,Integer
bool_flags,Real null_value)

Description
Open the file called filename, and write the 12d XML of all the Elements in the Model model to
the file. Any coordinates and Reals are written out to precision decimal places.
If output_model_name = 1 then write the name of model out to the file before the Elements.
If output_model_name = 0 then don’t write out the Model name.

For Integer bool_flags see 5.16.4.2 Write_Panel_Flags.
Just for this macro call, there is an extra bit in the bool_flags of value 1048576. When this bit is
on, then a valid 12D XML header and the corresponding closing tag will also be added to the
output file to form a valid 12D XML file.
Page 825XML

12d Model Programming Language Manual
Null values will be written as Real null_value.
A function return value of zero indicates the data was successfully written.
ID = 3199

XML_to_12da(Text xml_filename,Text tda_filename)
Name
Integer XML_to_12da(Text xml_filename,Text tda_filename)

Description
From a given 12dXML file xml_filename, and write the equivalent 12d Ascii (12da) to a file
tda_filename.
A function return value of zero indicates the data was successfully written.

ID = 3729

Translate_XML_file(Text xml_filename,Text xslt_filename,Integer
output_type,Integer decimal,Text output_filename)
Name
Integer Translate_XML_file(Text xml_filename,Text xslt_filename,Integer output_type,Integer
decimal,Text output_filename)

Description
Translate a given XML report file xml_filename using the transformation given in a file
xslt_filename; write the output to the file output_filename.
Interger output_file_type: 3 HTML; 4 PDF; 7 CSV

If some Real to be convert to text in the output file, the number of decimal will be used
A function return value of zero indicates the data was successfully written.
ID = 3730

ADAC_get_xsd_path(Text version,Text &path)
Name
Integer ADAC_get_xsd_path(Text version,Text &path)

Description
Return the XSD path of ADAC version Integer version to Text path.
A return value of zero indicates the function call was successful.

ID = 2952
??? Wrong chapter

XSD_get_type_enumerations(Text xsd,Text schema,Text frag_path,Dynamic_Text
&enums,Text &elem_type)
Name
Integer XSD_get_type_enumerations(Text xsd,Text schema,Text frag_path,Dynamic_Text &enums,Text
&elem_type)

Description
Page 826 XML

Chapter 5 12dPL Library Calls
Get the enumerations for a simple or primitive type in the Text schema of file named Text xsd.
The list of enumerations is returned to Dynamic_Text enums.
The type of the enumeration list is returned to Text elem_types.

A return value of zero indicates the function call was successful.
The list of values for XSF primitive type

Text

Boolean
Integer
Double

Float
Duration

Date_Time
Time
Date

ID = 2953
??? Wrong chapter
Page 827XML

12d Model Programming Language Manual
5.57 Map File
Map_file_create(Map_File &file)
Name
Integer Map_file_create(Map_File &file)

Description
Create a mapping file. The file unit is returned as Map_file file.

A function return value of zero indicates the file was opened successfully.
ID = 864

Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file)
Name
Integer Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file)

Description
Open up a mapping file to read.
The file unit is returned as Map_file file.
The prefix of models is given as Text prefix.

The string type is given as Integer use_ptline,
0 – point string

1 – line sting.
A function return value of zero indicates the file was opened successfully.
ID = 865

Map_file_close(Map_File file)
Name
Integer Map_file_close(Map_File file)

Description
Close a mapping file. The file being closed is Map_file file.
A function return value of zero indicates the file was closed successfully.

ID = 866

Map_file_number_of_keys(Map_File file,Integer &number)
Name
Integer Map_file_number_of_keys(Map_File file,Integer &number)

Description
Get the number of keys in a mapping file.

The file is given as Map_file file.
The number of keys is returned in Integer number.
A function return value of zero indicates the number was returned successfully.

ID = 868
Page 828 Map File

Chapter 5 12dPL Library Calls
Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer
colour,Integer ptln,Text style)
Name
Integer Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer colour,Integer ptln,Text
style)

Description
Add key to a mapping file.

The file is given in Map_file file.
The key is given in Text key.

The string name is given in Text name.
The model name is given in Text model.
The string colour is given in Integer colour.
The string type is given in Integer ptln.
The string style is given in Text style.
A function return value of zero indicates the key was added successfully.

 ID = 869

Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model,
Integer &colour,Integer &ptln,Text &style)
Name
Integer Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model, Integer
&colour,Integer &ptln,Text &style)

Description
Get nth key’s data from a mapping file.
The file is given in Map_file file.
The key is returned in Text key.

The string name is returned in Text name.
The model name is returned in Text model.
The string colour is returned in Integer colour.
The string type is returned in Integer ptln.
The string style is returned in Text style.
A function return value of zero indicates the key was returned successfully.

ID = 870

Map_file_find_key(Map_File file,Text key, Integer &number)
Name
Integer Map_file_find_key(Map_File file,Text key,Integer &number)

Description
Find the record number from a mapping file that contains the given key.
The file unit is given in Map_file file.
Page 829Map File

12d Model Programming Language Manual
The record number is returned in Integer number.
A function return value of zero indicates the key was find successfully.
ID = 871
Page 830 Map File

Chapter 5 12dPL Library Calls
5.58 Project Setting

Read_project_settings_file(Text project_settings_filename)
Name
Integer Read_project_settings_file(Text project_settings_filename)

Description
Read a project settings file (.12dsettings) into the current project.
A function return value of zero indicates the file was read successfully.

ID = 3731

Get_active_project_settings_profile(Text &active_profile_name)
Name
Integer Get_active_project_settings_profile(Text &active_profile_name)

Description
Get the name active_profile_name for the active project settings profile of the current project.
A function return value of zero indicates the function call was successful
ID = 3732

Set_active_project_settings_profile(Text active_profile_name)
Name
Integer Set_active_project_settings_profile(Text active_profile_name)

Description
Set the profile of name active_profile_name as the active project settings profile of the current
project.
A function return value of zero indicates the function call was successful

ID = 3733

Get_project_settings_profiles_count()
Name
Integer Get_project_settings_profiles_count()

Description.
A function return the number of project setting profiles of the current project.

ID = 3734

Get_project_settings_profile_name(Integer profile_index,Text &profile_name)
Name
Integer Get_project_settings_profile_name(Integer profile_index,Text &profile_name)

Description.
Page 831Project Setting

12d Model Programming Language Manual
Get the profile_name of the project setting profile of given index profile_index in the current
project.
A function return value of zero indicates the function call was successful
ID = 3735

All the calls below are for internal 12D usage only.

Remove_project_setting(Text name)
Name
Integer Remove_project_setting(Text name)

Description
A function return value of zero indicates the file was opened successfully.
ID = 3545

Project_setting_exists(Text name)
Name
Integer Project_setting_exists(Text name)

Description
A function return value of one indicates the setting exists; return zero otherwise.
ID = 3546

Get_project_setting_integer(Text name)
Name
Integer Get_project_setting_integer(Text name)

Description
ID = 3547

Get_project_setting_real(Text name)
Name
Real Get_project_setting_real(Text name)

Description
ID = 3548

Get_project_setting_text(Text name)
Name
Text Get_project_setting_text(Text name)

Description
ID = 3549
Page 832 Project Setting

Chapter 5 12dPL Library Calls
Get_project_setting_colour(Text name)
Name
Integer Get_project_setting_colour(Text name)

Description
ID = 3551

Set_project_setting_integer(Text name,Integer value)
Name
Integer Set_project_setting_integer(Text name,Integer value)

Description
ID = 3552

Set_project_setting_integer(Text name,Integer value)
Name
Integer Set_project_setting_integer(Text name,Integer value)

Description
ID = 3552

Set_project_setting_real(Text name,Real value)
Name
Integer Set_project_setting_real(Text name,Real value)

Description
ID = 3553

Set_project_setting_text(Text name,Text value)
Name
Integer Set_project_setting_text(Text name,Text value)

Description
ID = 3554

Set_project_setting_colour(Text name,Integer value)
Name
Integer Set_project_setting_colour(Text name,Integer value)

Description
ID = 3555

Set_project_setting_attributes(Text name,Attributes value)
Name
Integer Set_project_setting_attributes(Text name,Attributes value)
Page 833Project Setting

12d Model Programming Language Manual
Description
ID = 3556
Page 834 Project Setting

Chapter
5.59 Macro Console
Before Panels where introduced into the 12d Model Programming Language, a Macro Console
was the only method for writing information to the user, and soliciting answers from the user.
Note: the Macro Console is rarely used in newer macros.

When a macro is invoked, a Macro Console is placed on the screen.
The Macro Console has three distinct areas
 information/error message area (or just information message area or error message area)
 prompt message area
 user reply area.

and optionally, three buttons, restart, abort and finish.

Using Macro Console functions, information can be written to the information/error message
area and the prompt message area, and user input read in from the user reply area of the
Macro Console.
Some of the functions have pop-ups defined (of models, tins etc.) so that information can be
selected from pop-ups displayed by clicking LB on the icon at the right hand end of the user
reply area rather than being typed in by the user. Note that the icon at the right hand end of the
user reply area changes depending on the type of Prompt.
The reply, either typed or selected from the icon popup, must be terminated by pressing the
<Enter> key for the macro to continue.

Also the information/error message area is used to display progress information. This
information can be standard 12dPL messages or user defined messages.
Note: Some functions also write information to the 12d Model Output Window.
WARNING: Because the Macro Console functions all use the same three areas for messages
and input, messages from one Macro Console may be overwritten by the messages from the
next Macro Console function before the user has a chance to see the message.

prompt message area

user reply area

information/error
message area icon to click on

to bring up
choices to
select from
Page 835Macro Console

12d Model Programming Language Manual
Set_message_mode(Integer mode)
Name
Integer Set_message_mode(Integer mode)

Description
When macros are running, progress information can be displayed in the information/error
message area. Most 12dPL computational intensive functions have standard messages that can
be displayed. For example, when triangulating, regular messages showing the number of points
triangulated can be displayed. Or the message running with the ticker character "/" rotating
through 360 degrees.

The user can have the standard 12dPL messages displayed, or replace them at any time by a
user defined message (set using the function Set_message_text).
If mode is set to
 0 the user defined message
 1 the standard 12dPL message
is displayed in the information/error message area.

A function return value of zero indicates the mode was successfully set.
ID = 427

Set_message_text(Text msg)
Name
void Set_message_text(Text msg)

Description
Set the user defined information message to msg. This is a prefix for the ticker "/".
When the message mode is set to 0 (using the function Set_message_mode), msg is displayed
in the information/error message area. The message msg is followed by a rotating ticker (/) to
indicate to the user that the macro is running.

A function return value of zero indicates the message was successfully set.
 ID = 426

Prompt(Text msg)
Name
void Prompt(Text msg)

Description
Print the message msg to the prompt message area of the macro console.

If another message is written to the prompt message area then the previous message will be

prompt message area
Page 836 Macro Console

Chapter
overwritten by the new message.
ID = 34

Prompt(Text msg,Text &ret)
Name
Integer Prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then wait for the user to type text into
the user reply area of the Macro Console. When <enter> is pressed then the text in the user
reply area is returned in ret.
That is, write out the message msg and get a Text ret from the Macro Console when the text is
terminated by pressing <enter>.

The reply is returned in Text ret.
A function return value of zero indicates the text is returned successfully.
ID = 28

Prompt(Text msg,Integer &ret)
Name
Integer Prompt(Text msg,Integer &ret)

Description
Print the message msg to the prompt message area and then read back an Integer from the
user reply area of the Macro Console.
That is, write out the message msg and wait for an integer reply from the Macro Console. The
reply is terminated by pressing <enter>.

The reply is returned in Integer ret.
A function return value of zero indicates that the Integer was returned successfully.
ID = 26

Prompt(Text msg,Real &ret)
Name
Integer Prompt(Text msg,Real &ret)

Description
Print the message msg to the prompt message area and then read back a Real from the user
reply area of the Macro Console. The reply is terminated by pressing <enter>.
The reply is returned in Real ret.
A function return value of zero indicates that the Real was returned successfully.
ID = 27

Colour_prompt(Text msg,Text &ret)
Name
Integer Colour_prompt(Text msg,Text &ret)
Page 837Macro Console

12d Model Programming Language Manual
Description
Print the message msg to the prompt message area of the Macro Console and then read back
text from the user reply area of the Macro Console as the name of a 12d Model colour.
If LB is clicked on the colour choice icon at the right hand end of the user reply area, a list of all
existing colours is placed in a pop-up. If a colour is selected from the pop -up (using LB), the
colour name is written to the user reply area.

The reply, either typed or selected from the colour pop-up, is then terminated by pressing
<Enter>.

If the text is a valid colour then a function return value of zero is returned and the colour name is
returned in ret.
If the text is not a valid colour name, then the message Error - invalid colour is written to the
information message area and a non-zero function return value is returned.

A function return value of zero indicates the Text ret is a valid colour name and is successfully

prompt message area

user reply area
colour choice icon

information/error message area

colour choice pop up

information/error message area
Page 838 Macro Console

Chapter
returned.
ID = 404

Error_prompt(Text msg)
Name
Integer Error_prompt(Text msg)

Description
Print the message msg to the information/error message area of the Macro Console, and
writes Press return to continue to the prompt message area and then waits for an <enter> in the
user reply area before the macro continues.

A function return value of zero indicates the function terminated successfully.

ID = 419

Choice_prompt(Text msg,Integer no_choices,Text choices[],Text &ret)
Name
Integer Choice_prompt(Text msg,Integer no_choices,Text choices[],Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the choice icon at the right hand end of the user reply area, user reply area,
the list of text given in the Text array choices is placed in a pop-up. If one of the choices is
selected from the pop-up (using LB), the choice is placed in the user reply area.
The reply, either typed or selected from the choice pop-up, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the text is returned successfully.
ID = 421

File_prompt(Text msg,Text wild_card_key,Text &ret)
Name
Integer File_prompt(Text msg,Text wild_card_key,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the folder icon at the right hand end of the user reply area, a list of all files in

information/error

user reply area

message area

prompt message area
Page 839Macro Console

12d Model Programming Language Manual
the current area which match the wild_card_key (for example, *.dat) is placed in a pop-up. If a
file is selected from the pop-up (using LB), the file name is placed in the user reply area.
If a name is entered without a dot ending (e.g. fred and not fred.csv say) then the ending after the
dot in the wild_card_key is automatically added to the name.
For example, if wild_card_key = "*.rpt" and "fred" is type in as the file name, then ret will be
returned as ret = "fred.rpt".

The reply, either typed or selected from the file pop-up, must be terminated by pressing <Enter>
for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.

ID = 405

Model_prompt(Text msg,Text &ret)
Name
Integer Model_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the icon at the right hand end of the user reply area, a list of all existing
models is placed in a pop-up. If a model is selected from the pop-up (using LB), the model name
is placed in the user reply area.
MB for "Same As" also applies. That is, If MB is clicked in the user reply area and then a string
from a model on a view is selected, then the name of the model containing the selected string is
written to the user reply area.

The reply, either typed or selected from the model pop-up or Same As, must be terminated by
pressing <Enter> for the macro to continue.

The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 401

Template_prompt(Text msg,Text &ret)
Name
Integer Template_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

Click LB to on the icon to

user reply area

bring up the list of models

msg written to prompt message area

to select from
Page 840 Macro Console

Chapter
If LB is pressed on the icon at the right hand end of the user reply area, a list of all existing
templates is placed in a pop-up. If a template is selected from the pop-up (using LB), the
template name is placed in the user reply area.
The reply, either typed or selected from the template popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the text is returned successfully.
ID = 403

Tin_prompt(Text msg,Text &ret)
Name
Integer Tin_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the tin icon at the right hand end of the user reply area, a list of all existing tins
is placed in a pop-up. If a tin is selected from the pop-up (using LB), the Tin name is placed in the
user reply area.

The reply, either typed or selected from the Tin popup, must be terminated by pressing <Enter>
for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.

ID = 402

Tin_prompt(Text msg,Integer mode,Text &ret)
Name
Integer Tin_prompt(Text msg,Integer mode,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the tin icon at the right hand end of the user reply area, a list of all existing tins
is placed in a pop-up. If a tin is selected from the pop-up (using LB), the Tin name is placed in the
user reply area.
The value of mode determines whether Super Tins are listed in the pop-up.
Mode Description
0 Don’t list SuperTin.
1 List SuperTin.
The reply, either typed or selected from the Tin pop-up, must be terminated by pressing <Enter>
for the macro to continue.

The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.

ID = 684
Page 841Macro Console

12d Model Programming Language Manual
View_prompt(Text msg,Text &ret)
Name
Integer View_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the view icon at the right hand end of the user reply area, a list of all existing
views is placed in a pop-up. If a view is selected from the pop-up (using LB), the view name is
placed in the user reply area.
The reply, either typed or selected from the view popup, must be terminated by pressing <Enter>
for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 406

Yes_no_prompt(Text msg,Text &ret)
Name
Integer Yes_no_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the choice icon at the right hand end of the user reply area, a yes/no pop-up
is placed on the screen. If yes or no is selected from the pop-up (using LB), the selected test is
placed in the user reply area.

The reply, either typed or selected from the yes/no popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.

ID = 420

Plotter_prompt(Text msg,Text &ret)
Name
Integer Plotter_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the plotter icon at the right hand end of the user reply area, a list of all existing
plotters is placed in a pop-up. If a plotter is selected from the pop-up (using LB), the plotter name
is placed in the user reply area.
The reply, either typed or selected from the plotter popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 817
Page 842 Macro Console

Chapter
Sheet_size_prompt(Text msg,Text &ret)
Name
Integer Sheet_size_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the choice icon at the right hand end of the user reply area, a list of all existing
sheet sizes is placed in a pop-up. If a sheet size is selected from the pop-up (using LB), the
sheet size name is placed in the user reply area.

The reply, either typed or selected from the sheet_size popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 818

Linestyle_prompt(Text msg,Text &ret)
Name
Integer Linestyle_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the linestyle icon at the right hand end of the user reply area, a list of all
existing linestyles is placed in a pop-up. If a linestyle is selected from the pop-up (using LB), the
linestyle name is placed in the user reply area.
The reply, either typed or selected from the linestyle popup, must be terminated by pressing
<Enter> for the macro to continue.

The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 819

Textstyle_prompt(Text msg,Text &ret)
Name
Integer Textstyle_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the textstyle icon at the right hand end of the user reply area, a list of all
existing textstyles is placed in a pop-up. If a textstyle is selected from the pop-up (using LB), the
textstyle name is placed in the user reply area.

The reply, either typed or selected from the textstyle popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
Page 843Macro Console

12d Model Programming Language Manual
A function return value of zero indicates the Text ret is returned successfully.
ID = 820

Justify_prompt(Text msg,Text &ret)
Name
Integer Justify_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the choice icon at the right hand end of the user reply area, a list of all existing
justifications is placed in a pop-up. If a Justify is selected from the pop-up (using LB), the Justify
name is placed in the user reply area.
The reply, either typed or selected from the Justify popup, must be terminated by pressing
<Enter> for the macro to continue.

The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 821

Angle_prompt(Text msg,Text &ret)
Name
Integer Angle_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the angle icon at the right hand end of the user reply area, a list of Angle
measure options is placed in a pop-up. If a Angle is selected from the pop-up (using LB), the
Angle name is placed in the user reply area.
The reply, either typed or selected from the Angle popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 822

Function_prompt(Text msg,Text &ret)
Name
Integer Function_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the function icon at the right hand end of the user reply area, a list of all
existing 12d Model Functions is placed in a pop-up. If a Function is selected from the pop-up
(using LB), the Function name is placed in the user reply area.
The reply, either typed or selected from the Function popup, must be terminated by pressing
Page 844 Macro Console

Chapter
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.

ID = 823

Project_prompt(Text msg,Text &ret)
Name
Integer Project_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the icon at the right hand end of the user reply area, a list of all existing
Projects in the folder is placed in a pop-up. If a Project is selected from the pop-up (using LB), the
Project name is placed in the user reply area.
The reply, either typed or selected from the Project popup, must be terminated by pressing
<Enter> for the macro to continue.

The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 824

Directory_prompt(Text msg,Text &ret)
Name
Integer Directory_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the folder icon at the right hand end of the user reply area, the Select Folder
dialogue is opened. If a Folder is selected by clicking on it with LB and then clicking on the Select
Folder button, the Folder name is placed in the user reply area.

The reply, either typed or selected from the Select Folder dialogue, must be terminated by
pressing <Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.

ID = 825

Text_units_prompt(Text msg,Text &ret)
Name
Integer Text_units_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.
If LB is clicked on the choice icon at the right hand end of the user reply area, a list of all existing
Text units is placed in a pop-up. If a Text_units is selected from the pop-up (using LB), the Text
Page 845Macro Console

12d Model Programming Language Manual
units name is placed in the user reply area.
The reply, either typed or selected from the Text_units popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 826

XYZ_prompt(Text msg,Real &x,Real &y,Real &z)
Name
Integer XYZ_prompt(Text msg,Real &x,Real &y,Real &z)

Description
Print the message msg to the prompt message area and then read back what must be x-
value y-value z- value with the values separated by one or more spaces.
If LB is clicked on the pick icon at the right hand end of the user reply area, an XYZ pick is
started and when a pick is made, the coordinates of the pick, separated by spaces, are written in
the user reply area.
The reply, either typed or selected from the Pick, must be terminated by pressing <Enter> for the
macro to continue.

The values are returned in x, y and z.
A function return value of zero indicates values x, y and z are successfully returned.

ID = 827

Name_prompt(Text msg,Text &ret)
Name
Integer Name_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the Macro Console.

If LB is clicked on the Name icon at the right hand end of the user reply area, a list of all existing
Names is placed in a pop-up. If a Name is selected from the pop-up (using LB), the Name is
placed in the user reply area.
The reply, either typed or selected from the Name popup, must be terminated by pressing
<Enter> for the macro to continue.
The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 828

Panel_prompt(Text panel_name, Integer interactive, Integer no_field,Text
field_name[], Text field_value[])
Name
Integer Panel_prompt(Text panel_name,Integer interactive,Integer no_field,Text field_name[],Text
field_value[])

Description
Page 846 Macro Console

Chapter
Pop up a panel of the name panel_name.
No_field specifies how many fields you wish to fill in for the panel.
The name of each field is specified in Field_name array.

The value of each field is specified in field_value array.
If interactive is 1, the panel is displayed and remains until the finish button is selected.
If interactive is 0, the panel is displayed, runs the option and then closes.
A function return value of zero indicates success.

See example Defining and Using Panel_prompt
ID = 685

Defining and Using Panel_prompt
 Text panel_name;
 Integer interactive = 1;
 Integer no_fields;
 Integer code;
 Text field_name [20];
 Text field_value[20];
 panel_name = "Contour a Tin";
 no_fields = 0;
 no_fields++; field_name[no_fields] = "Tin to contour";
 field_value[no_fields] = "terrain";
 no_fields++; field_name[no_fields] = "Model for conts";
 field_value[no_fields] = "terrain contours";
 no_fields++; field_name[no_fields] = "Cont min";
 field_value[no_fields] = "";
 no_fields++; field_name[no_fields] = "Cont max";
 field_value[no_fields] = "";
 no_fields++; field_name[no_fields] = "Cont inc";
 field_value[no_fields] = "0.5";
 no_fields++; field_name[no_fields] = "Cont ref";
 field_value[no_fields] = "0.0";
 no_fields++; field_name[no_fields] = "Cont colour";
 field_value[no_fields] = "purple";
 no_fields++; field_name[no_fields] = "Model for bolds";
 field_value[no_fields] = "terrain bold contours";
 no_fields++; field_name[no_fields] = "Bold inc";
 field_value[no_fields] = "2.5";
 no_fields++; field_name[no_fields] = "Bold colour";
 field_value[no_fields] = "orange";
 Prompt("Contouring");

 code = Panel_prompt(panel_name,interactive,no_fields,field_name,field_value);

Panel_prompt(Text panel_name, Integer interactive, Text data)
Name
Integer Panel_prompt(Text panel_name,Integer interactive,Text data)

Description
Pop up a panel of the name panel_name.

Data specifies the SLF or SLX content. Note, SLF content is deprecated and only for compatibilty
purposes. Where a panel has been changed, the SLF content may no longer work. See example
Page 847Macro Console

12d Model Programming Language Manual
below:

For SLF based data

If interactive is 1, the panel is displayed and remains until the finish button is selected.
If interactive is 0, the panel is displayed, runs the option and then closes.

For SLX based data

If interactive is 0xff01, the panel is displayed and remains until the finish button is selected.
If interactive is 0xff00, the panel is displayed, runs the option and then closes.

A function return value of zero indicates success.
See example Defining and Using Panel_prompt
ID = 2068

Defining and Using Panel_prompt

// SLF example

 Text panel_name;
 Integer interactive = 1;
Text data;
 panel_name = "Contour a Tin";

 panel_data += "field \"Tin to contour\" terrain\n";

 panel_data += "field \"Model for conts\" \"terrain contours\"\n";
 panel_data += "field \"Cont inc\" \"0.5\"\n";

 panel_data += "field \"Model for bolds\" \"terrain bold contours\"\n";
 panel_data += "field \"Bold inc\" \"2.5\"\n";
 panel_data += "field \"Bold colour\" \"orange\"\n";

 Prompt("Contouring");

 code = Panel_prompt(panel_name,interactive,data);

// SLX example

 Text panel_name = "Contour a Tin";

 Integer interactive = 0xff01;
 Text panel_data;

 panel_data += "<input_box>";
 panel_data += "<name>Tin to contour</name>";
Page 848 Macro Console

Chapter
 panel_data += "<value>terrain</value>";
 panel_data += "</input_box>";

 panel_data += "<widget_pages>";
 panel_data += "<name>Mode</name>";
 panel_data += "<current_page>Contours</current_page>";

 panel_data += "<widget_page>";
 panel_data += "<name>Contours</name>";

 panel_data += "<input_box>";

 panel_data += "<name>Model for conts</name>";
 panel_data += "<value>terrain contours</value>";
 panel_data += "</input_box>";

 panel_data += "</widget_page>";

 panel_data += "<widget_page>";
 panel_data += "<name>Bold Contours</name>";

 panel_data += "<input_box>";
 panel_data += "<name>Model for bolds</name>";
 panel_data += "<value>terrain bold contours</value>";

 panel_data += "</input_box>";

 panel_data += "</widget_page>";

 panel_data += "</widget_pages>";

Prompt("Contouring");
 code = Panel_prompt(panel_name,interactive,panel_data);
Page 849Macro Console

12d Model Programming Language Manual
5.60 Panels and Widgets
The user can build panels in the 12d Model Programming Language (12dPL) that replicates the
look and feel, and much of the functionality, of standard 12d Model panels. Even in 12d Model
there are many options that are written in 12dPL and in most cases, the only way to tell if a panel
is an inbuilt 12d Model panel or is a 12dPL panel is by clicking on the Windows button on the top
left hand side of a panel and then selecting About.

Panels are made up of Widgets and most panels have:
(a) Panel title
(a) Simple Input/Output widgets such a Tin_Box, Model_Box and Named_Tick_Box. These

Widgets usually have their own validation methods and are often linked to special
12d Model objects such as Tins, Models and Linestyles so that lists of pop-ups to choose
Page 850 Panels and Widgets

Chapter
from, and special validations can be done by 12d Model rather than having to be done in
the macro.

(b) More complex Widgets such as Draw Boxes, Sliders, Log Boxes, Trees and Grids.
(c) A panel Message Area. Usually one Message_Box for writing messages for the user.
(d) Buttons such as Process or Finish. Unlike Input Widget, or Trees, or Grids, Buttons usually

consist of just their Title and a Reply message that it sent back to the macro when the
Button is pressed.

The Widgets can be built up in horizontal or vertical groups. Widgets inside a Group are
automatically spaced out by 12d Model.

Once the Panel is constructed, it is displayed on screen by calling Show_widget(Panel panel).
Programming for panels is more complicated than for simple sequential programs using say a
Console because for panels the program is event driven.

That is, once the panel is displayed, the user is not very constrained and can fill in Input boxes in
any order, click on any Buttons in any order.
The programmer’s code has to watch and cover all these possibilities.
The Widgets in the Panel have to be checked and validated whenever a user works with one of
them.

And when the Button to start the processing of the Panel is finally pushed, all the Widgets have
to be checked/validated again because you can’t be sure which ones have been filled in/not filled
in correctly.
Once the panel is constructed and displayed using Show_widget, the program normally has to sit
and wait, watching what events the user triggers.

Panel title Browse button
of a Widget

Browse button
turned off
for a widget

Widget optional

Widget disabled

Horizontal_Group of
two Buttons with
border text "Buttons"

Vertical_Group of
four Widgets with
border text "Tins"

Widget of type Button Title of Button Widget

or Colour_Message_Box
Widget of type Message_Box

Widget of type
Named_Tick_Box

Widget Tin_Box

Widget title
Page 851Panels and Widgets

12d Model Programming Language Manual
This is achieved in the macro by calling the Wait_on_widgets(Integer &id,Text &cmd,Text &msg).
The macro then sits and waits until an activated Widget returns control back to the macro and
passes information about what has happened via the id, cmd and msg arguments of
Wait_on_widgets. See Wait_on_widgets(Integer &id,Text &cmd,Text &msg).
What messages are returned through Wait_on_widgets depends on each Widget in the panel.
The Screen_Text sends no messages at all.

Widgets such as the Integer_Box and Real_Box send keystrokes when each character is typed
into their information area.
Other Widgets, such as the Tin_Box, control what characters can be typed into their information
area and only valid characters are passed back via Wait_on_widgets.
For example, for a Tin_Box, only valid tin name characters are passed back. Invalid tin name
characters are rejected by the Tin_Box itself and typing them does not even display anything but
just produces a warning bell.

Some Widgets such as the Draw_Box and Select_Box can be very chatty.
For a Draw_Box: as the mouse is moved around the Draw_Box, a "mouse_move" command with
a message containing the Draw_Box coordinates are returned via
 Wait_on_widgets(draw_box_id,"mouse_move",draw_box coordinates of mouse as text)

plus "hover" commands when the mouse is in the Draw_Box and not moving, and a
"mouse_leave" command when the mouse leaves the Draw_Box.
For New_Select_Box and Select_Box: after the Pick button is selected, whenever the mouse
moves around a view, a "motion select" command with view coordinates of the mouse as part of
the text message, are passed back via Wait_on_widgets.

These evens are returned in case the macro wants to use the coordinates to do something.
Buttons just sit there and only return the command (that is supplied by the programmer) via
Wait_on_widgets when the button is pressed.

So the process for monitoring a panel is very chatty and normally is controlled why setting a
While loop watching a variable to stop the loop.
A snippet of code to watch Wait_on_widgets is:

 Integer doit = 1;
 while(doit) {
 // Process events from any of the Widgets on the panel
 Integer ret = Wait_on_widgets(id,cmd,msg);
 . . .
// somewhere in here doit must be set to 0 (or a jump made to outside the loop)
// or the loop will go on forever
 }

After the Wait_on_widgets(id,cmd,msg) call, the id of the Widget, and/or the command cmd, and/
or the message msg can be interrogated to see what action is required by the program.

For example, a more of the code could be:
 Integer doit = 1;
 while(doit) {
 // Process events from any of the Widgets on the panel
 Integer id; Text cmd; Text msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);
Page 852 Panels and Widgets

Chapter
 if(cmd == "keystroke") continue; // only a keystroke; go back and wait for more
 switch(id) { // check which Widget was activated by checking the Widget id
 case Get_id(panel) : { // the case when the id belongs to the Widget panel

 if(cmd == "Panel Quit") doit = 0; // case when click on X on top right of the panel
// // set doit to 0 so the While loop will terminate
 break;
 case Get_id(finish) : { // the id belongs to the Button finish

 if(cmd == "finish") doit = 0;
 } break;
 case Get_id(process) : { // the id belongs to the Button process. Start doing the work
 // but first check the validity of all the relevant data in the panel
 . . .

The important commands and messages for each Widget are given in the introductory section for
each Widget.
Note: Unknown events might be passed to Wait_on_widgets, in those cases, the return value of
the call is still zero, but the value of id, cmd and msg remained unchanged. Hence it is important
to reset the value of id, cmd and msg each time before the call is made - putting the declaration
of those three inside the while(doit) loop is a simple way to reset the values back to 0, blank,
blank.
Note: To quickly see what, and how many, commands and messages are generated whilst in a
macro panel, insert a print line after Wait_on_widgets(id,cmd, msg). For example:

 Wait_on_widgets(id,cmd,msg);
 Print("id= " + To_text(id) +" cmd=<" + cmd + ">" +" msg=<" + msg + ">\n");

The best way to get an understanding of the event driven process is to look at examples of
working macros that have panels in them. For example, see Examples 11 to 15 in the examples
section 6 Examples.

For information on creating Panels and the Widgets that make up panels:
See 5.60.1 Cursor Controls
See 5.60.2 Panel Functions
See 5.60.5 Widget Controls
See 5.60.7 Widget Information Area Menu
See 5.60.3 Horizontal Group
See 5.60.4 Vertical Group
See 5.60.8 Widget Tooltip and Help Calls
See 5.60.9 Panel Page
See 5.60.10 Input Widgets
See 5.60.11 Message Boxes
See 5.60.12 Log_Box and Log_Lines
See 5.60.13 Buttons
See 5.60.14 GridCtrl_Box
See 5.60.15 Tree Box Calls
Page 853Panels and Widgets

12d Model Programming Language Manual
5.60.1 Cursor Controls

Get_cursor_position(Integer &x,Integer &y)
Name
Integer Get_cursor_position(Integer &x,Integer &y)

Description
Get the cursor position (x,y).
The units of x and y are screen units (pixels).
The type of x and y must be Integer.
A function return value of zero indicates the position was returned successfully.
ID = 1329

Set_cursor_position(Integer x,Integer y)
Name
Integer Set_cursor_position(Integer x,Integer y)

Description
Set the cursor position with the coordinates (x, y).
The units of x and y are screen units (pixels).

A function return value of zero indicates the position was successfully set.
ID = 1330
Page 854 Panels and Widgets

Chapter
5.60.2 Panel Functions
Create_panel(Text title_text)
Name
Panel Create_panel(Text title_text)

Description
Create a panel with the title title_text.
If LB is clicked on the X on the top right corner of the panel, the text "Panel Quit" is returned as
the cmd argument to Wait_on_widgets.

If LB is clicked on the Windows icon on the top left hand corner of the panel,

 See Wait_on_widgets(Integer &id,Text &cmd,Text &msg).
For an example of a panel with Widgets Tin_Box, Buttons, Message_Box and Horizontal and
Vertical Groups etc, see Panel Example:
The function return value is the created Panel.

Note: the Show_widget(Panel panel) call must be made to display the panel on the screen - see
Panel Example:.
ID = 843

Create_panel(Text title_text, Integer sizing_enable)
Name
Panel Create_panel(Text title_text, Integer sizing_enable)

Description

Click LB on X to send the
"Panel Quit" command

Click LB on the Widows icon to
bring up the Windows panel

Click LB on X to send the
"Panel About" command

Click LB on X to send the
"Panel About" command
Page 855Panels and Widgets

12d Model Programming Language Manual
Same as the above function, this function also creates a panel with the title title_text, but with an
extra parameter sizing_enable to control the user resizing. The resulting panel is resizable only
if sizing_enable is not zero.
The function return value is the created Panel.
ID = 3791

Append(Widget widget,Panel panel)
Name
Integer Append(Widget widget,Panel panel)

Description
Append the Widget widget to the Panel panel.
The Panel displays the Widgets from the top in the order that the Widgets are Appended to the
Panel. That is, the first Widget appended is at the top of the Panel. The last Widget appended is
at the bottom of the Widget.
Rather than a Panel having just a simple structure of a number of Widgets appended to the
Panel, Horizontal and Vertical grouping can be used to collect the Widgets together in logical
fashions and then the Horizontal and Vertical groups are Appended to the Panel using this
Append(Widget widget, Panel panel) call. There are even more complicated groupings allowed
including Panel pages, Grid Controls and Trees.

See 5.60.3 Horizontal Group, 5.60.4 Vertical Group, 5.60.9 Panel Page, 5.60.14
GridCtrl_Box,5.60.15 Tree Box Calls
 A function return value of zero indicates the widget was appended successfully.

For an example of a panel with Widgets Tin_Box, Buttons, Message_Box and Horizontal and
Vertical Groups etc, see Panel Example:
ID = 852

Write_SLX(Panel panel,Text filename)
Name
Integer Write_SLX(Panel panel,Text filename)

Description
Write screen layout file of the Panel panel to the file named filename.
A return value of zero indicates the file was successfully written.

ID = 2903

Read_SLX(Panel panel,Text filename)
Name
Integer Read_SLX(Panel panel,Text filename)

Description
Apply the screen layout file named filename to the Panel panel.
A return value of zero indicates the layout was successfully applied.
ID = 2904

Panel Example:
Page 856 Panels and Widgets

Chapter
 Panel panel = Create_panel("Grid of Min/Max of Tins");
 Show_widget(panel);

Widget of type Button

Panel title

Widget Tin_Box

Widget title

Widget of type Button

Message_Box or
Colour_Message_Box

Browse button

Widget of type

typed input area
of a Widget known

of a Widget

Named_Tick_Box

Widget of type

title of Button Widget

as the information
area of the widget
Page 857Panels and Widgets

12d Model Programming Language Manual
Panel title Browse button
of a Widget

Browse button
turned off
for a widget

Widget optional

Widget disabled

Horizontal_Group of
two Buttons with
border text "Buttons"

Vertical_Group of
four Widgets with
border text "Tins"
Page 858 Panels and Widgets

Chapter
5.60.3 Horizontal Group
A Horizontal_Group is used to collect a number of Widgets together.

The Widgets are added to the Horizontal_Group using the Append(Widget widget,Horizontal_Group
group) call.
The Widgets are automatically spaced horizontally in the order that they are appended.

Horizontal_Group Create_horizontal_group(Integer mode)
Name
Horizontal_Group Create_horizontal_group(Integer mode)

Description
Create a Widget of type Horizontal_Group.
A Horizontal_Group is used to collect a number of Widgets together. The Widgets are added to
the Horizontal_Group using the Append(Widget widget,Horizontal_Group group) call. The Widgets
are automatically spaced horizontally in the order that they are appended.

mode has the values (defined in set_ups.h)
// modes for Horizontal_Group (note -1 is also allowed)
For BALANCE_WIDGETS_OVER_WIDTH = 1

the widgets in the horizontal group are all given the same width and are evenly spaced
horizontally. So the widgets all have the size of what the largest widget needed.

For ALL_WIDGETS_OWN_WIDTH = 2
the widgets in the horizontal group are all their own size all.

For COMPRESS_WIDGETS_OVER_WIDTH = 4
.

The function return value is the created Horizontal_Group.

ID = 845

Horizontal_Group Create_button_group()
Name
Horizontal_Group Create_button_group()

Description
Create a Widget of type Horizontal_Group to hold Widgets of type Button.

A Horizontal_Group is used to collect a number of Widgets together. The Widgets are added to
the Horizontal_Group using the Append(Widget widget,Horizontal_Group group) call. The Widgets
are automatically spaced horizontally in the order that they are appended.
The Create_button_group goes a bit further than Create_horizontal_group in making the button
spacing more even.
The function return value is the created Horizontal_Group.

ID = 846

Append(Widget widget,Horizontal_Group group)
Name
Integer Append(Widget widget,Horizontal_Group group)
Page 859Panels and Widgets

12d Model Programming Language Manual
Description
Append the Widget widget to the Horizontal_Group group.
A Horizontal_Group is used to collect a number of Widgets together and the Widgets are added
to the Horizontal_Group using this call. The Widgets are automatically spaced horizontally in the
order that they are appended.

A function return value of zero indicates the Widget was appended successfully.
ID = 853

Set_border(Horizontal_Group group,Text text)
Name
Integer Set_border(Horizontal_Group group,Text text)

Description
Set a border for the Horizontal_Group group with Text text.on the top left side of the border.
If text is blank, the border is removed.

A function return value of zero indicates the border was successfully set.
ID = 1098

Set_border(Horizontal_Group group,Integer bx,Integer by)
Name
Integer Set_border(Horizontal_Group group,Integer bx,Integer by)

Description
Set a gap around the border of the Horizontal_Group group.
bx sets the left and right side gap around the border.
by sets the top and bottom side gap around of the border.

The units of bx and by are screen units (pixels).
A function return value of zero indicates the border gap was successfully set.

Horizontal_Group of two Buttons
with no border

Horizontal_Group of two Buttons
with border and text "Buttons"
Page 860 Panels and Widgets

Chapter
ID = 858

Set_gap(Horizontal_Group group,Integer gap)
Name
Integer Set_gap(Horizontal_Group group,Integer gap)

Description
Set a horizontal gap of at least gap screen units (pixels) between the Widgets of the
Horizontal_Group group.
A function return value of zero indicates the vertical gap was successfully set.
ID = 1506

Horizontal_Group of two Buttons
with default border gaps
and text "Buttons"

Horizontal_Group of two Buttons
with border gaps bx =10 and by = 20
and text "Buttons"
Page 861Panels and Widgets

12d Model Programming Language Manual
5.60.4 Vertical Group
A Vertical_Group is used to collect a number of Widgets together.

The Widgets are added to the Vertical_Group using the Append(Widget widget,Vertical_Group
group) call.
All the Widgets appended to the Vertical_Group are given the same width. The Widgets are
automatically spaced vertically in the order that they are appended to the Vertical_Group.

Vertical_Group Create_vertical_group(Integer mode)
Name
Vertical_Group Create_vertical_group(Integer mode)

Description
Create a widget of type Vertical_Group.
A Vertical_Group is used to collect a number of Widgets together. The Widgets are added to the
Vertical_Group using the Append(Widget widget,Vertical_Group group) call. All the Widgets
appended to the Vertical_Group are given the same width. The Widgets are automatically
spaced vertically in the order that they are appended to the Vertical_Group.
mode has the values (defined in set_ups.h)

// modes for Vertical_Group (note -1 is also allowed)
For BALANCE_WIDGETS_OVER_HEIGHT = 1

the widgets in the vertical group are evenly spaced vertically.
For ALL_WIDGETS_OWN_HEIGHT = 2

For ALL_WIDGETS_OWN_LENGTH = 4

The function return value is the created Vertical_Group.
ID = 844

Append(Widget widget,Vertical_Group group)
Name
Integer Append(Widget widget,Vertical_Group group)

Description
Append the Widget widget to the Vertical_Group group.
A function return value of zero indicates the widget was appended successfully.
ID = 854

Set_border(Vertical_Group group,Text text)
Name
Integer Set_border(Vertical_Group group,Text text)

Description
Set a border of the Vertical_Group group with Text text.on the top left side of the border. If text is
blank, the border is removed.
Page 862 Panels and Widgets

Chapter
A function return value of zero indicates the border was successfully set.

ID = 1099

Set_border(Vertical_Group group,Integer bx,Integer by)
Name
Integer Set_border(Vertical_Group group,Integer bx,Integer by)

Description
Set a gap around the border of the Vertical_Group group.
bx sets the left and right side gap around the border.
by sets the top and bottom side gap around of the border.
The units of bx and by are screen units (pixels).

A function return value of zero indicates the border gap was successfully set.

The tins are a Vertical_Group of

The same Vertical_Group of 4 Widgets
with border and text "Tins"

4 Widgets with no border

Note that for the left and right gaps that
the width of the panel doesn’t change
but the gap from the sides of the panel
to the box is increased

Vertical_Group of 4 Widgets
with default border gaps
and text "Tins"

Vertical_Group of 4 Widgets
with border gaps bx =10 and by = 20
and text "Tins"

Note that for the left and right gaps that
the width of the panel doesn’t change
but the gap from the sides of the panel
to the box is increased
Page 863Panels and Widgets

12d Model Programming Language Manual
ID = 859

Set_gap(Vertical_Group group,Integer gap)
Name
Integer Set_gap(Vertical_Group group,Integer gap)

Description
Set a vertical gap of at least gap screen units (pixels) between the Widgets of the Vertical_Group
group.
A function return value of zero indicates the vertical gap was successfully set.
ID = 1507

Get_sizing_constraints(Widget widget,Integer &horizontal_mode,Integer
&vertical_mode)
Name
Integer Get_sizing_constraints(Widget widget,Integer &horizontal_mode,Integer &vertical_mode)

Description
Get the horizontal_mode and vertical_mode of the sizing constraints for given Widget widget.
Meaning of the sizing constraint modes

0 Sizing_Balance_Resize balance the widgets over the available space (and set them to be the
same size)
 1 Sizing_Balance_No_Resize balance the widgets over the available space (and keep them
their original size)

 2 Sizing_Fill fill the widgets to entirely fill the available space
 3 Sizing_Fill_No_Resize size to fill the available space, but don't resize after that
 4 Sizing_Original keep the widgets in their original size and location

 5 Sizing_Default do whatever the container wants to do

A function return value of zero indicates the sizing constraints was successfully returned.

ID = 3822

Set_sizing_constraints(Widget widget,Integer horizontal_mode,Integer
vertical_mode)
Name
Integer Set_sizing_constraints(Widget widget,Integer horizontal_mode,Integer vertical_mode)

Description
Set the horizontal_mode and vertical_mode of the sizing constraints for given Widget widget.
Meaning of the sizing constraint modes
0 Sizing_Balance_Resize balance the widgets over the available space (and set them to be the
same size)

 1 Sizing_Balance_No_Resize balance the widgets over the available space (and keep them
their original size)
 2 Sizing_Fill fill the widgets to entirely fill the available space
Page 864 Panels and Widgets

Chapter
 3 Sizing_Fill_No_Resize size to fill the available space, but don't resize after that
 4 Sizing_Original keep the widgets in their original size and location
 5 Sizing_Default do whatever the container wants to do

A function return value of zero indicates the sizing constraints was successfully set.
ID = 3823
Page 865Panels and Widgets

12d Model Programming Language Manual
5.60.5 Widget Controls

Wait_on_widgets(Integer &id,Text &cmd,Text &msg)
Name
Integer Wait_on_widgets(Integer &id,Text &cmd,Text &msg)

Description
When the user activates a Widget displayed on the screen (for example by clicking on a Button
Widget), the id, cmd and msg from the widget is passed back to Wait_on_widgets.
id is the id of the Widget that has been activated.
cmd is the command text that is returned from the Widget.

msg is the message text that is returned from the Widget.
A function return value of zero indicates the data was successfully returned.
Note: there might be unknown events might be passed to Wait_on_widgets, the return value will
still be zero in those case, but id, cmd and msg will remain unchanged.

Note: for a Button, the returned cmd is the Text reply given when the Button was created. See
Create_button(Text title_text,Text reply).
ID = 857

Use_browse_button(Widget widget,Integer mode)
Name
Integer Use_browse_button(Widget widget,Integer mode)

Description
Set whether the browse button is available for Widget widget.
If mode = 1 use the browse button
if mode = 0 don’t use the browse button.

The default value for a Widget is mode = 1.
If the browse button is not used, the space where the button would be, is removed.
Note: This call must be made before the Panel that contains the widget is shown.

A function return value of zero indicates the value was valid.

ID = 1095

Show_browse_button(Widget widget,Integer mode)
Name
Integer Show_browse_button(Widget widget,Integer mode)

Use_browse_button mode = 1

Use_browse_button mode = 0

Browse button of a Widget
Page 866 Panels and Widgets

Chapter
Description
This calls you to show or hide the browse button for the Widget widget.
If mode = 1 show the browse button
if mode = 0 don’t show the browse button.

The default value for a Widget is mode = 1.
This call can be made after the Widget has been added to a panel and allows the Browse button
of the Widget to be turned on and off under the programmers control.
Note if Use_browse_button was called with a mode of 0 then this call is ineffective. See
Use_browse_button(Widget widget,Integer mode)

A function return value of zero indicates the mode was successfully set.

ID = 1096

Set_enable(Widget widget,Integer mode)
Name
Integer Set_enable(Widget widget,Integer mode)

Description
Set the enabled mode for the Widget widget.
If mode = 1 the Widget is to be enabled
 mode = 0 the Widget is not to be enabled.

The default value for a Widget is mode = 1.
Note If the widget is not enabled, it will be greyed out in the standard Windows fashion and no
interaction with the Widget is possible.
A function return value of zero indicates the mode was successfully set.

ID = 1101

Get_enable(Widget widget,Integer &mode)
Name
Integer Get_enable(Widget widget,Integer &mode)

Show_browse_button mode = 1

Show_browse_button mode = 0

Browse Button of
the Tin_Box Widget

Set_enable mode = 1

Set_enable mode = 0

All parts of the disabled Widget are greyed out
Page 867Panels and Widgets

12d Model Programming Language Manual
Description
Check if the Widget widget is enabled or disabled. See Set_enable(Widget widget,Integer
mode)
Return the Integer mode where

 mode = 1 if the Widget is enabled
 mode = 0 if the Widget is not enabled.
A function return value of zero indicates the mode was returned successfully.
ID = 1100

Set_optional(Widget widget,Integer mode)
Name
Integer Set_optional(Widget widget,Integer mode)

Description
Set the optional mode for the Widget widget.
That is, if the Widget field is blank, the title text to the left is greyed out, signifying that this Widget
is optional.

If mode = 1 the widget is optional
 mode = 0 the widget is not optional.
The default value for a Widget is mode = 0.

If this mode is used (i.e. 1), the widget must be able to accept a blank response for the field, or
assume a reasonable value.
A function return value of zero indicates the mode was successfully set.

Note: not all Widgets can be set to be optional.
For example Choice_Box, Named_Tick_Box, Source_Box,

ID = 1324

Get_optional(Widget widget,Integer &mode)
Name
Integer Get_optional(Widget widget,Integer &mode)

Description
Check if the Widget widget is optional. That is, the Widget does not have to be answered.See
Set_optional(Widget widget,Integer mode)

Return the Integer mode where
 mode = 1 if the Widget is optional
 mode = 0 if the Widget is not optional.
A function return value of zero indicates the mode was returned successfully.

ID = 1325

Set_optional mode = 0

Set_optional mode = 1Widget title
greyed out
Page 868 Panels and Widgets

Chapter
Set_visible(Widget widget,Integer mode)
Name
Integer Set_visible(Widget widget,Integer mode)

Description
Set the visible mode for the Widget widget.
If mode = 1 the widget is visible, and not displayed on the panel
 mode = 0 the widget is not visible and not displayed.

Even if the widget is invisible, it still takes the same space on a panel.
The default value for a Widget is visible. That is, mode = 1.

A function return value of zero indicates the visibility was successfully set.

ID = 1614

Get_visible(Widget widget,Integer &mode)
Name
Integer Get_visible(Widget widget,Integer &mode)

Description
Get the visibility mode for the Widget widget.
Return the Integer mode where
 mode = 1 if the Widget is visible
 mode = 0 if the Widget is not visible.
A function return value of zero indicates the visibility was returned successfully.

 ID = 1615

Set_name(Widget widget,Text text)
Name
Integer Set_name(Widget widget,Text text)

Description
Set the title text of the Widget widget.

Set_visible mode = 1
Widget is visible

Set_visible mode = 0
Widget is invisible

the Widget is even though
it is invisible

Space is still left where
Page 869Panels and Widgets

12d Model Programming Language Manual
A Widget is usually given a title when it is first created This call can be made after the Widget has
been added to a panel and allows the title of the Widget to be changed under the programmers
control.
A function return value of zero indicates the title was successfully set.
ID = 1326

Get_name(Widget widget,Text &text)
Name
Integer Get_name(Widget widget,Text &text)

Description
Get the title text from the Widget widget.
A function return value of zero indicates the text was returned successfully.

ID = 1327

Set_dump_name(Widget widget,Text text)
Name
Integer Set_dump_name(Widget widget,Text text)

Description
Set the dump name of the Widget widget to Text text.
A return value of zero indicates the function call was successful.
ID = 2905

Get_dump_name(Widget widget,Text &text)
Name
Integer Get_dump_name(Widget widget,Text &text)

Description
Get the dump name of the Widget widget to set to Text text.
A return value of zero indicates the function call was successful.

ID = 2906

Get_dump_name(Widget widget,Text &text,Integer effective)
Name
Integer Get_dump_name(Widget widget,Text &text,Integer effective)

Description
Get the dump name of the Widget widget to set to Text text.
If effective is not zero, the name is "effective".
A return value of zero indicates the function call was successful.
ID = 2907

???
Page 870 Panels and Widgets

Chapter
Set_error_message(Widget widget,Text text)
Name
Integer Set_error_message(Widget widget,Text text)

Description
This call is used to set the error message for a Widget if it is validated and there is an error.

LJG ?
When there is an error, text is sent to the associated Message_Box of the widget, the focus is
set to the widget and the cursor is moved to the widget.
A function return value of zero indicates the text was successfully set.

ID = 1437

Set_width_in_chars(Widget widget,Integer num_char)
Name
Integer Set_width_in_chars(Widget widget,Integer num_char)

Description
Set the Widget widget to be num_char characters wide.
A function return value of zero indicates the width was set successful.
ID = 1042

Show_widget(Widget widget)
Name
Integer Show_widget(Widget widget)

Description
Show the Widget widget at the cursor’s current position.
Note: The call Show_widget(Widget widget,Integer x,Integer y) allows you to give the screen
coordinates to position the Widget. See Show_widget(Widget widget,Integer x,Integer y).

A function return value of zero indicates the widget was shown successfully.
ID = 855

Show_widget(Widget widget,Integer x,Integer y)
Name
Integer Show_widget(Widget widget,Integer x,Integer y)

Description
Show the Widget widget at the screen coordinates x, y. The units for x and y are pixels.
A function return value of zero indicates the widget was shown successfully.
ID = 1039

Hide_widget(Widget widget)
Name
Integer Hide_widget(Widget widget)
Page 871Panels and Widgets

12d Model Programming Language Manual
Description
Hide the Widget widget. That is, don’t display the Widget on the screen.
Note the Widget still exists but it is not visible on the screen. The Widget will appear again by
calling Show_widget. See Show_widget(Widget widget).

A function return value of zero indicates the widget was hidden successfully.
ID = 856

Set_size(Widget widget,Integer x,Integer y)
Name
Integer Set_size(Widget widget,Integer x,Integer y)

Description
Set the size in screen units (pixels) of the Widget widget with the width x and height y.
The type of x and y must be Integer.
A function return value of zero indicates the size was successfully set.

ID = 1365

Get_size(Widget widget,Integer &x,Integer &y)
Name
Integer Get_size(Widget widget,Integer &x,Integer &y)

Description
Get the size in screen units (pixels) of the Widget widget in x and y.
The type of x and y must be Integer.
A function return value of zero indicates the size was returned successfully.

ID = 1331

Get_widget_size(Widget widget,Integer &w,Integer &h)
Name
Integer Get_widget_size(Widget widget,Integer &w,Integer &h)

Description
Get the size of the Widget widget in screen units (pixels)

The width of widget is returned in w and the height of widget is returned in h.
A function return value of zero indicates the size was successfully returned.
ID = 1041

Set_cursor_position(Widget widget)
Name
Integer Set_cursor_position(Widget widget)

Description
Move the cursor position to the Widget widget.
A function return value of zero indicates the position was successfully set.
Page 872 Panels and Widgets

Chapter
ID = 1059

Get_widget_position(Widget widget,Integer &x,Integer &y)
Name
Integer Get_widget_position(Widget widget,Integer &x,Integer &y)

Description
Get the screen position of the Widget widget.
The position of the widget is returned in x, y. The units of x and y are screen units (pixels).
A function return value of zero indicates the position was successfully returned.

ID = 1040

Get_position(Widget widget,Integer &x,Integer &y)
Name
Integer Get_position(Widget widget,Integer &x,Integer &y)

Description
Get the screen position of the Widget widget.
The position of the widget is returned in x, y. The units of x and y are screen units (pixels).
A function return value of zero indicates the position was successfully returned.
ID = 1366

Get_id(Widget widget)
Name
Integer Get_id(Widget widget)

Description
When a Widget is created, it is given a unique identifying number (id) in the project.
This function get the id of the Widget widget and returns id as the function return value.

That is, the Integer function return value is the Widget id.
D = 879

Set_focus(Widget widget)
Name
Integer Set_focus(Widget widget)

Description
Set the focus to the typed input area for an Input Widget widget, or on the button for a Button
Widget widget.
After this call all typed input will go to this widget.
A function return value of zero indicates the focus was successfully set.

ID = 1097
Page 873Panels and Widgets

12d Model Programming Language Manual
5.60.6 General Widget Commands and Messages
accept select

message: view_name
cancel select

message: blank

cut
message: blank

kill_focus
message: blank

keystroke
message: character typed in

left_button_up
message: blank

middle_button_up
message: blank

motion select
message: x y z a b view_name

This is returned whenever the cursor is over the exposed area of a 12d Model View.
Panel Quit

message: blank

paste
message: information to be pasted

pick select
message: view_name

right_button_up
message: blank

set_focus
message: blank

start select
message: blank

text selected
message: text typed in
Page 874 Panels and Widgets

Chapter
5.60.7 Widget Information Area Menu
Clicking RB in the information area of most Widgets brings up the menu:

Picking Cut from the menu cuts the highlighted characters, and sends a "cut" command and
nothing in message via Wait_on_widgets.
Picking Copy from the menu copies the highlighted characters into the paste buffer, and sends a
"copy" command and the copied text in message via Wait_on_widgets.
Picking Paste from the menu pastes the paste buffer into the information area, and sends a
"paste" command and the paste buffer in message via Wait_on_widgets.
Page 875Panels and Widgets

12d Model Programming Language Manual
5.60.8 Widget Tooltip and Help Calls
Set_tooltip(Widget widget,Text tip)
Name
 Integer Set_tooltip(Widget widget,Text tip)

Description
Sets the tool tip message for the Widget widget to tip.

When the user hovers over widget, this message tip will be displayed as a Windows tooltip.
A function return value of zero indicates the tooltip was successfully set.

ID = 1363

Get_tooltip(Widget widget,Text &tip)
Name
Integer Get_tooltip(Widget widget,Text &tip)

Description
Queries the current tool tip message and returns the message in tip.
A function return value of zero indicates the tooltip was successfully returned.

ID = 1364

Set_help(Widget widget,Integer help_num)
Name
Integer Set_help(Widget widget,Integer help_num)

Description
For the Widget widget, the help number for widget is set to help_num.

This is currently not used.
A function return value of zero indicates the help number was successfully set.
Note: See 5.60.13.4 Help Button for creating a Help button that allows the macro to access the
12d Model Extra Help system.

ID = 1312

Get_help(Widget widget,Integer &help_num)
Name
Integer Get_help(Widget widget,Integer &help_num)

Description
Get the help number for Widget widget and return it in help_num.

Tooltip shown as cursor
goes over the Widget
Page 876 Panels and Widgets

Chapter
The type of help must be integer.
A function return value of zero indicates the help number was successfully returned.
Note: See 5.60.13.4 Help Button for creating a Help button that allows the macro to access the
12d Model Extra Help system.

ID = 1313

Set_help(Widget widget,Text help_message)
Name
 Integer Set_help(Widget widget,Text help_message)

Description
For the Widget widget, the help message for widget is set to help_message.
This help message will be sent back to 12d Model via Wait_on_widgets(Integer &id,Text
&cmd,Text &msg) with command cmd equal to “Help”, and msg equal to help_message.
So a sample bit of code to handle help is

Wait_on_widgets(id,cmd,msg);
if (cmd == “Help”) {;
 Winhelp(panel,"12d.hlp",'a',msg); // in the Winhelp file 12d.hlp,
 // find and display the a table entry msg

 continue;
}
 A function return value of zero indicates the text was successfully set.

ID = 1314

Get_help(Widget widget,Text &help_message)
Name
Integer Get_help(Widget widget,Text &help_message)

Description
Queries the current help message for a widget and returns the message in help_mesage.

A function return value of zero indicates the message was successfully returned.
ID = 1315

Winhelp(Widget widget,Text help_file,Text key)
Name
Integer Winhelp(Widget widget,Text help_file,Text key)

Description
Calls the Windows help system to display the key from the k table of the Windows help file
help_file. The Windows help file help_file must exist and be in a location that can be found.
A function return value of zero indicates the function was successful.
ID = 1316

Winhelp(Widget widget,Text help_file,Integer table,Text key)
Page 877Panels and Widgets

12d Model Programming Language Manual
Name
Integer Winhelp(Widget widget,Text help_file,Integer table,Text key)

Description
Calls the Windows help system to display the key from the named table of the help file help_file.
table takes the form ‘a’, ‘k’ etc. The Windows help file help_file must exist and be in a location
that can be found.
A function return value of zero indicates the function was successful.
ID = 1317

Winhelp(Widget widget,Text help_file,Integer help_id)
Name
Integer Winhelp(Widget widget,Text help_file,Integer help_id)

Description
Calls the Windows help system to display the key from the k table of the help file help_file. The
Windows help file help_file must exist and be in a location that can be found.
A function return value of zero indicates the function was successful.

ID = 1318

Winhelp(Widget widget,Text help_file,Integer help_id,Integer popup)
Name
Integer Winhelp(Widget widget,Text help_file,Integer helpid,Integer popup)

Description
Calls the Windows help system to display the help with help number help_id from the k table of
the help file help_file. The Windows help file help_file must exist and be in a location that can be
found. If popup is not zero then the help information appears as a popup style help; If popup is
zero then the help information appears as a normal help.
A function return value of zero indicates the function was successful.
ID = 1319
Page 878 Panels and Widgets

Chapter
5.60.9 Panel Page

Widget_Pages Create_widget_pages()
Name
Widget_Pages Create_widget_pages()

Description
A Widget_Pages object allows a number of controls to exist in the same physical location on a
dialog. This is very handy if you want a field to change between a Model_Box, View_Box or the
like.
A bit of sample code might look like,

 Vertical_Group vgroup1 = Create_vertical_group(0);
 Model_Box mbox = Create_model_box(…);
 Append(mbox,vgroup1);
 Vertical_Group vgroup2 = Create_vertical_group(0);
 View_Box vbox = Create_view_box(…);
 Append(vbox,vgroup2);
 Widget_Pages pages = Create_widget_pages();
 Append(vgroup1,pages);
 Append(vgroup2,pages);
 Set_page(page,1) // this shows the 1st page - vgroup1

The function return value is the created Widget_pages.
ID = 1243

Append(Widget widget,Widget_Pages pages)
Name
Integer Append(Widget widget,Widget_Pages pages)

Description
Append Widget widget into the Widget_Pages pages.
For each item appended, another page is created.
If you want more than 1 item on a page, add each item to a Horizontal_Group, Vertical_Group.

A function return value of zero indicates the widget was appended successfully.
ID = 1244

Set_page(Widget_Pages pages,Integer n)
Name
Integer Set_page(Widget_Pages pages,Integer n)

Description
Show (display on the screen) the n’th page of the Widget_Pages pages.
Note the "n’th page" is the n’th widget appended to the Widget_Pages pages.

All the controls associated with the n’th page_no are shown.
A function return value of zero indicates the page was successfully set.
Page 879Panels and Widgets

12d Model Programming Language Manual
ID = 1245

Set_page(Widget_Pages pages,Widget widget)
Name
Integer Set_page(Widget_Pages pages,Widget widget)

Description
Show (display on the screen) the page of pages containing the Widget widget.
All the controls associated with the widget are shown.
A function return value of zero indicates the page was successfully set.
ID = 1606

Get_page(Widget_Pages pages,Widget widget,Integer &page_no)
Name
Integer Get_page(Widget_Pages pages,Widget widget,Integer &page_no)

Description
For the Widget_Pages pages, get the page number of the page containing the Widget widget.
Note the "n’th page" of a Widget_Pages is the n’th widget appended to the Widget_Pages.

The page n umber is returned as page_no.
A function return value of zero indicates the page number was successfully returned.

ID = 1607
Page 880 Panels and Widgets

Chapter
5.60.10 Input Widgets

See 5.60.10.1 Angle_Box
See 5.60.10.2 Attributes_Box
See 5.60.10.42 Texture_Box
See 5.60.10.4 Bitmap_Fill_Box
See 5.60.10.5 Chainage_Box
See 5.60.10.6 Choice_Box
See 5.60.10.7 Colour_Box
See 5.60.10.8 Date_Time_Box
See 5.60.10.9 Directory_Box
See 5.60.10.10 Draw_Box
See 5.60.10.11 File_Box
See 5.60.10.12 Function_Box
See 5.60.10.13 HyperLink_Box
See 5.60.10.14 Input_Box
See 5.60.10.15 Integer_Box
See 5.60.10.16 Justify_Box
See 5.60.10.17 Linestyle_Box
See 5.60.10.18 List_Box
See 5.60.10.19 Map_File_Box
See 5.60.10.20 Model_Box
See 5.60.10.21 Name_Box
See 5.60.10.22 Named_Tick_Box
See 5.60.10.23 New_Select_Box
See 5.60.10.24 New_XYZ_Box
See 5.60.10.25 Plotter_Box
See 5.60.10.26 Polygon_Box
See 5.60.10.27 Real_Box
See 5.60.10.28 Report_Box
See 5.60.10.29 Screen_Text
See 5.60.10.30 Select_Box
See 5.60.10.31 Select_Boxes
See 5.60.10.32 Sheet_Size_Box
See 5.60.10.33 Slider_Box
See 5.60.10.34 Source_Box
See 5.60.10.35 Symbol_Box
See 5.60.10.36 Target_Box
See 5.60.10.37 Template_Box
See 5.60.10.38 Text_Style_Box
See 5.60.10.39 Text_Units_Box
See 5.60.10.40 Textstyle_Data_Box
See 5.60.10.41 Text_Edit_Box
See 5.60.10.42 Texture_Box
See 5.60.10.43 Tick_Box
See 5.60.10.44 Tin_Box
See 5.60.10.45 View_Box
See 5.60.10.46 XYZ_Box
Page 881Panels and Widgets

12d Model Programming Language Manual
5.60.10.1 Angle_Box
The Angle_Box is a panel field designed to take angle data and display it in degrees, minutes
and seconds. If data is typed into the box, then it will be validated when <enter> is pressed.

An Angle_Box is a made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in an angle or to display the angle if it is selected by the angle

select button. This information area is in the middle
and
(c) an Angle select button on the right.

An angle can be typed into the information area in hp notation (ddd.mmss). Hitting the <enter>
key will validate the angle and then display it in degree, minutes and seconds in the information
area.

Clicking LB or RB on the Angle select button brings up the Measure pop-up menu in Angle
mode. Selecting an option from the Measure menu and making a measure displays the angle in
the information area.

Clicking MB on the Angle select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "real
selected" command and nothing in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu

Angle_Box

title area information area angle being typed in hp notationAngle select button

angle displayed in degrees, minutes and seconds
after hitting <enter
Page 882 Panels and Widgets

Chapter
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a value with the Angle Select button sends a "real_selected" command.

Create_angle_box(Text title_text,Message_Box message)
Name
Angle_Box Create_angle_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Angle_Box for inputting and validating angles. See 5.60.10.1
Angle_Box.

An angle is typed into the Angle_Box in hp notation (i.e. ddd.mmssss) but after it is validated it is
displayed in degrees, minutes and seconds. However the validated angle is stored in the
Angle_Box as a Real in radians.
The Angle_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Angle_Box validation messages.

The function return value is the created Angle_Box.
ID = 886

Set_data(Angle_Box box,Real angle)
Name
Integer Set_data(Angle_Box box,Real angle)

Description
Set the data for the Angle_Box box to the Real value angle.
angle is in radians and is measured in a counterclockwise direction from the positive x-axis.
A function return value of zero indicates the data was successfully set.

ID = 888

Set_data(Angle_Box box,Text text_data)
Name
Integer Set_data(Angle_Box box,Text text_data)

Description
Set the text displayed in the Angle_Box box to the Text text_data.

Note that text_data should be in degrees, minutes and seconds using the hp notation (i.e.
ddd.mmssss) BUT the text_data can be any text at all and may not even be a valid angle (in
degrees in hp notation). This may lead to an error when the Angle_Box is validated.
A function return value of zero indicates the data was successfully set, even if the text_data will
not validate.
ID = 1515

Get_data(Angle_Box box,Text &text_data)
Name
Page 883Panels and Widgets

12d Model Programming Language Manual
Integer Get_data(Angle_Box box,Text &text_data)

Get the actual text displayed in the Angle_Box box and return it in text_data.
Note that this is just the text in the Angle_Box. It may be any text at all and may not even be a
valid angle (in degrees in hp notation). To get the validated data from the Angle_box, use
Validate. See Validate(Angle_Box box,Real &angle).

A function return value of zero indicates the data was successfully returned.
ID = 889

Validate(Angle_Box box,Real &angle)
Name
Integer Validate(Angle_Box box,Real &angle)

Description
Validate the contents of the Angle_Box box and return the angle in radians angle.
angle is in radians and is measured in a counterclockwise direction from the positive x-axis.
The function returns the value of:

 NO_NAME if the Widget Angle_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 887

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 884 Panels and Widgets

Chapter
5.60.10.2 Attributes_Box

Attributes_Box Create_attributes_box(Text title_text,Message_Box message)
Name
Attributes_Box Create_attributes_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Attributes_Box. See 5.60.10.2 Attributes_Box.

The Attributes_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Attribute_Box validation messages.

The function return value is the created Attributes_Box.
ID = 2210

Set_data(Attributes_Box box,Attributes &data)
Name
Integer Set_data(Attributes_Box box,Attributes &data)

Description
Set the data of type Attributes for the Attributes_Box box to data.
A function return value of zero indicates the data was successfully set.
ID = 2213

Set_data(Attributes_Box box,Text text_data)
Name
Integer Set_data(Attributes_Box box,Text text_data)

Description
Set the data of type Text for the Attributes_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 2214

Get_data(Attributes_Box box,Text &text_data)
Name
Integer Get_data(Attributes_Box box,Text &text_data)

Description
Get the data of type Text from the Attributes_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 2212

Validate(Attributes_Box box,Attributes &result)
Name
Integer Validate(Attributes_Box box,Attributes &result)
Page 885Panels and Widgets

12d Model Programming Language Manual
Description
Validate the contents of Attributes_Box box and return the Attributes in result.
The function returns the value of:

 NO_NAME if the Widget Attributes_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 2211

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 886 Panels and Widgets

Chapter
5.60.10.3 Billboard_Box

Billboard_Box Create_billboard_box(Text title_text,Message_Box message)
Name
Billboard_Box Create_billboard_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Billboard_Box. See 5.60.10.3 Billboard_Box.

The Billboard_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Billboard_Box validation messages.

The function return value is the created Billboard_Box.
ID = 1871

Set_data(Billboard_Box box,Text text_data)
Name
Integer Set_data(Billboard_Box box,Text text_data)

Description
Set the data of type Text for the Billboard_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 1873

Get_data(Billboard_Box box,Text &text_data)
Name
Integer Get_data(Billboard_Box box,Text &text_data)

Description
Get the data of type Text from the Billboard_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 1874

Validate(Billboard_Box box,Text &result)
Name
Integer Validate(Billboard_Box box,Text &result)

Description
Validate the contents of Billboard_Box box and return the name of the billboard in Text result.
The function returns the value of:
 NO_NAME if the Widget Billboard_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
Page 887Panels and Widgets

12d Model Programming Language Manual
ID = 1872

Get_billboard_size(Text name,Real &w,Real &h)
Name
Integer Get_billboard_size(Text name,Real &w,Real &h)

Description
Get world size from billboards.4d file with width w and height h.

A function return value of zero indicates the size was successfully returned.
ID = 1932

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 888 Panels and Widgets

Chapter
5.60.10.4 Bitmap_Fill_Box

Create_bitmap_fill_box(Text title_text,Message_Box message)
Name
Bitmap_Fill_Box Create_bitmap_fill_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Bitmap_Fill_Box. See 5.60.10.4 Bitmap_Fill_Box.

The Bitmap_Fill_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Bitmap_Fill_Box validation messages.

The function return value is the created Bitmap_Fill_Box.
ID = 1879

Validate(Bitmap_Fill_Box box,Text &result)
Name
Integer Validate(Bitmap_Fill_Box box,Text &result)

Description
Validate the contents of Bitmap_Fill_Box box and return the name of the bitmap in Text result.
The function returns the value of:
 NO_NAME if the Widget Bitmap_Fill_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1880

Set_data(Bitmap_Fill_Box box,Text text_data)
Name
Integer Set_data(Bitmap_Fill_Box box,Text text_data)

Description
Set the data of type Text for the Bitmap_Fill_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 1881

Get_data(Bitmap_Fill_Box box,Text &text_data)
Name
Integer Get_data(Bitmap_Fill_Box box,Text &text_data)

Description
Get the data of type Text from the Bitmap_Fill_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
Page 889Panels and Widgets

12d Model Programming Language Manual
ID = 1882

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 890 Panels and Widgets

Chapter
5.60.10.5 Chainage_Box
The Chainage_Box is a panel field designed to enter chainages which normally just have to be
Real numbers. If data is typed into the box, then it will be validated when <enter> is pressed.

The Chainage_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area in the middle where the chainage is displayed
and

(c) a Chainage select button on the right.

A chainage can be typed into the information area. Then hitting the <enter> key will validate the
chainage.
MB clicked in the information area starts a "Same As" selection. A string is then selected but at
the moment, nothing else is done with it.

Clicking LB on the chainage select button starts a Measure chainage selection in the String
from point mode. A string is then selected, and as the cursor is moved around the perpendicular
drop to the selected string is displayed.

And when a final position selected, the chainage of that position dropped onto the selected string
is then displayed in the information box.
Clicking RB on the chainage select button brings up the Measure Chainage pop-up with only
the String from point choice available.

.

After selecting String from point, the action is the same as for LB described above.

Clicking MB on the Chainage select button does nothing.

Chainage_Box

title area information area chainage displayed - either typed
or after a string chainage is selected

Chainage select button
Page 891Panels and Widgets

12d Model Programming Language Manual
Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "real
selected" command and nothing in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a value with the Chainage Select button sends a "real_selected" command.

Chainage_Box Create_chainage_box(Text title_text,Message_Box message)
Name
Chainage_Box Create_chainage_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Chainage_Box. See 5.60.10.5 Chainage_Box.

The Chainage_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Chainage_Box validation messages.

The function return value is the created Chainage_Box.
ID = 2203

Validate(Chainage_Box box,Real &result)
Name
Integer Validate(Chainage_Box box,Real &result)

Description
Validate the contents of Chainage_Box box and return the chainage in Real result.
The function returns the value of:
 NO_NAME if the Widget Chainage_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 2204

Get_data(Chainage_Box box,Text &text_data)
Name
Integer Get_data(Chainage_Box box,Text &text_data)

Description
Page 892 Panels and Widgets

Chapter
Get the data of type Text from the Chainage_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 2205

Set_data(Chainage_Box box,Real real_data)
Name
Integer Set_data(Chainage_Box box,Real real_data)

Description
Set the data of type Real for the Chainage_Box box to real_data.

A function return value of zero indicates the data was successfully set.
ID = 2206

Set_data(Chainage_Box box,Text text_data)
Name
Integer Set_data(Chainage_Box box,Text text_data)

Description
Set the data of type Text for the Chainage_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 2207

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 893Panels and Widgets

12d Model Programming Language Manual
5.60.10.6 Choice_Box
The Choice_Box is a panel field designed to select one item from a list of choices. If data is
typed into the box, then it will be validated when <enter> is pressed.

A Choice_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a choice name or to display a choice if it is selected by the

choice select button. This information area is in the middle
and

(c) a Choice button on the right.

A choice can be typed into the information area and hitting the <enter> key will validate the
choice. Note that to be valid, the typed in choice must exist in the Choice pop-up list.
Clicking LB or RB on the Choice button brings up the Select Choice pop-up list. Selecting a
choice from the pop-up list writes the choice to the information area.

Clicking MB on the Choice button does nothing.

Note: the list of choices is defined by the call Set_data(Choice_Box box,Integer nc,Text
choices[]).

Create_choice_box(Text title_text,Message_Box message)
Name
Choice_Box Create_choice_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Choice_Box. See 5.60.10.6 Choice_Box.
The Choice_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Choice_Box validation messages.

The function return value is the created Choice_Box.
ID = 890

Validate(Choice_Box box,Text &result)

Choice_Box
title area information area choicechoice button
Page 894 Panels and Widgets

Chapter
Name
Integer Validate(Choice_Box box,Text &result)

Description
Validate the contents of Choice_Box box and return the Text result.
The function returns the value of:
 NO_NAME if the Widget Choice_Box is optional and the box is left empty

 1 if no other return code is needed and result is valid.
 -1 if there is an invalid choice.
 zero if there is a drastic error.

So a function return value of zero indicates that there is an error as well as other values.

Warning this is the opposite of most 12dPL function return values
Double Warning: most times the function return code is not zero even when you think it should
be. The actual value of the function return code must be checked to see what is going on. For
example, when there is an incorrect choice, the function return value is -2.
ID = 891

Get_data(Choice_Box box,Text &text_data)
Name
Integer Get_data(Choice_Box box,Text &text_data)

Description
Get the data of type Text from the Choice_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 893

Set_data(Choice_Box box,Text text_data)
Name
Integer Set_data(Choice_Box box,Text text_data)

Description
Set the data of type Text for the Choice_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 892

Set_data(Choice_Box box,Integer nc,Text choices[])
Name
Integer Set_data(Choice_Box box,Integer nc,Text choices[])

Description
Set the values available in the choice list. There are nc items in the choices list for the
Choice_Box box.
For example

 Text choices[3];
Page 895Panels and Widgets

12d Model Programming Language Manual
 choices[1] = "top";
 choices[2] = "middle";
 choices[3] = "bottom";

 Choice_Box choice_box = Create_choice_box("Pick from list",message);
 Set_data(choice_box,3,choices);

Note: To be valid, any data typed into the Choice_Box information area must be from the
choices list.

A function return value of zero indicates the nc’th data in the choices list was successfully set.

ID = 997

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 896 Panels and Widgets

Chapter
5.60.10.7 Colour_Box
The Colour_Box is a panel field designed to select a 12d Model colour. If data is typed into the
box, then it will be validated when <enter> is pressed.

The Colour_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in the colour name or to display the colour name if it is selected

by the colour select button. This information area is in the middle
and

(c) a Colour select button on the right.

A colour name can be typed into the information area. Then hitting the <enter> key will validate
the colour name and if it is a valid colour name, the actual colour is shown on the colour select
button.
MB clicked in the information area starts a "Same As" selection. A string is then selected and
the colour of the selected string is placed in the information area and the actual colour shown on
the Colour select button.

Clicking LB or RB on the colour select button brings up the Select Colour pop-up. Selecting the
colour from the pop-up list writes the colour in the information area and the actual colour is
shown on the Colour select button.

Colour_Box

title area information area colour nameColour select button actual colour
Page 897Panels and Widgets

12d Model Programming Language Manual
Clicking MB on the colour select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command and the text in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a colour with the Colour Select button sends a "text selected" command and the colour
name in message.

Create_colour_box(Text title_text,Message_Box message)
Name
Colour_Box Create_colour_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Colour_Box. See 5.60.10.7 Colour_Box.

The Colour_Box is created with the title title_text.
Page 898 Panels and Widgets

Chapter
The Message_Box message is normally the message box for the panel and is used to display
Colour_Box validation messages.
The function return value is the created Colour_Box.
ID = 894

Validate(Colour_Box box,Integer &col_num)
Name
Integer Validate(Colour_Box box,Integer &col_num)

Description
Validate the contents of Colour_Box box and return the Integer colour number I in col_num.
The function returns the value of:
 NO_NAME if the Widget Colour_Box is optional and the box is left empty
 -1 if the text in the Colour_Box is not a valid colour number or colour name.

 TRUE (1) if no other return code is needed and col_num is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error. For example, the Colour_Box is
not optional and is left blank.
Warning this is the opposite of most 12dPL function return values
Double Warning the function return can be non zero but the col_num is unusable.

ID = 895

Set_data(Colour_Box box,Integer colour_num)
Name
Integer Set_data(Colour_Box box,Integer colour_num)

Description
Set the data for the Colour_Box box to be the colour number colour_num.

This is the colour number that will be first displayed in the Colour_Box.
colour_num must be Integer.
A function return value of zero indicates the colour number was successfully set.

ID = 896

Set_data(Colour_Box box,Text text_data)
Name
Integer Set_data(Colour_Box box,Text text_data)

Description
Set the data of type Text for the Colour_Box box to text_data.

This is the colour name that will be first displayed in the Colour_Box.
A function return value of zero indicates the data was successfully set.

ID = 1328
Page 899Panels and Widgets

12d Model Programming Language Manual
Get_data(Colour_Box box,Text &text_data)
Name
Integer Get_data(Colour_Box box,Text &text_data)

Description
Get the data of type Text from the Colour_Box box and return it in text_data.
This is the colour name entered into the Colour_Box.

A function return value of zero indicates the data was successfully returned.
ID = 897

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 900 Panels and Widgets

Chapter
5.60.10.8 Date_Time_Box

Date_Time_Box Create_date_time_box(Text title_text,Message_Box message)
Name
Date_Time_Box Create_date_time_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Date_Time_Box. See 5.60.10.8 Date_Time_Box.

The Date_Time_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Date_Time_Box validation messages.

The function return value is the created Date_Time_Box.
ID = 1883

Validate(Date_Time_Box box,Text &data)
Name
Integer Validate(Date_Time_Box box,Text &data)

Description
Validate the contents of Date_Time_Box box and return the time in Text data.
The function returns the value of:
 NO_NAME if the Widget Date_Time_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and data is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1884

Set_data(Date_Time_Box box,Text text_data)
Name
Integer Set_data(Date_Time_Box box,Text text_data)

Description
Set the data of type Text for the Date_Time_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 1885

Get_data(Date_Time_Box box,Text &text_data)
Name
Integer Get_data(Date_Time_Box box,Text &text_data)

Description
Get the data of type Text from the Date_Time_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
Page 901Panels and Widgets

12d Model Programming Language Manual
ID = 1886

Get_data(Date_Time_Box box,Integer &integer_data)
Name
Integer Get_data(Date_Time_Box box,Integer &integer_data)

Description
Get the data of type Integer from the Date_Time_Box box and return it in integer_data.

A function return value of zero indicates the data was successfully returned.
ID = 2284

Get_data(Date_Time_Box box,Real &real_data)
Name
Integer Get_data(Date_Time_Box box,Real &real_data)

Description
Get the data of type Real from the Date_Time_Box box and return it in real_data.
A function return value of zero indicates the data was successfully returned.
ID = 2286

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 902 Panels and Widgets

Chapter
5.60.10.9 Directory_Box
The Directory_Box is a panel field designed to select or create, disk folder. If a folder name is
typed into the box, then it will be validated when <enter> is pressed.

A Directory_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a folder name or to display the folder name if it is selected by

the Folder select button. This information area is in the middle
and

(c) a Folder select button on the right.

A folder name can be typed into the information area. Then hitting the <enter> key will validate
the folder name.
Clicking LB or RB on the Folder select button brings up the Select Folder pop-up. Selecting a
folder from the pop-up writes the folder name to the information area.

Clicking MB on the Folder select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text

Directory_Box
title area information area folder nameFolder select button
Page 903Panels and Widgets

12d Model Programming Language Manual
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command and the text in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.
Picking a folder with the Folder Select button sends three events:

a "start_browse" command with a blank message.
a " text selected" command and the full path name of the folder in message.
a "finish_browse" command with a blank message.

Create_directory_box(Text title_text,Message_Box message,Integer mode)
Name
Directory_Box Create_directory_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Directory_Box. See 5.60.10.9 Directory_Box.

The Directory_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Directory_Box validation messages.

The value of mode is listed in the Appendix A - Directory mode
The function return value is the created Directory_Box.
ID = 898

Validate(Directory_Box box,Integer mode,Text &result)
Name
Integer Validate(Directory_Box box,Integer mode,Text &result)

Description
Validate the contents of Directory_Box box and return the Text result.
The value of mode is listed in the Appendix A - Directory mode. See Directory Mode

The function returns the value of:
 NO_NAME if the Widget Directory_Box is optional and the box is left empty
 NO_DIRECTORY, DIRECTORY_EXISTS, or NEW_DIRECTORY.

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 899
Page 904 Panels and Widgets

Chapter
Get_data(Directory_Box box,Text &text_data)
Name
Integer Get_data(Directory_Box box,Text &text_data)

Description
Get the data of type Text from the Directory_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 901

Set_data(Directory_Box box,Text text_data)
Name
Integer Set_data(Directory_Box box,Text text_data)

Description
Set the data of type Text for the Directory_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 900

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 905Panels and Widgets

12d Model Programming Language Manual
5.60.10.10 Draw_Box
The Draw_Box is a panel field designed to create an area for drawing by supplying the
parameters box_width and box_height. The units of box_width and box_height are screen units
(pixels).

The actual size of the drawing area is actual width and actual height pixels where:
the actual width of the drawing area is the maximum of the width of the panel without the
Draw_Box, and box_width.

and

the height of the box is box_height.
LJG? border seems to be ignored.

The default coordinate system for the Draw_Box is a Cartesian coordinate system with the origin
(0,0) in the bottom left hand corner of the Draw_Box. That is, the x-axis is along the bottom of the
Draw_Box and the y-axis goes up the side of the draw box.

Draw_Box

panel without Draw_Box

panel with Draw_Box
of width 350 pixels
and height 75pixels

panel with Draw_Box
of width 350 pixels
and height 75 pixels
but Draw_Box is forced
wider because the
panel field width is
greater than 350 pixels

Default Draw_Box Coordinates

y axis

x axis - default units are pixels

default origin (0,0)
default units
re pixels
Page 906 Panels and Widgets

Chapter
The coordinates of the bottom left hand corner can be modified by a Set_origin call (see
Set_origin(Draw_Box box,Real x,Real y)), and the units for the x-axis and the y-axis can be
scaled by a Set_scale call (see Set_scale(Draw_Box box,Real xs,Real ys)).

IMPORTANT NOTE
Before making any calls to draw anything in a Draw_Box, the Start_batch_draw must be called
(see Start_batch_draw(Draw_Box box)) otherwise the drawing calls will return an error.

Commands and Messages for Wait_on_Widgets
Moving the mouse around in the Draw_Box sends a "mouse_move" command with the
Draw_Box coordinates in message. The coordinates are in Draw_Box units and are given as x
and y separated by a space.
When the mouse is not moving in the Draw_Box, a "hover" command with a blank message is
sent.
When the mouse leaves the Draw_Box, a "mouse_leave" command with a blank message is
sent.

Pressing LB in the Draw_Box sends a "click_lb_down" command with the Draw_Box
coordinates in message. The coordinates are in Draw_Box units and are given as x and y
separated by a space.
Releasing LB in the Draw_Box sends a "click_lb" command with the Draw_Box coordinates in
message. The coordinates are in Draw_Box units and are given as x and y separated by a
space.
Double clicking LB in the Draw_Box sends a "double_click_lb" command with the Draw_Box
coordinates in message. The coordinates are in Draw_Box units and are given as x and y
separated by a space.

Pressing MB in the Draw_Box sends a "click_mb_down" command with the Draw_Box
coordinates in message. The coordinates are in Draw_Box units and are given as x and y
separated by a space.
Releasing MB in the Draw_Box sends a "click_mb" command with the Draw_Box coordinates in
message. The coordinates are in Draw_Box units and are given as x and y separated by a
space.
Double clicking MB in the Draw_Box sends a "double_click_mb" command with the Draw_Box
coordinates in message. The coordinates are in Draw_Box units and are given as x and y
separated by a space.

Pressing RB in the Draw_Box sends a "click_rb_down" command with the Draw_Box
coordinates in message. The coordinates are in Draw_Box units and are given as x and y
separated by a space.
Releasing RB in the Draw_Box sends a "click_rb" command with the Draw_Box coordinates in
message. The coordinates are in Draw_Box units and are given as x and y separated by a
space.
Double clicking RB in the Draw_Box sends a "double_click_rb" command with the Draw_Box
coordinates in message. The coordinates are in Draw_Box units and are given as x and y
separated by a space.

Create_draw_box(Integer box_width,Integer box_height,Integer border)
Name
Draw_Box Create_draw_box(Integer box_width,Integer box_height,Integer border)
Page 907Panels and Widgets

12d Model Programming Language Manual
Description
Create an input Widget of type Draw_Box with the drawing area defined by the parameters
box_width, box_height and border which are all in screen units (pixels).See 5.60.10.10
Draw_Box.
The function return value is the created Draw_Box.

ID = 1337

Get_size(Draw_Box,Integer &actual_width,Integer &actual_height)
Name
Integer Get_size(Draw_Box,Integer &actual_width,Integer &actual_height)

Description
Get the width and height in pixels of the Draw_Box drawing area on the panel and return the
values in actual_width and actual_height. See 5.60.10.10 Draw_Box for the calculations of
width and height.

A function return value of zero indicates the width and height were successfully returned.
ID = 1352

Set_origin(Draw_Box box,Real x,Real y)
Name
Integer Set_origin(Draw_Box box,Real x,Real y)

Description
Set the coordinates of the left hand bottom corner of the Draw_Box box to (x,y) where x and y
are given in the units of the Draw_Box.
A function return value of zero indicates the origin was successfully set.

ID = 1340

Set_scale(Draw_Box box,Real xs,Real ys)
Name
Integer Set_scale(Draw_Box box,Real xs,Real ys)

Description
Change the units for the x-axis and the y-axis of the Draw_Box box.

The new length of one unit in the x-direction is xs times the previous unit length on the x-axis.
For example, if xs = 0.5, then the new unit length along the x-axis is half the size of the previous
unit length.
Similarly, the new length of one unit in the y-direction is ys times the previous unit length on the
y-axis.
A function return value of zero indicates the scales were successfully set.

ID = 1341

Start_batch_draw(Draw_Box box)
Name
Integer Start_batch_draw(Draw_Box box)
Page 908 Panels and Widgets

Chapter
Description
The Start_batch_draw command must be given before any drawing calls for the Draw_Box box
are made.
Any drawing calls made before Start_batch_draw is called will do nothing and return a non-zero
function return code (that is, the call was not successful).

A function return value of zero indicates the batch draw call was successful.
ID = 1361

End_batch_draw(Draw_Box box)
Name
Integer End_batch_draw(Draw_Box box)

Description
<no description>
ID = 1362

Clear(Draw_Box box,Integer r,Integer g,Integer b)
Name
Integer Clear(Draw_Box box,Integer r,Integer g,Integer b)

Description
Clear the Draw_Box box and then fill box with a colour given by r, g and b.
The colour is given in rgb which requires three Integers with values between 0 and 255, one
each for red, green and blue. The red, green and blue values are given in r, g and b respectively.

If Clear is called before a Start_batch_draw (box) call is made, then the Clear fails and a non-
zero function return value is returned.
A function return value of zero indicates the clear was successful.
ID = 1344

Set_colour(Draw_Box box,Integer colour_num)
Name
Integer Set_colour(Draw_Box box,Integer colour_num)

Description
For the Draw_Box box, set the drawing colour for following line work to have the 12d Model
colour colour_num.
A function return value of zero indicates the set was successful.

ID = 1342

Set_colour(Draw_Box box,Integer r,Integer g,Integer b)
Name
Integer Set_colour(Draw_Box box,Integer r,Integer g,Integer b)

Description
For the Draw_Box box, set the drawing colour for following line work to have the an rgb colour.
Page 909Panels and Widgets

12d Model Programming Language Manual
The colour is given in rgb which requires three Integers with values between 0 and 255, one
each for red, green and blue.
The red, green and blue values are given in r, g and b respectively.
A function return value of zero indicates the set was successful.

ID = 1343

Move_to(Draw_Box box,Real x,Real y)
Name
Integer Move_to(Draw_Box box,Real x,Real y)

Description
For the Draw_Box box, move the current position of the drawing nib to (x, y) where x and y are
given in the units of the Draw_Box.

If Move_to is called before a Start_batch_draw (box) call is made, then the Move_to fails and a
non-zero function return value is returned.
A function return value of zero indicates the move was successful.
ID = 1338

Draw_to(Draw_Box box,Real x,Real y)
Name
Integer Draw_to(Draw_Box box,Real x,Real y)

Description
For the Draw_Box box, draw from the current position to (x, y) where x and y are given in the
units of the Draw_Box.

If Draw_to is called before a Start_batch_draw (box) call is made, then the Draw_to fails and a
non-zero function return value is returned.
A function return value of zero indicates the draw was successful.
ID = 1339

Draw_polyline(Draw_Box box,Integer num_pts,Real x[],Real y[])
Name
Integer Draw_polyline(Draw_Box box,Integer num_pts,Real x[],Real y[])

Description
For the Draw_Box box, draw the polyline of num_pts points with the x-coordinates given in the
array x[], and the y-coordinates in the array y[].
If Draw_polyline is called before a Start_batch_draw (box) call is made, then the Draw_polyline
fails and a non-zero function return value is returned.

A function return value of zero indicates the draw was successful.
ID = 1355

Set_text_colour(Draw_Box box,Integer r,Integer g,Integer b)
Name
Integer Set_text_colour(Draw_Box box,Integer r,Integer g,Integer b)
Page 910 Panels and Widgets

Chapter
Description
Set the colour used for the drawing text in the Draw_Box box.
The colour is given in rgb which requires three Integers with values between 0 and 255, one
each for red, green and blue.

The red, green and blue values are given in r, g and b respectively.
A function return value of zero indicates the colour was successfully set.
ID = 1346

Set_text_font(Draw_Box box,Text font)
Name
Integer Set_text_font(Draw_Box box,Text font)

Description
For the Draw_Box box, set the font for the following text calls to be the True Type Font font.
A function return value of zero indicates the text font was successfully set.
ID = 1349

Set_text_weight(Draw_Box box,Integer weight)
Name
Integer Set_text_weight(Draw_Box box,Integer weight)

Description
Set the text weight weight for the Draw_Box box.
A function return value of zero indicates the weight was successfully set.
ID = 1350

Set_text_align(Draw_Box box,Integer mode)
Name
Integer Set_text_align(Draw_Box box,Integer mode)

Description
Set the text alignment to mode for any text drawn in the Draw_Box box after the Set_text_align
call.
The values for mode are given in Text Alignment Modes for Draw_Box. The file set_ups.h needs
to be included for the modes to be defined.

The default mode is that the coordinates of the text are for the top left of the bounding box
surrounding the text.
A function return value of zero indicates the text alignment was successfully set.
ID = 1351

Draw_text(Draw_Box box,Real x,Real y,Real size,Real angle,Text txt)
Name
Integer Draw_text(Draw_Box box,Real x,Real y,Real size,Real angle,Text txt)

Description
Page 911Panels and Widgets

12d Model Programming Language Manual
In the Draw_Box box, draw the text txt at the position (x,y) where the coordinates (x,y) are in the
Draw_Box’s coordinate system.
The text has size size (in pixels), and the rotation angle of angle radians.
If Draw_text is called before a Start_batch_draw (box) call is made, then the Draw_text fails and
a non-zero function return value is returned.

A function return value of zero indicates the text was successfully drawn.
ID = 1345

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 912 Panels and Widgets

Chapter
5.60.10.11 File_Box
The File_Box is a panel field designed to select or create, disk files. If a file name is typed into
the box, then it will be validated when <enter> is pressed.

A File_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a file name or to display the file name if it is selected by the file

select button. This information area is in the middle
and

(c) a File select button on the right.

A file name can be typed into the information area. Then hitting the <enter> key will validate the
file name.

Clicking LB or RB on the File select button brings up the Folder pop-up. Selecting a file from the
pop-up list writes the file name to the information area.

Clicking MB on the File select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "file

File_Box

title area information area file nameFile select button
Page 913Panels and Widgets

12d Model Programming Language Manual
selected" command and the text in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.
Picking a file with the Folder Select button sends a " file selected" command and the full path
name of the file in message.

Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)
Name
File_Box Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)

Description
Create an input Widget of type File_Box for inputting and validating files.
The File_Box is created with the title title_text (see 5.60.10.11 File_Box).
The Message_Box message is normally the message box for the panel and is used to display
File_Box validation messages.

If <enter> is typed into the File_Box, automatic validation is performed by the File_Box according
to mode. What the validation is, what messages are written to Message_Box, and what actions
automatically occur, depend on the value of mode.
For example,

CHECK_FILE_NEW 20 // if the file doesn’t exists, the message says "will be created"
 // if it exist, the messages says "ERROR"
The values for mode and their actions are listed in Appendix A (see File Mode).
If LB is clicked on the icon at the right hand end of the File_Box, a list of the files in the current
area which match the wild card text wild (for example, *.dat) Is placed in a pop-up. If a file is
selected from the pop-up (using LB), the file name is placed in the information area of the
File_Box and validation performed according to mode.

The function return value is the created File_Box.

Special Note:

#include "set_ups.h" must be in the macro code to define CHECK_FILE_NEW etc.
ID = 906

Validate(File_Box box,Integer mode,Text &result)
Name
Integer Validate(File_Box box,Integer mode,Text &result)

Description
Validate the contents of File_Box box and return the text typed into the File_Box in result.
The value of mode is listed in the Appendix A - File mode. See File Mode.
The function returns the value of:

 NO_NAME if the Widget File_Box is optional and the box is left empty
 NO_FILE, FILE_EXISTS, or NO_FILE_ACCESS.
 TRUE (1) if no other return code is needed and result is valid.
Page 914 Panels and Widgets

Chapter
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 907

Get_data(File_Box box,Text &text_data)
Name
Integer Get_data(File_Box box,Text &text_data)

Description
Get the data of type Text from the File_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 909

Set_data(File_Box box,Text text_data)
Name
Integer Set_data(File_Box box,Text text_data)

Description
Set the data of type Text for the File_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 908

Get_wildcard(File_Box box,Text &data)
Name
Integer Get_wildcard(File_Box box,Text &data)

Description
Get the wildcard from the File_Box box.
The type of data must be Text.
A function return value of zero indicates the wildcard data was returned successfully.

ID = 1321

Set_wildcard(File_Box box,Text text_data)
Name
Integer Set_wildcard(File_Box box,Text text_data)

Description
Set the wildcard to the File_Box box.

The type of data must be Text.
A function return value of zero indicates the wildcard data was successfully set.

ID = 1320
Page 915Panels and Widgets

12d Model Programming Language Manual
Get_directory(File_Box box,Text &data)
Name
Integer Get_directory(File_Box box,Text &data)

Description
Get folder for the file from the File_Box box and return the folder in data.
A function return value of zero indicates the directory data was returned successfully.

ID = 1323

Set_directory(File_Box box,Text text_data)
Name
Integer Set_directory(File_Box box,Text text_data)

Description
Set the folder to the file in the File_Box box to the Text data.

A function return value of zero indicates the directory data was successfully set.
ID = 1322

Set_many(File_Box box,Integer mode)
Name
Integer Set_many(File_Box box,Integer mode)

Description
Set the Text_Edit_Box box to support many files if mode is non-zero, disable it otherwise.
A function return value of zero indicates that the function call was successful.

ID = 1547

Get_many(File_Box box,Integer &mode)
Name
Integer Get_many(File_Box box,Integer &mode)

Description
Set the value of Integer mode to:

1 if the File_Box box supports many files.
0 otherwise.
A function return value of zero indicates that the function call was successful.

ID = 1548

Set_encoding(File_Box box,Integer encoding)
Name
Integer Set_encoding(File_Box box,Integer encoding)

Description
Page 916 Panels and Widgets

Chapter
Set file encoding for File_Box box with Integer encoding.
A return value of zero indicates the function call was successful.
List of value for file encoding

0 Native
1 Ansi
2 Unicode

3 Unicode Little Endian
4 Unicode Big Endian
5 UTF_8

6 UTF-16_Little_Endian
ID = 2947

Get_encoding(File_Box box,Integer &encoding)
Name
Integer Get_encoding(File_Box box,Integer &encoding)

Description
Get file encoding for File_Box box to Integer encoding.
A return value of zero indicates the function call was successful.

List of value for file encoding
0 Native
1 Ansi

2 Unicode
3 Unicode Little Endian
4 Unicode Big Endian

5 UTF_8
6 UTF-16_Little_Endian

ID = 2948

Set_show_encodings(File_Box box,Integer show)
Name
Integer Set_show_encodings(File_Box box,Integer show)

Description
Set show encoding of the File_Box box to: false if Integer show is 0; true otherwise.
A return value of zero indicates the function call was successful.

ID = 2949

Get_show_encodings(File_Box box,Integer &show)
Name
Integer Get_show_encodings(File_Box box,Integer &show)

Description
Page 917Panels and Widgets

12d Model Programming Language Manual
Set Integer show to: 1 if the File_Box box shows the encoding; 0 otherwise.
A return value of zero indicates the function call was successful.
ID = 2950

Set_libraries(File_Box box,Integer data)
Name
Integer Set_libraries(File_Box box,Integer data)

Description
Set the property of browsing to 12D library folder of the Input_Box box to false if data is 0; to true
otherwise.
A return value of zero indicates the function call was successful.

ID = 2863

Get_libraries(File_Box box,Integer &data)
Name
Integer Get_libraries(File_Box box,Integer &data)

Description
If the property of browsing to 12D library folder of the Input_Box box is true then set the value of
data to 1; otherwise set the value of data to 0.
A return value of zero indicates the function call was successful.
ID = 2862

Set_setups(File_Box box,Integer data)
Name
Integer Set_setups(File_Box box,Integer data)

Description
Set the property of supporting 12D setup folder of the Input_Box box to false if data is 0; to true
otherwise.
A return value of zero indicates the function call was successful.

ID = 2865

Get_setups(File_Box box,Integer &data)
Name
Integer Get_setups(File_Box box,Integer &data)

Description
If the property of browsing to 12D setup folder of the Input_Box box is true then set the value of
data to 1; otherwise set the value of data to 0.

A return value of zero indicates the function call was successful.
ID = 2864

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 918 Panels and Widgets

Chapter
Page 919Panels and Widgets

12d Model Programming Language Manual
5.60.10.12 Function_Box
The Function_Box is a panel field designed to select, or create, Macro_Functions. If data is
typed into the box, then it will be validated when <enter> is pressed.

The Function_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in the function name or to display the function name if it is

selected by the function select button. This information area is in the middle.
and

(c) a Function select button on the right.

A function name can be typed into the information area. Then hitting the <enter> key will
validate the function name.

MB clicked in the information area starts a "Same As" selection. A string is then selected and if
the string comes from a function of the same function type, the function name is placed in the
information area.
Clicking LB or RB on the Function select button brings up the Select Function pop-up. Selecting
the function from the pop-up list writes the function name in the information area.

Clicking MB on the Function select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a
"function selected" command and nothing in message.

Function_Box

title area information area name of the function Function select button
Page 920 Panels and Widgets

Chapter
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a function with the Function Select button sends a "function selected" command and
nothing in message.

Function_Box Create_function_box(Text title_text,Message_Box message,Integer
mode,Integer type)
Name
Function_Box Create_function_box(Text title_text,Message_Box message,Integer mode,Integer type)

Description
Create an input Widget of type Function_Box for inputting and validating Functions. See
5.60.10.12 Function_Box.
The Function_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Function_Box validation messages.

The value of mode is listed in the Appendix A - Function mode. See Function Mode.
The value of type is listed in the Appendix A - Function type. See Function Type.
The function return value is the created Function_Box.

ID = 1183

Validate(Function_Box box,Integer mode,Function &result)
Name
Integer Validate(Function_Box box,Integer mode,Function &result)

Description
Validate the contents of Function_Box box and return the Function result.
The value of mode is listed in the Appendix A - Function mode. See Function Mode
The function returns the value of:
 NO_NAME if the Widget Function_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1184

Get_data(Function_Box box,Text &text_data)
Name
Integer Get_data(Function_Box box,Text &text_data)
Page 921Panels and Widgets

12d Model Programming Language Manual
Description
Get the data of type Text from the Function_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 1185

Set_data(Function_Box box,Text text_data)
Name
Integer Set_data(Function_Box box,Text text_data)

Description
Set the data of type Text for the Function_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 1186

Get_type(Function_Box box,Integer &type)
Name
Integer Get_type(Function_Box box,Integer &type)

Description
Get the function Integer type from the Function_Box box and return it in type.
A function return value of zero indicates the type was returned successfully.

ID = 1334

Set_type(Function_Box box,Integer type)
Name
Integer Set_type(Function_Box box,Integer type)

Description
Set the function Integer type for the Function_Box box to type.

The type of type must be Integer.
A function return value of zero indicates the type was successfully set.
ID = 1333

Get_type(Function_Box box,Text &type)
Name
Integer Get_type(Function_Box box,Text &type)

Description
Get the function Text type from the Function_Box box and return it in type.
A function return value of zero indicates the type was returned successfully.

ID = 1336

Set_type(Function_Box box,Text type)
Page 922 Panels and Widgets

Chapter
Name
Integer Set_type(Function_Box box,Text type)

Description
Set the function Text type for the Function_Box box to type.
A function return value of zero indicates the type was successfully set.
ID = 1335

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 923Panels and Widgets

12d Model Programming Language Manual
5.60.10.13 HyperLink_Box
The HyperLink_Box is a panel field designed to display a hyperlink on the panel.

Commands and Messages for Wait_on_Widgets
No commands or messages are sent from the Hyperlink_Box.

HyperLink_Box Create_hyperlink_box(Text hyperlink,Message_Box message)
Name
HyperLink_Box Create_hyperlink_box(Text hyperlink,Message_Box message)

Description
Create an input Widget of type HyperLink_Box. See 5.60.10.13 HyperLink_Box.
The Hyperlink_Box is created with the Text in hyperlink. This text should be a hyperlink.

When the user clicks on the HyperLink then the HyperLink will be activated,
The Message_Box message is normally the message box for the panel and is used to display
Hyperlink_Box validation messages.
The function return value is the created Hyperlink_Box.

ID = 1887

Validate(HyperLink_Box box,Text &result)
Name
Integer Validate(HyperLink_Box box,Text &result)

Description
Validate the contents of HyperLink_Box box and return the name of the hyperlink in Text result.
The function returns the value of:
 NO_NAME if the Widget HyperLink_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1888

Set_data(HyperLink_Box box,Text text_data)
Name

HyperLink_Box

hyperlink text
Page 924 Panels and Widgets

Chapter
Integer Set_data(HyperLink_Box box,Text text_data)

Description
Set the data of type Text for the Hyperlink_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 1889

Get_data(HyperLink_Box box,Text &text_data)
Name
Integer Get_data(HyperLink_Box box,Text &text_data)

Description
Get the data of type Text from the Hyperlink_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 1890

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 925Panels and Widgets

12d Model Programming Language Manual
5.60.10.14 Input_Box
The Input_Box is a panel field designed to accept typed input, and there is no restrictions on
what data can be typed into it.

An Input_Box is a panel field that is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type text into. This information area is in the middle
and

(c) a Typed Input icon on the right.

Data is typed into the information area and hitting the <enter> key will validate the typed data.
Clicking LB, MB or RB on the typed input icon does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command and the text in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Clicking LB or RB on the Typed Input icon sends a "text selected" command and "[Browse]" in
message.

Create_input_box(Text title_text,Message_Box message)
Name
Input_Box Create_input_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Input_Box. See 5.60.10.14 Input_Box.

The Input_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Input_Box validation messages.
The function return value is the created Input_Box.

ID = 910

Input_Box

title area information area typed dataTyped Input icon
Page 926 Panels and Widgets

Chapter
Validate(Input_Box box,Text &result)
Name
Integer Validate(Input_Box box,Text &result)

Description
Validate the contents of Input_Box box and return the Text result.
This call is almost not required as the box either has text or it does not but it is required to know if
the Input_Box was optional and nothing was typed in.
The function returns the value of:
 NO_NAME if the Widget Input_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 911

Get_data(Input_Box box,Text &text_data)
Name
Integer Get_data(Input_Box box,Text &text_data)

Description
Get the data of type Text from the Input_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 913

Set_data(Input_Box box,Text text_data)
Name
Integer Set_data(Input_Box box,Text text_data)

Description
Set the data of type Text for the Input_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 912

Set_multi_line(Input_Box box,Integer no_lines)
Name
Integer Set_multi_line(Input_Box box,Integer no_lines)

Description
Set the number of lines for Input_Box box to Integer no_lines.
A return value of zero indicates the function call was successful.

ID = 2859
Page 927Panels and Widgets

12d Model Programming Language Manual
Get_multi_line(Input_Box box,Integer &no_lines)
Name
Integer Get_multi_line(Input_Box box,Integer &no_lines)

Description
Get the number of lines no_lines for Input_Box box.
A return value of zero indicates the function call was successful.

ID = 2860

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 928 Panels and Widgets

Chapter
5.60.10.15 Integer_Box
The Integer_Box is a panel field designed to enter an integer (or whole number). That is, it takes
typed input of optionally + or a -, followed by one or more of the numbers 0 to 9. No other
characters can be typed into the Integer_Box.

An Integer_Box is a panel field that is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in the number text. This information area is in the middle
and

(c) a Typed Integer icon on the right.

Data is typed into the information area and hitting the <enter> key will validate the typed data.
Only +, - and the number 0 to 9 can be typed into the information area.
Clicking LB, MB or RB on the Typed Integer icon does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a
"integer selected" command and nothing in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Clicking LB or RB on the Typed Integer icon sends a "integer selected" command and nothing
in message.

Create_integer_box(Text title_text,Message_Box message)
Name
Integer_Box Create_integer_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Integer_Box. See 5.60.10.15 Integer_Box.

The Integer_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Integer_Box validation messages.
The function return value is the created Integer_Box.

ID = 914

Integer_Box

title area information area typed dataTyped Integer icon
Page 929Panels and Widgets

12d Model Programming Language Manual
Validate(Integer_Box box,Integer &result)
Name
Integer Validate(Integer_Box box,Integer &result)

Description
Validate result (of type Integer) in the Integer_Box box.
Validate the contents of Integer_Box box and return the Integer result.
The function returns the value of:
 NO_NAME if the Widget Integer_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 915

Get_data(Integer_Box box,Text &text_data)
Name
Integer Get_data(Integer_Box box,Text &text_data)

Description
Get the data of type Text from the Input_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 917

Set_data(Integer_Box box,Integer integer_data)
Name
Integer Set_data(Integer_Box box,Integer integer_data)

Description
Set the data of type Integer for the Integer_Box box to integer_data.

A function return value of zero indicates the data was successfully set.
ID = 916

Set_data(Integer_Box box,Text text_data)
Name
Integer Set_data(Integer_Box box,Text text_data)

Description
Set the data of type Text for the Integer_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 1517
Page 930 Panels and Widgets

Chapter
For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 931Panels and Widgets

12d Model Programming Language Manual
5.60.10.16 Justify_Box
The Justify_Box is a panel field designed to select one item from a list of text justifications. If
data is typed into the box, then it will be validated when <enter> is pressed.

A Justify_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a justification or to display a justification choice if it is selected

by the justification choice button. This information area is in the middle
and

(c) a Justification choice button on the right.

A justification can be typed into the information area and hitting the <enter> key will validate the
justification. Note that to be valid, the typed in justification must exist in the Justification choice
pop-up list.
Clicking LB or RB on the Justification choice button brings up the Select Choice pop-up list.
Selecting a justification choice from the pop-up list writes the justification to the information area.

Clicking MB on the Justification choice button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command with the justification choice in message, or blank if it is not a valid
justification.
Pressing and releasing LB in the information area sends a "left_button_up" command.

Justify_Box
title area information area justification choiceJustification choice button
Page 932 Panels and Widgets

Chapter
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a justification after clicking on the Justification Choice button sends a "text selected"
command and the justification choice in message.

Create_justify_box(Text title_text,Message_Box message)
Name
Justify_Box Create_justify_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Justify_Box. See 5.60.10.16 Justify_Box.
The Justify_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Justify_Box validation messages.
The function return value is the created Justify_Box.
ID = 918

Validate(Justify_Box box,Integer &result)
Name
Integer Validate(Justify_Box box,Integer &result)

Description
Validate the contents of Justify_Box box and return the Integer result.
The function returns the value of:

 NO_NAME if the Widget Justify_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 919

Get_data(Justify_Box box,Text &text_data)
Name
Integer Get_data(Justify_Box box,Text &text_data)

Description
Get the data of type Text from the Justify_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 921
Page 933Panels and Widgets

12d Model Programming Language Manual
Set_data(Justify_Box box,Integer integer_data)
Name
Integer Set_data(Justify_Box box,Integer integer_data)

Description
Set the data of type Integer for the Justify_Box box to integer_data.

integer_data represents the text justification and can have the values 1 to 9.
A function return value of zero indicates the data was successfully set.
ID = 920

Set_data(Justify_Box box,Text text_data)
Name
Integer Set_data(Justify_Box box,Text text_data)

Description
Set the data of type Text for the Justify_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 1518

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 934 Panels and Widgets

Chapter
5.60.10.17 Linestyle_Box
The Linestyle_Box is a panel field designed to select 12d Model linestyles. If a linestyle name is
typed into the box, then the linestyle name will be validated when <enter> is pressed.

A Linestyle_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a linestyle name or to display the linestyle name if it is

selected by the linestyle select button. This information area is in the middle
and

(c) a Linestyle select button on the right.

A linestyle name can be typed into the information area. Then hitting the <enter> key will
validate the linestyle name.
MB clicked in the information area starts a "Same As" selection. A string is then selected and
the linestyle of the string is written in the information area.
Clicking LB or RB on the Linestyle select button brings up the Select Linestyle pop-up. Selecting
a linestyle from the pop-up list writes the linestyle name in the information area.

Linestyle_Box

title area information area linestyle nameLinestyle select button
Page 935Panels and Widgets

12d Model Programming Language Manual
Clicking MB on the Linestyle select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command and the text in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a linestyle after clicking on the Linestyle Select button sends a "text selected" command
and the linestyle name in message.

Create_linestyle_box(Text title_text,Message_Box message,Integer mode)
Page 936 Panels and Widgets

Chapter
Name
Linestyle_Box Create_linestyle_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Linestyle_Box. See 5.60.10.17 Linestyle_Box.
The Linestyle_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Linestyle_Box validation messages.

The value of mode is listed in the Appendix A - Linestyle mode. See Linestyle Mode.
The function return value is the created Linestyle_Box.
ID = 922

Validate(Linestyle_Box box,Integer mode,Text &result)
Name
Integer Validate(Linestyle_Box box,Integer mode,Text &result)

Description
Validate the contents of Linestyle_Box box and return the name of the linestyle in Text result.
The value of mode is listed in the Appendix A - Linestyle mode. See Linestyle Mode
The function returns the value of:
 NO_NAME if the Widget Linestyle_Box is optional and the box is left empty

 LINESTYLE_EXISTS or NO_LINESTYLE.
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 923

Get_data(Linestyle_Box box,Text &text_data)
Name
Integer Get_data(Linestyle_Box box,Text &text_data)

Description
Get the data of type Text from the Linestyle_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 925

Set_data(Linestyle_Box box,Text text_data)
Name
Integer Set_data(Linestyle_Box box,Text text_data)

Description
Set the data of type Text for the Linestyle_Box box to text_data.
Page 937Panels and Widgets

12d Model Programming Language Manual
A function return value of zero indicates the data was successfully set.
ID = 924

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 938 Panels and Widgets

Chapter
5.60.10.18 List_Box

Create_list_box(Text title_text,Message_Box message,Integer nlines)
Name
List_Box Create_list_box(Text title_text,Message_Box message,Integer nlines)

Description
Create an input Widget of type List_Box. See 5.60.10.18 List_Box.

The List_Box is created with the title title_text.
The number of lines nline will be created in the List_Box.
The Message_Box message is normally the message box for the panel and is used to display
List_Box validation messages.
The function return value is the created List_Box.
ID = 1278

Get_number_of_items(List_Box box,Integer &count)
Name
Integer Get_number_of_items(List_Box box,Integer &count)

Description
For the List_Box box, get the number of items in the list and return the number in count.
A function return value of zero indicates that count is successfully returned.

ID = 1546

Set_sort(List_Box box,Integer mode)
Name
Integer Set_sort(List_Box box,Integer mode)

Description
Set the sort mode for the List_Box box depending on the Integer mode.

If mode is 0 then the sort is ascending,
If mode is 1 then the sort is descending.
A function return value of zero indicates the sort was successfully set.

ID = 1279

Get_sort(List_Box box,Integer &mode)
Name
Integer Get_sort(List_Box box,Integer &mode)

Description
Get the sort mode from the List_Box box and return it in mode.

If mode is 0 then the sort is ascending,
If mode is 1 then the sort is descending.

A function return value of zero indicates the mode was returned successfully.
ID = 1280
Page 939Panels and Widgets

12d Model Programming Language Manual
Set_auto_cut_paste(List_Box box,Integer mode)
Name
Integer Set_auto_cut_paste(List_Box box,Integer mode)

Description
Disable the auto cut paste property of the List_Box box if the Integer mode is zero, enable it
otherwise.
A return value of zero indicates the function call was successful.

ID = 1296

Get_auto_cut_paste(List_Box box,Integer &mode)
Name
Integer Get_auto_cut_paste(List_Box box,Integer &mode)

Description
If the auto cut paste property of the List_Box box is enable set the Integer mode to 1, otherwise
set mode to 0.

A function return value of zero indicates the mode was returned successfully.
ID = 1297

Set_selections(List_Box box,Integer mode)
Name
Integer Set_selections(List_Box box,Integer mode)

Description
Disable the multiple item selection property of the List_Box box if the Integer mode is zero,
enable it otherwise.
A return value of zero indicates the function call was successful.

ID = 1281

Get_selections(List_Box box,Integer &mode)
Name
Integer Get_selections(List_Box box,Integer &mode)

Description
If the multiple item selection property of the List_Box box is enable set the Integer mode to 1,
otherwise set mode to 0.

A function return value of zero indicates the mode was returned successfully.
ID = 1282

Set_caret(List_Box box,Integer pos,Integer scroll)
Name
Integer Set_caret(List_Box box,Integer pos,Integer scroll)
Page 940 Panels and Widgets

Chapter
Description
Set the caret on the item with index pos of the List_Box box. If the Integer scroll is non-zero,
scroll to the item.
A return value of zero indicates the function call was successful.

ID = 1283

Get_caret(List_Box box,Integer &pos)
Name
Integer Get_caret(List_Box box,Integer &pos)

Description
Get the index of the item with the caret of the List_Box box and return it to pos.
A function return value of zero indicates the index was returned successfully.
ID = 1284

Delete_item(List_Box box,Integer pos)
Name
Integer Delete_item(List_Box box,Integer pos)

Description
Delete the item with index pos of the List_Box box.
A return value of zero indicates the function call was successful.

ID = 1287

Insert_item(List_Box box,Integer pos,Text text)
Name
Integer Insert_item(List_Box box,Integer pos,Text text)

Description
Insert a new the item with the value text at index pos to the List_Box box.

A return value of zero indicates the function call was successful.
ID = 1286

Add_item(List_Box box,Text text)
Name
Integer Add_item(List_Box box,Text text)

Description
Insert a new the item with the value text to the end of the List_Box box.
A return value of zero indicates the function call was successful.
ID = 1285

Get_item(List_Box box,Integer pos,Text &text)
Page 941Panels and Widgets

12d Model Programming Language Manual
Name
Integer Get_item(List_Box box,Integer pos,Text &text)

Description
Assign the value of the item with index pos of the List_Box box to text.
A return value of zero indicates the function call was successful.
ID = 1288

Set_selection(List_Box box,Integer pos)
Name
Integer Set_selection(List_Box box,Integer pos)

Description
Set the current selection of the List_Box box to the item with index pos.
If the List_Box box allows multiple selection, the function fails with return code one.
A return value of zero indicates the function call was successful.

ID = 1289

Get_selection(List_Box box,Integer &pos)
Name
Integer Get_selection(List_Box box,Integer &pos)

Description
Get the index of current selected index of the List_Box box and assign to Integer pos.
If the List_Box box allows multiple selection, the function fails with return code one.
A return value of zero indicates the function call was successful.

ID = 1290

Get_selection_count(List_Box box,Integer &count)
Name
Integer Get_selection_count(List_Box box,Integer &count)

Description
Get the number of selected items of the List_Box box and assign to Integer count.
If the List_Box box does not allow multiple selection, the function fails with return code one.
A return value of zero indicates the function call was successful.
ID = 1291

Set_selection_list(List_Box box,Integer maxc,Integer list[],Integer do_select)
Name
Integer Set_selection_list(List_Box box,Integer maxc,Integer list[],Integer do_select)

Description
For the items of the List_Box box of indices from the first maxc number in the list:
If do_select is zero, unselect those item.
Page 942 Panels and Widgets

Chapter
If do_select is non-zero, select those item.
If the List_Box box does not allow multiple selection, the function fails with return code one.
A return value of zero indicates the function call was successful.

ID = 1292

Get_selection_list(List_Box box,Integer maxc,Integer list[])
Name
Integer Get_selection_list(List_Box box,Integer maxc,Integer list[])

Description
Get all the selected items of the List_Box box and assign the first maxc indices to the list:
If the List_Box box does not allow multiple selection, the function fails with return code one.
A return value of zero indicates the function call was successful.

ID = 1293

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 943Panels and Widgets

12d Model Programming Language Manual
5.60.10.19 Map_File_Box

Create_map_file_box(Text title_text,Message_Box message,Integer mode)
Name
Map_File_Box Create_map_file_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Map_File_Box. See 5.60.10.19 Map_File_Box.

The Map_File_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Map_File_Box validation messages.
The value of mode is listed in the Appendix A - File mode. See File Mode

The function return value is the created Map_File_Box.
ID = 926

Validate(Map_File_Box box,Integer mode,Text &result)
Name
Integer Validate(Map_File_Box box,Integer mode,Text &result)

Description
Validate the contents of Map_File_Box box and return the Text result.
The value of mode is listed in the Appendix A - File mode. See File Mode

The function returns the value of:
 NO_NAME if the Widget Map_File_Box is optional and the box is left empty
 NO_FILE, FILE_EXISTS or NO_FILE_ACCESS

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 927

Get_data(Map_File_Box box,Text &text_data)
Name
Integer Get_data(Map_File_Box box,Text &text_data)

Description
Get the data of type Text from the Map_File_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 929

Set_data(Map_File_Box box,Text text_data)
Name
Integer Set_data(Map_File_Box box,Text text_data)
Page 944 Panels and Widgets

Chapter
Description
Set the data of type Text for the Map_File_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 928

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 945Panels and Widgets

12d Model Programming Language Manual
5.60.10.20 Model_Box
The Model_Box is a panel field designed to select 12d Model models. If a model name is typed
into the model box and <enter> pressed or a model selected from the model pop-up list, then the
text in the Model_Box is validated.

A Model_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a model name or to display the model name if it is selected by

the model select button. This information area is in the middle
and

(c) a Model select button on the right.

A model name can be typed into the information area. Then hitting the <enter> key validates
the model name.

MB clicked in the information area starts a "Same As" selection. A string is then selected and
the model name of the selected string name is placed in the information area.
Clicking LB or RB on the Model select button brings up the Select Model pop-up. Selecting a
model from the pop-up list writes the model name in the information area and validation occurs.

Clicking MB on the Model select button does nothing.

Model_Box

title area information area model nameModel select button
Page 946 Panels and Widgets

Chapter
Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a
"model selected" command and the text in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a model with the Model Select button sends a "model selected" command and the
model name in message.

Create_model_box(Text title_text,Message_Box message,Integer mode)
Name
Model_Box Create_model_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Model_Box for inputting and validating Models.
The Model_Box is created with the title title_text (see 5.60.10.20 Model_Box).
The Message_Box message is normally the message box for the panel and is used to display
Model_Box validation messages.

If <enter> is typed into the Model_Box automatic validation is performed by the Model_Box
according to mode. What the validation is, what messages are written to Message_Box, and
what actions automatically occur, depend on the value of mode.
For example,
CHECK_MODEL_MUST_EXIST 7 // if the model exists, the message says "exists".

 // if it doesn’t exist, the messages says "ERROR"

The values for mode and their actions are listed in Appendix A (see Model Mode).
If LB is clicked on the icon at the right hand end of the Model_Box, a list of all existing models is
placed in a pop-up. If a model is selected from the pop-up (using LB), the model name is placed
in the information area of the Model_Box and validation performed according to mode.
MB for "Same As" also applies. That is, If MB is clicked in the information area and then a string
from a model on a view is selected, then the name of the model containing the selected string is
written to the information area and validation performed according to mode.

The function return value is the created Model_Box.

Special Note:

#include "set_ups.h" must be in the macro code to define CHECK_MODEL_MUST_EXIST etc.
ID = 848

Validate(Model_Box box,Integer mode,Model &result)
Name
Integer Validate(Model_Box box,Integer mode,Model &result)

Description
Validate the contents of the Model_Box box and return the Model result.
Page 947Panels and Widgets

12d Model Programming Language Manual
The value of mode will determine what validation occurs, what messages are written to the
Message_Box, what actions are taken and what the function return value is.
The values for mode and the actions are listed in Appendix A (see Model Mode).
The function return value depends on mode and are given in Appendix A (see Model Mode).

A function return value of zero indicates that there is a drastic error.
Warning this is the opposite of most 12dPL function return values
Double Warning: most times the function return code is not zero even when you think it should
be. The actual value of the function return code must be checked to see what is going on. For
example, when mode = CHECK_MODEL_MUST_EXIST will return NO_MODEL if the model
name is not blank and no model of that name exist (NO_MODEL does not equal zero).

ID = 880

Get_data(Model_Box box,Text &text_data)
Name
Integer Get_data(Model_Box box,Text &text_data)

Description
Get the data of type Text from the Model_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 885

Set_data(Model_Box box,Text text_data)
Name
Integer Set_data(Model_Box box,Text text_data)

Description
Set the data of type Text for the Model_Box box as the Text text_data.
A function return value of zero indicates the data was successfully set.

ID = 884

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 948 Panels and Widgets

Chapter
5.60.10.21 Name_Box
The Name_Box is a panel field designed to type in, or display, string names. If data is typed into
the box, then it will be validated when <enter> is pressed.

A Name_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a string name or to display the string name if it is selected by

the name select button. This information area is in the middle
and

(c) a Name select button on the right.

A string name can be typed into the information area. Then hitting the <enter> key will validate
the string name.

MB clicked in the information area starts a "Same As" selection. A string is then selected and
the name of the selected string name is placed in the information area.
Clicking LB or RB on the Name select button brings up the Select Name pop-up. Selecting the
name from the pop-up list writes the name in the information area.

Name_Box

title area information area string nameName select button
Page 949Panels and Widgets

12d Model Programming Language Manual
Clicking MB on the Name select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command and the text in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a Name with the Name Select button sends a "text selected" command and the Name in
message.

Create_name_box(Text title_text,Message_Box message)
Name
Name_Box Create_name_box(Text title_text,Message_Box message)
Page 950 Panels and Widgets

Chapter
Description
Create an input Widget of type Name_Box. See 5.60.10.21 Name_Box.
The Name_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Name_Box validation messages.
The function return value is the created Name_Box.
ID = 930

Validate(Name_Box box,Text &result)
Name
Integer Validate(Name_Box box,Text &result)

Description
Validate the contents of Name_Box box and return the Text result.
The function returns the value of:
 NO_NAME if the Widget Name_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (0) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 931

Get_data(Name_Box box,Text &text_data)
Name
Integer Get_data(Name_Box box,Text &text_data)

Description
Get the data of type Text from the Name_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 933

Set_data(Name_Box box,Text text_data)
Name
Integer Set_data(Name_Box box,Text text_data)

Description
Set the data of type Text for the Name_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 932

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 951Panels and Widgets

12d Model Programming Language Manual
5.60.10.22 Named_Tick_Box
The Named_Tick_Box is a panel field designed to be in only two states:

 ticked (on) or not ticked (off).
A Named_Tick_Box is made up of two items:
(a) a title area on the left with the user supplied title on it
and
(b) a box that can display, or not display, a tick.

Clicking LB anywhere along the length of the Named_Tick_Box from the title area to the tick box,
will reverse the state of the tick. That is, a tick will go to no tick, and no tick will go to tick.

Clicking MB or RB anywhere along the Named_Tick_Box does nothing.
Note: A Named_Tick_Box cannot be made optional

Commands and Messages for Wait_on_Widgets
Clicking LB anywhere in the Named_Tick_Box sends a "toggle tick" command and a blank
message.
Nothing else sends any commands or messages.

Create_named_tick_box(Text title_text,Integer state,Text response)
Name
Named_Tick_Box Create_named_tick_box(Text title_text,Integer state,Text response)

Description
Create an input Widget of type Named_Tick_Box. See 5.60.10.22 Named_Tick_Box.

The Named_Tick_Box is created with the Text title_text.
The Integer state specifies the ticked/unticked state of the box:
 state = 0 set the box as unticked

Named_Tick_Box

title area tick box ticked (on) tick box not ticked (off)

Named_Tick_Box

Click LB anywhere along the Named_Tick_Box the change the tick state
Page 952 Panels and Widgets

Chapter
 state = 1 set the box as ticked
The Text response returns the msg when calling the Wait_on_widgets function.
The function return value is the created Named_Tick_Box.

ID = 849

Validate(Named_Tick_Box box,Integer &result)
Name
Integer Validate(Named_Tick_Box box,Integer &result)

Description
Validate the contents of Named_Tick_Box box and return the Integer result.
 result = 0 if the tick box is unticked
 result = 1 if the tick box is ticked
A function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 974

Set_data(Named_Tick_Box box,Integer state)
Name
Integer Set_data(Named_Tick_Box box,Integer state)

Description
Set the state of the Named_Tick_Box to
 ticked if state = 1
 unticked if state = 0
A function return value of zero indicates the data was successfully set.

ID = 2239

Get_data(Named_Tick_Box box,Text &text_data)
Name
Integer Get_data(Named_Tick_Box box,Text &text_data)

Description
Get the data of type Text from the Named_Tick_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 976

Set_data(Named_Tick_Box box,Text text_data)
Name
Integer Set_data(Named_Tick_Box box,Text text_data)

Description
Set the data of type Text for the Named_Tick_Box box to text_data.
A function return value of zero indicates the data was successfully set.
Page 953Panels and Widgets

12d Model Programming Language Manual
ID = 975

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 954 Panels and Widgets

Chapter
5.60.10.23 New_Select_Box
The New_Select_Box is a panel field designed to select 12d Model strings.

Note that the New_Select_Box only picks strings and does not return information if a cursor pick
is made. The 5.60.10.30 Select_Box allows for cursor picks.
The New_Select_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area in the middle where the name and model of the selected string are

displayed
(c) a String select button on the right.
plus

(d) a screen select title that is displayed in the screen message area after the select button is
selected.

Nothing can be typed into the information area but if MB clicked in the information area starts
a "Same As" selection. A string is then selected and the model and name of the selected string
are displayed in the information area.

Clicking LB on the string select button and then selecting the string. The model and name of
the string are then displayed in the information area.
Clicking RB on the String select button brings up the string select Choice box.

Clicking MB on the String select button does nothing.

Commands and Messages for Wait_on_Widgets

New_Select_Box

title area information area

model and string name displayed
after a string is selected

String select button

screen select title displayed in the
screen message area
Page 955Panels and Widgets

12d Model Programming Language Manual
Clicking LB on the String Select button:
As the mouse is moved over a view, a "motion select" command is sent with the view
coordinates and view name as text in message.
Once in the select:

if a string is clicked on with LB, a "pick select" command is sent with the name of the view that the
string was selected in, in message. if the string is accepted (MB), an "accept select" command is
sent with the view name (in quotes) in message, or if RB is clicked and Cancel selected from the
Pick Ops menu, then a "cancel select" command is sent with nothing in message.

if a string is clicked on with MB (the pick and accept in one click method), a "pick select" com-
mand is sent with the name of the view that the string was selected in, in message, followed by an
"accept select" command with the view name (in quotes) in message.

Nothing else sends any commands or messages.

Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box
message)
Name
New_Select_Box Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box
message)

Description
Create an input Widget of type New_Select_Box. See 5.60.10.23 New_Select_Box.
The New_Select_Box is created with the title title_text.
The Select title displayed in the screen message area is select_title.
The value of mode is listed in the Appendix A - Select mode. See Select Mode.
The Message_Box message is normally the message box for the panel and is used to display
New_Select_Box validation messages.

Note that the New_Select_Box only picks strings and does not return information if a cursor pick
is made. The 5.60.10.30 Select_Box allows for cursor picks.
The function return value is the created New_Select_Box.
ID = 2240

Validate(New_Select_Box select,Element &string)
Name
Integer Validate(New_Select_Box select,Element &string)

Description
Validate the contents of New_Select_Box select and return the selected Element in string.
The function returns the value of:

 NO_NAME if the Widget New_Select_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
Page 956 Panels and Widgets

Chapter
ID = 2241

Validate(New_Select_Box select,Element &string,Integer silent)
Name
Integer Validate(New_Select_Box select,Element &string,Integer silent)

Description
Validate the contents of New_Select_Box select and return the selected Element in string.
If silent = 0, and there is an error, a message is written and the cursor goes back to the box.
If silent = 1 and there is an error, no message or movement of cursor is done.
The function returns the value of:

 NO_NAME if the Widget New_Select_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 2242

Set_data(New_Select_Box select,Element string)
Name
Integer Set_data(New_Select_Box select,Element string)

Description
Set the data of for the New_Select_Box select to string.

A function return value of zero indicates the data was successfully set.
ID = 2243

Set_data(New_Select_Box select,Text model_string)
Name
Integer Set_data(New_Select_Box select,Text model_string)

Description
Set the Element of the New_Select_Box box by giving the model name and string name as a
Text model_string in the form "model_name->string_name".
A function return value of zero indicates the data was successfully set.
ID = 2244

Get_data(New_Select_Box select,Text &model_string)
Name
Integer Get_data(New_Select_Box select,Text &model_string)

Description
Get the model and string name of the Element in the New_Select_Box box and return it in Text
Page 957Panels and Widgets

12d Model Programming Language Manual
model_string.
Note: the model and string name is in the form "model_name->string_name" so only one Text is
required.
A function return value of zero indicates the data was successfully returned.

ID = 2245

Select_start(New_Select_Box select)
Name
Integer Select_start(New_Select_Box select)

Description
Starts the string selection for the New_Select_Box select. This is the same as if the button on
the New_Select_Box had been clicked.

A function return value of zero indicates the start was successful.
ID = 3783

Select_end(New_Select_Box select)
Name
Integer Select_end(New_Select_Box select)

Description
Cancels the string selection that is running for the New_Select_Box select. This is the same as if
Cancel had been selected from the Pick Ops menu.
A function return value of zero indicates the end was successful.

ID = 3784

Set_select_type(New_Select_Box select,Text type)
Name
Integer Set_select_type(New_Select_Box select,Text type)

Description
Set the string selection type type for the New_Select_Box select. For example “Alignment”, “3d”.

A function return value of zero indicates the type was successfully set.
ID = 3776

Set_select_snap_mode(New_Select_Box select,Integer snap_control)
Name
Integer Set_select_snap_mode(New_Select_Box select,Integer snap_control)

Description
Set the snap control for the New_Select_Box select to snap_control.
 snap_control control value
Ignore_Snap = 0
User_Snap = 1
Program_Snap = 2
Page 958 Panels and Widgets

Chapter
A function return value of zero indicates the snap control was successfully set.
ID = 3777

Set_select_snap_mode(New_Select_Box select,Integer snap_mode,Integer
snap_control,Text snap_text)
Name
Integer Set_select_snap_mode(New_Select_Box select,Integer snap_mode,Integer snap_control,Text
snap_text)

Description
Set the snap mode snap_mode and snap control snap_control for the New_Select_Box
select.
Where snap_mode is:
Failed_Snap = -1
No_Snap = 0
Point_Snap = 1
Line_Snap = 2
Grid_Snap = 3
Intersection_Snap = 4
Cursor_Snap = 5
Name_Snap = 6
Tin_Snap = 7
Model_Snap = 8
Height_Snap = 9
Segment_Snap = 11
Text_Snap = 12
Fast_Snap = 13
Fast_Accept = 14
and snap_control is
Ignore_Snap = 0
User_Snap = 1
Program_Snap = 2
The snap_text must be string name; tin name, model name respectively, otherwise, leave the
snap_text blank (“”).
A function return value of zero indicates the snap mode was successfully set.

ID = 3778

Set_select_direction(New_Select_Box select,Integer dir)
Name
Integer Set_select_direction(New_Select_Box select,Integer dir)

Description
Set the selection direction dir for the New_Select_Box select.
Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully set.
ID = 3779
Page 959Panels and Widgets

12d Model Programming Language Manual
Get_select_direction(New_Select_Box select,Integer &dir)
Name
Integer Get_select_direction(New_Select_Box select,Integer &dir)

Description
Get the selection direction dir from the string selected for the New_Select_Box select.
The returned dir type must be Integer.
If select without direction, the returned dir is 1, otherwise, the returned dir is:
Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully returned.
ID = 3780

Set_select_coordinate(New_Select_Box select,Real x,Real y,Real z,Real ch,Real ht)
Name
Integer Set_select_coordinate(New_Select_Box select,Real x,Real y,Real z,Real ch,Real ht)

Description
Set the coordinates, chainage and height of the selected snap point of the string for the
New_Select_Box select.
The input values of x, y, z, ch, and ht are of type Real.
A function return value of zero indicates the values were successfully set.
ID = 3781

Get_select_coordinate(New_Select_Box select,Real &x,Real &y,Real &z,Real
&ch,Real &ht)
Name
Integer Get_select_coordinate(New_Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description
Get the coordinates, chainage and height of the selected snap point of the string for the
New_Select_Box select.
The return values of x, y, z, ch, and ht are of type Real.
A function return value of zero indicates the values were successfully returned.
ID = 3782

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 960 Panels and Widgets

Chapter
5.60.10.24 New_XYZ_Box
The New_XYZ_Box is a panel field designed to get x, y and z coordinates and the X Y and Z
coordinates are each displayed in their own information areas.

Also see 5.60.10.46 XYZ_Box where the XYZ values are displayed in the one information area,
separated by spaces.

The New_XYZ_Box is made up of:

(a) a title area on the left with the user supplied title on it
(b) a X coordinate box consisting of the title X coordinate, a X information area and a X select

button.
(c) a Y coordinate box consisting of the title Y coordinate, a Y information area and a Y select

button.
(d) a Z coordinate box consisting of the title Z coordinate, a Z information area and a Z select

button.
and
(e) a XYZ select button on the right.

A X coordinate can be typed into the X information area. Then hitting the <enter> key will
validate that the value is a Real number.
Clicking LB or RB on the X select button brings up the Measure X pop-up menu. Selecting an
option from the Measure X menu and making a measure displays the X coordinate in the X
information area.

Clicking MB on the X select button does nothing.

New_XYZ_Box

title area X information area X select button

X coordinate box

Y coordinate box
Z coordinate box

XYZ select button

Y select button

Z select button

Y information area Z information area

X coordinate

Y coordinate

Z coordinate
Page 961Panels and Widgets

12d Model Programming Language Manual
Similarly for Y and Z coordinates.

Clicking LB on the XYZ select button starts the XYZ Pick option and after selecting a position,
the X, Y and Z are displayed in the X, Y and Z information areas respectively.

Clicking RB on the XYZ select button brings up the XYZ Ops pop-up menu. Selecting the Pick
xyz option starts the XYZ Pick option and after selecting a position, the X, Y and Z are displayed
in the X, Y and Z information areas respectively.

Clicking MB on the XYZ select button does nothing.

Commands and Messages for Wait_on_Widgets
LJG? The New_XYZ_Box is actually made up of 4 widgets. So how do you know the ids?. The id
of the New_XYZ_Box returns he id of the Select XYZ button.

Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command and the text in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.
Picking an X coordinate with the X Select button sends a "real selected" command and nothing
in message.
Picking an Y coordinate with the Y Select button sends a "real selected" command and nothing
in message.
Picking an Z coordinate with the Z Select button sends a "real selected" command and nothing
in message.
Picking a coordinate with the XYZ Select button sends a "coordinate accepted" command with
nothing in message.

Create_new_xyz_box(Text title_text,Message_Box message)
Name
New_XYZ_Box Create_new_xyz_box(Text title_text,Message_Box message)

Description
Create an input Widget of type New_XYZ_Box. See 5.60.10.24 New_XYZ_Box.
The New_XYZ_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
New_XYZ_Box validation messages.

The function return value is the created New_XYZ_Box.
Page 962 Panels and Widgets

Chapter
ID = 2252

Validate(New_XYZ_Box box,Real &x,Real &y,Real &z)
Name
Integer Validate(New_XYZ_Box box,Real &x,Real &y,Real &z)

Description
Validate the contents of the New_XYZ_Box box and check that it decodes to three Reals.

The three Reals are returned in x, y, and z.
The function returns the value of:

 NO_NAME if the Widget New_XYZ_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and x, y and z are valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 2253

Get_data(New_XYZ_Box box,Text &text_data)
Name
Integer Get_data(New_XYZ_Box box,Text &text_data)

Description
Get the data of type Text from the New_XYZ_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 2254

Set_data(New_XYZ_Box box,Real x,Real y,Real z)
Name
Integer Set_data(New_XYZ_Box box,Real x,Real y,Real z)

Description
Set the x y z data (all of type Real) for the New_XYZ_Box box to the values x, y and z.
A function return value of zero indicates the data was successfully set.
ID = 2255

Set_data(New_XYZ_Box box,Text text_data)
Name
Integer Set_data(New_XYZ_Box box,Text text_data)

Description
Set the data of type Text for the New_XYZ_Box box to text_data.

A function return value of zero indicates the data was successfully set.
Page 963Panels and Widgets

12d Model Programming Language Manual
ID = 2256
Page 964 Panels and Widgets

Chapter
5.60.10.25 Plotter_Box

Create_plotter_box(Text title_text,Message_Box message)
Name
Plotter_Box Create_plotter_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Plotter_Box. See 5.60.10.25 Plotter_Box.

The Plotter_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Plotter_Box validation messages.

The function return value is the created Plotter_Box.
ID = 934

Validate(Plotter_Box box,Text &result)
Name
Integer Validate(Plotter_Box box,Text &result)

Description
Validate the contents of Plotter_Box box and return the Text result.
The function returns the value of:
 NO_NAME if the Widget Plotter_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.
 FALSE (0) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 935

Get_data(Plotter_Box box,Text &text_data)
Name
Integer Get_data(Plotter_Box box,Text &text_data)

Description
Get the data of type Text from the Plotter_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 937

Set_data(Plotter_Box box,Text text_data)
Name
Integer Set_data(Plotter_Box box,Text text_data)

Description
Set the data of type Text for the Plotter_Box box to text_data.
A function return value of zero indicates the data was successfully set.
Page 965Panels and Widgets

12d Model Programming Language Manual
ID = 936

Validate(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text
&plotter_type)
Name
Integer Validate(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)

Description
<no description>
ID = 2465

Set_data(Plotter_Box box,Text plotter_mode,Text plotter_names,Text plotter_type)
Name
Integer Set_data(Plotter_Box box,Text plotter_mode,Text plotter_names,Text plotter_type)

Description
<no description>
ID = 2466

Get_data(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text
&plotter_type)
Name
Integer Get_data(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)

Description
<no description>

ID = 2467

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 966 Panels and Widgets

Chapter
5.60.10.26 Polygon_Box

Polygon_Box Create_polygon_box(Text title_text,Text select_title,Integer
mode,Message_Box message)
Name
Polygon_Box Create_polygon_box(Text title_text,Text select_title,Integer mode,Message_Box message)

Description
Create an input Widget of type Polygon_Box. See 5.60.10.26 Polygon_Box.
The Polygon_Box is created with the title title_text.
The text in the screen message area is defined by select_title, if select_title is blank then the
default text "select polygon" will be used.
The parameter mode is not yet used for now.
The Message_Box message is normally the message box for the panel and is used to display
Polygon_Box validation messages.

The function return value is the created Polygon_Box.
ID = 2246

Validate(Polygon_Box select,Element &string)
Name
Integer Validate(Polygon_Box select,Element &string)

Description
Validate the contents of Polygon_Box select and return the selected Element in string.
If there is an error, a message is written and the cursor goes back to the Polygon_Box.
The function returns the value of:

 NO_NAME if the Widget Polygon_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 2247

Validate(Polygon_Box select,Element &string,Integer silent)
Name
Integer Validate(Polygon_Box select,Element &string,Integer silent)

Description
Validate the contents of Polygon_Box select and return the selected Element in string.
If silent = 0, and there is an error, a message is written and the cursor goes back to the
 Polygon_Box.

If silent = 1 and there is an error, no message or movement of cursor is done.
The function returns the value of:
 NO_NAME if the Widget Polygon_Box is optional and the box is left empty
Page 967Panels and Widgets

12d Model Programming Language Manual
 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 2248

Set_data(Polygon_Box select,Element string)
Name
Integer Set_data(Polygon_Box select,Element string)

Description
Set the data of type Element for the Polygon_Box select to string.
A function return value of zero indicates the data was successfully set.

ID = 2249

Set_data(Polygon_Box select,Text string_name)
Name
Integer Set_data(Polygon_Box select,Text string_name)

Description
Set the data of type Text for the Polygon_Box select to string_name.
A function return value of zero indicates the data was successfully set.
ID = 2250

Get_data(Polygon_Box select,Text &string)
Name
Integer Get_data(Polygon_Box select,Text &string)

Description
Get the data of type Text from the Polygon_Box select and return it in string.
A function return value of zero indicates the data was successfully returned.

ID = 2251

From v15 onward, each Polygon_Box has a property to control the selection of polygons with
holes. If the property (named allow in the bellow macro call) is 0, then the validation of the
Polygon_Box will fail on any polygon with holes. If the property is 1, then the validation will work
on polygons with and without holes. The two following macro calls will not work for v14.

Set_allow_holes(Polygon_Box select,Integer allow)
Name
Integer Set_allow_holes(Polygon_Box select,Integer allow)

Description
Page 968 Panels and Widgets

Chapter
Set the property of allowing polygon with holes for Polygon_Box select with the value of allow.
A function return value of zero indicates the property was successfully changes.
ID = 3801

Get_allow_holes(Polygon_Box select,Integer &allow)
Name
Integer Get_allow_holes(Polygon_Box select,Integer &allow)

Description
Get the property of allowing polygon with holes for Polygon_Box select and return it in allow.

A function return value of zero indicates the property was successfully changes.
ID = 3802

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 969Panels and Widgets

12d Model Programming Language Manual
5.60.10.27 Real_Box
The Real_Box is a panel field designed to enter real numbers where a real value may be given
as a decimal, or in exponential format such as 1.3e10 or 1.3d3. So the real number can only
contain +, -, decimal point, e, d and the numbers 0 to 9. No other characters can be typed into the
Real_Box.

A Real_Box is a panel field that is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) a information area to type in the real number. This information area is in the middle
and

(c) a Real select button on the right.

Data is typed into the information area and hitting the <enter> key will validate the typed data.
Only real values can be typed into the information area (that is, the real number can only
contain +, -, decimal point, e, d and the numbers 0 to 9).
Clicking LB or RB on the Real Select button brings up the Measure pop-up menu. Selecting an
option from the Measure menu and making a measure displays the real number in the
information area.

Clicking MB on the Real select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "real
selected" command and nothing in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Clicking LB or RB on the Real Select button and accepting a value sends a "real selected"
command and nothing in message.

Real_Box

title area information area typed dataReal Select button
Page 970 Panels and Widgets

Chapter
Create_real_box(Text title_text,Message_Box message)
Name
Real_Box Create_real_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Real_Box. See 5.60.10.27 Real_Box.
The Real_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Real_Box validation messages.
The function return value is the created Real_Box.

ID = 902

Validate(Real_Box box,Real &result)
Name
Integer Validate(Real_Box box,Real &result)

Description
Validate the contents of Real_Box box and return the Real result.
The function returns the value of:
 NO_NAME if the Widget Real_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 903

Get_data(Real_Box box,Text &text_data)
Name
Integer Get_data(Real_Box box,Text &text_data)

Description
Get the data of type Text from the Real_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 905

Set_data(Real_Box box,Real real_data)
Name
Integer Set_data(Real_Box box,Real real_data)

Description
Set the data of type Real for the Real_Box box to real_data.

A function return value of zero indicates the data was successfully set.
Page 971Panels and Widgets

12d Model Programming Language Manual
ID = 904

Set_data(Real_Box box,Text text_data)
Name
Integer Set_data(Real_Box box,Text text_data)

Description
Set the data of type Text for the Real_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 1516

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 972 Panels and Widgets

Chapter
5.60.10.28 Report_Box
The Report_Box is a panel field designed to select or create, disk report files. If a file name is
typed into the box, then it will be validated when <enter> is pressed.

A Report_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a file name or to display the file name if it is selected by the

File select button. This information area is in the middle
and

(c) a File select button on the right.

A file name can be typed into the information area. Then hitting the <enter> key will validate the
file name.
Clicking LB or RB on the File select button brings up the Folder pop-up with the wild card for
showing files set to *.rpt. Files with other ending can be created/selected but the default for a
Report_Box is "*.rpt".

Selecting a file from the pop-up list writes the file name to the information area.

Clicking MB on the File select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.

Report_Box
title area information area report file nameFile select button
Page 973Panels and Widgets

12d Model Programming Language Manual
Pressing the Enter key in the information area sends a "keystroke" command and then a "file
selected" command and the text in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.
Picking a file with the Folder Select button sends a " file selected" command and the full path
name of the file in message.

Create_report_box(Text title_text,Message_Box message,Integer mode)
Name
Report_Box Create_report_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Report_Box. See 5.60.10.28 Report_Box.
The Report_Box is created with the title title_text.
The Message_Box message is normally the message box for the panel and is used to display
Report_Box validation messages.

The value of mode is listed in the Appendix A - File mode.
The function return value is the created Report_Box.

ID = 938

Validate(Report_Box box,Integer mode,Text &result)
Name
Integer Validate(Report_Box box,Integer mode,Text &result)

Description
Validate the contents of Report_Box box and return the Text result.
The value of mode is listed in the Appendix A - File mode. See File Mode
The function returns the value of:
 NO_NAME if the Widget Report_Box is optional and the box is left empty

 NO_FILE, FILE_EXISTS or NO_FILE_ACCESS
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 939

Get_data(Report_Box box,Text &text_data)
Name
Integer Get_data(Report_Box box,Text &text_data)
Page 974 Panels and Widgets

Chapter
Description
Get the data of type Text from the Report_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 941

Set_data(Report_Box box,Text text_data)
Name
Integer Set_data(Report_Box box,Text text_data)

Description
Set the data of type Text for the Report_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 940

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 975Panels and Widgets

12d Model Programming Language Manual
5.60.10.29 Screen_Text
The Screen_Text is a panel field designed to simply place some text on the panel.

Commands and Messages for Wait_on_Widgets
No commands or messages are send from the Screen_Text Widget.

Create_screen_text(Text text)
Name
Screen_Text Create_screen_text(Text text)

Description
Create a Screen_Text with the Text text. See 5.60.10.29 Screen_Text.

The function return value is the created Screen_Text.
ID = 1369

Set_data(Screen_Text widget,Text text_data)
Name
Integer Set_data(Screen_Text widget,Text text_data)

Description
Set the data of type Text for the Screen_Text widget to text_data.
A function return value of zero indicates the data was successfully set.
ID = 1371

Get_data(Screen_Text widget,Text &text_data)
Name
Integer Get_data(Screen_Text widget,Text &text_data)

Description
Get the data of type Text from the Screen_Text widget and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 1370

For information on the other Input Widgets, go to 5.60.10 Input Widgets

Screen_Text
screen text
Page 976 Panels and Widgets

Chapter
5.60.10.30 Select_Box
The Select_Box is a panel field designed to select 12d Model strings and also cursor picks.

The Select_Box creates a panel field which is made up two items:
(a) a Select button on the left with the user supplied title on it
(b) an information area on the right where the name and model of the selected string are

displayed
plus

(c) a screen select title that is displayed in the screen message area after the select button is
selected.

A string is selected by first clicking LB on the button and then selecting the string (with MB or
accept from the Pick Ops menu). The model and name of the selected string is then displayed in
the information area.
A cursor pick can also be made first clicking LB on the button and then MB when at the required
cursor position. For a cursor pick, nothing is displayed in the information area.

After the select is started, the screen select title for the button is displayed in the screen message
area.
Clicking MB and RB on the select button does nothing.
Note: The New_Select_Box is normally used instead of the Select_Box. See 5.60.10.23
New_Select_Box

Commands and Messages for Wait_on_Widgets
Clicking LB on the String Select button:

sends a "start select" command with nothing in message, then as the mouse is moved over a
view, a "motion select" command is sent and the view coordinates and view name in
message.
Once in the select:

if a string is clicked on with LB, or a cursor pick is made, a "pick select" command is sent with the
name of the view that the string was selected in, in message. if the string or cursor pick is accepted
(MB), an "accept select" command is sent with the view name (in quotes) in message, or if RB is
clicked and Cancel selected from the Pick Ops menu, then a "cancel select" command is sent with
nothing in message.

if a string, or cursor pick, is clicked on with MB (the pick and accept in one click method), a "pick
select" command is sent with the name of the view that the string or cursor pick was selected in, in

Select_Box

Select button with title information area - display only

model and string name displayed
after a string s selected

screen select title displayed in the
screen message area
Page 977Panels and Widgets

12d Model Programming Language Manual
message, followed by an "accept select" command with the view name (in quotes) in message.

Nothing else sends any commands or messages.

 Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box
message)
Name
Select_Box Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)

Description
Create an input Widget of type Select_Box.
The Select_Box is created with the title title_text.
The Select title displayed in the screen message area is select_title.

The value of mode is listed in the Appendix A - Select mode. See Select Mode.
The Message_Box message is normally the message box for the panel and is used to display
string select validation messages.
The function return value is the created Select_Box.

ID = 882

Validate(Select_Box select,Element &string)
Name
Integer Validate(Select_Box select,Element &string)

Description
Validate the Element string in the Select_Box select.
The function returns the value of:
 NO_NAME if the Widget Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 981

Validate(Select_Box select,Element &string,Integer silent)
Name
Integer Validate(Select_Box select,Element &string,Integer silent)

Description
Validate the Element string in the Select_Box select.
If silent = 0, and there is an error, a message is written and the cursor goes back to the box.
If silent = 1 and there is an error, no message or movement of cursor is done.

The function returns the value of SELECT_STRING indicates the string is selected successfully.
Page 978 Panels and Widgets

Chapter
ID = 1376

Set_data(Select_Box select,Text model_string)
Name
Integer Set_data(Select_Box select,Text model_string)

Description
Set the Element in the Select_Box select by giving the model name and string name as a Text
model_string in the form "model_name->string_name"

.A function return value of zero indicates the data was successfully set.
ID = 982

Set_data(Select_Box select,Element string)
Name
Integer Set_data(Select_Box select,Element string)

Description
Set the Element for the Select_Box select to string.
A function return value of zero indicates the data was successfully set.

ID = 1174

Get_data(Select_Box select,Text &string)
Name
Integer Get_data(Select_Box select,Text &string)

Description
Get the model and string name of the Element in Select_Box select and return it in the Text
model_string,

Note: the model and string name is in the form "model_name->string_name" so only one Text is
required.
A function return value of zero indicates the data was successfully returned.
ID = 983

Select_start(Select_Box select)
Name
Integer Select_start(Select_Box select)

Description
Starts the string selection for the Select_Box select. This is the same as if the button on the
Select_Box had been clicked.
A function return value of zero indicates the start was successful.

ID = 1169

Select_end(Select_Box select)
Page 979Panels and Widgets

12d Model Programming Language Manual
Name
Integer Select_end(Select_Box select)

Description
Cancels the string selection that is running for the Select_Box select. This is the same as if
Cancel had been selected from the Pick Ops menu.
A function return value of zero indicates the end was successful.
ID = 1170

Set_select_type(Select_Box select,Text type)
Name
Integer Set_select_type(Select_Box select,Text type)

Description
Set the string selection type type for the Select_Box select. For example “Alignment”, “3d”.
A function return value of zero indicates the type was successfully set.

ID = 1048

Set_select_snap_mode(Select_Box select,Integer snap_control)
Name
Integer Set_select_snap_mode(Select_Box select,Integer snap_control)

Description
Set the snap control for the Select_Box select to snap_control.
 snap_control control value
Ignore_Snap = 0
User_Snap = 1
Program_Snap = 2

A function return value of zero indicates the snap control was successfully set.
ID = 1049

Set_select_snap_mode(Select_Box select,Integer snap_mode,Integer
snap_control,Text snap_text)
Name
Integer Set_select_snap_mode(Select_Box select,Integer snap_mode,Integer snap_control,Text snap_text)

Description
Set the snap mode snap_mode and snap control snap_control for the Select_Box select.
Where snap_mode is:

Failed_Snap = -1
No_Snap = 0
Point_Snap = 1
Line_Snap = 2
Grid_Snap = 3
Intersection_Snap = 4
Cursor_Snap = 5
Name_Snap = 6
Page 980 Panels and Widgets

Chapter
Tin_Snap = 7
Model_Snap = 8
Height_Snap = 9
Segment_Snap = 11
Text_Snap = 12
Fast_Snap = 13
Fast_Accept = 14
and snap_control is
Ignore_Snap = 0
User_Snap = 1
Program_Snap = 2

The snap_text must be string name; tin name, model name respectively, otherwise, leave the
snap_text blank (“”).
A function return value of zero indicates the snap mode was successfully set.

ID = 1045

Set_select_direction(Select_Box select,Integer dir)
Name
Integer Set_select_direction(Select_Box select,Integer dir)

Description
Set the selection direction dir for the Select_Box select.
Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string
A function return value of zero indicates the direction was successfully set.

ID = 1447

Get_select_direction(Select_Box select,Integer &dir)
Name
Integer Get_select_direction(Select_Box select,Integer &dir)

Description
Get the selection direction dir from the string selected for the Select_Box select.
The returned dir type must be Integer.
If select without direction, the returned dir is 1, otherwise, the returned dir is:
Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string
A function return value of zero indicates the direction was successfully returned.
ID = 1051

Set_select_coordinate(Select_Box select,Real x,Real y,Real z,Real ch,Real ht)
Name
Integer Set_select_coordinate(Select_Box select,Real x,Real y,Real z,Real ch,Real ht)
Page 981Panels and Widgets

12d Model Programming Language Manual
Description
Set the coordinates, chainage and height of the selected snap point of the string for the
Select_Box select.
The input values of x, y, z, ch, and ht are of type Real.
A function return value of zero indicates the values were successfully set.
ID = 1448

Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real
&ht)
Name
Integer Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description
Get the coordinates, chainage and height of the selected snap point of the string for the
Select_Box select.
The return values of x, y, z, ch, and ht are of type Real.
A function return value of zero indicates the values were successfully returned.
ID = 1052

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 982 Panels and Widgets

Chapter
5.60.10.31 Select_Boxes
The Select_Boxes is a panel item that contains a number of selection boxes.

Each of the selection boxes is made up two items:
(a) a select button on the left with the user supplied title on it
(b) an information area on the right where the name and model of the selected string are

displayed
plus

(c) a screen select title that is displayed in the screen message area after the select button is
selected.

A string is selected by first clicking LB on one of the buttons and then selecting the string. The
model and name of the selected string is then displayed in the information area for that button.
After the select is started, the screen select title for that button is displayed in the screen
message area.
Clicking MB and RB on the select buttons does nothing.

Commands and Messages for Wait_on_Widgets
Select_Boxes consists of a number of selection boxes.
For the i’th selection box of the Select_Boxes:

Clicking LB on the i’th Select button:
sends a "start select i" command with nothing in message, then as the mouse is moved over
a view, a "motion select i" command is sent and the view coordinates and view name in
message.
Once in the select:

if a string is clicked on with LB, a "pick select i" command is sent with the name of the view that
the string was selected in, in message. if the string is accepted (MB), an "accept select i" command
is sent with the view name (in quotes) in message, or if RB is clicked and Cancel selected from the
Pick Ops menu, then a "cancel select i" command is sent with nothing in message.

if a string is clicked on with MB (the pick and accept in one click method), a "pick select i" com-
mand is sent with the name of the view that the string was selected in, in message, followed by an

Select_Boxes

select buttons with titles information areas - display only

model and string name displayed
after a string s selected

screen select title displayed in the
screen message area
Page 983Panels and Widgets

12d Model Programming Language Manual
"accept select i" command with the view name (in quotes) in message.

Nothing else sends any commands or messages.

Create_select_boxes(Integer no_boxes,Text title_text[],Text select_title[],Integer
mode[],Message_Box message)
Name
Select_Boxes Create_select_boxes(Integer no_boxes,Text title_text[],Text select_title[],Integer
mode[],Message_Box message)

Description
Create an input Widget of type Select_Boxes which is actually a collection of 0 or more boxes
that each acts like a Select_Box. See 5.60.10.31 Select_Boxes.

no_boxes indicates the number of boxes in the boxes array.
The Select_Boxes are created with the titles given in the array title_text[].
The Screen select titles displayed in the screen message area are given in the array
select_title[].
The value of mode[] is listed in the Appendix A - Select mode.
The Message_Box message is used to display the select information.
The function return value is the created Select_Boxes.

ID = 883

Validate(Select_Boxes select,Integer n,Element &string)
Name
Integer Validate(Select_Boxes select,Integer n,Element &string)

Description
Validate the nth Element string in the Select_Boxes select.
The function returns the value of:
 NO_NAME if the n’th box of the New_Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 984

Validate(Select_Boxes select,Integer n,Element &string,Integer silent)
Name
Integer Validate(Select_Boxes select,Integer n,Element &string,Integer silent)

Description
Validate the nth Element string in the Select_Boxes select.
If silent = 0, and there is an error, a message is written and the cursor goes back to the box.
Page 984 Panels and Widgets

Chapter
If silent = 1 and there is an error, no message or movement of cursor is done.
The function returns the value of:
 NO_NAME if the n’th box of the New_Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1377

Set_data(Select_Boxes select,Integer n,Text model_string)
Name
Integer Set_data(Select_Boxes select,Integer n,Text model_string)

Description
Set the Element of the n’th box in the Select_Boxes select by giving the model name and string
name as a Text model_string in the form "model_name->string_name".

A function return value of zero indicates the data was successfully set.
ID = 985

Set_data(Select_Boxes select,Integer n,Element string)
Name
Integer Set_data(Select_Boxes select,Integer n,Element string)

Description
Set the data of type Element for the n’th box in the Select_Boxes select to string.
A function return value of zero indicates the data was successfully set.
ID = 1175

Get_data(Select_Boxes select,Integer n,Text &model_string)
Name
Integer Get_data(Select_Boxes select,Integer n,Text &model_string)

Description
Get the model and string name of the Element in the n’th box of the Select_Boxes select. and
return it in the Text model_string,
Note: the model and string name is in the form "model_name->string_name" so only one Text is
required.

A function return value of zero indicates the data was successfully returned.
ID = 986

Select_start(Select_Boxes select,Integer n)
Name
Page 985Panels and Widgets

12d Model Programming Language Manual
Integer Select_start(Select_Boxes select,Integer n)

Description
Starts the string selection for the n’th box of the Select_Boxes select. This is the same as if the
button on the n’th box of Select_Boxes had been clicked.

A function return value of zero indicates the start was successful.
ID = 1171

Select_end(Select_Boxes select,Integer n)
Name
Integer Select_end(Select_Boxes select,Integer n)

Description
Cancels the string selection that is running for the n’th box of the Select_Boxes n’th box of the
Select_Boxes select. This is the same as if Cancel had been selected from the Pick Ops menu.
A function return value of zero indicates the end was successful.
ID = 1172

Set_select_type(Select_Boxes select,Integer n,Text type)
Name
Integer Set_select_type(Select_Boxes select,Integer n,Text type)

Description
Set the string selection for the n’th box of the Select_Boxes select to type. For example
“Alignment”, “3d”.

A function return value of zero indicates the type was successfully set.
ID = 1053

Set_select_snap_mode(Select_Boxes select,Integer n,Integer control)
Name
Integer Set_select_snap_mode(Select_Boxes select,Integer n,Integer control)

Description
Set the snap control for n’th box of the Select_Boxes select to control.
snap control control value
 Ignore_Snap 0
 User_Snap
 Program_Snap 2

A function return value of zero indicates the snap control was successfully set.
ID = 1054

Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer
snap_control,Text snap_text)
Name
Integer Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer snap_control,Text
Page 986 Panels and Widgets

Chapter
snap_text)

Description
Set the snap mode mode and snap control snap_control for the nth box of the Select_Boxes
select.
When snap mode is:
 Name_Snap 6
 Tin_Snap 7
 Model_Snap 8
the snap_text must be string name; tin name, model name respectively, otherwise, leave the
snap_text blank (“”).

A function return value of zero indicates the snap mode was successfully set.
ID = 1055

Set_select_direction(Select_Boxes select,Integer n,Integer dir)
Name
Integer Set_select_direction(Select_Boxes select,Integer n,Integer dir)

Description
Set the selection direction dir of the string selected for the n’th box of the Select_Boxes select.
The input dir type must be Integer.
Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully set.

ID = 1449

Get_select_direction(Select_Boxes select,Integer n,Integer &dir)
Name
Integer Get_select_direction(Select_Boxes select,Integer n,Integer &dir)

Description
Get the selection direction dir of the string selected for the n’th box of the Select_Boxes select.
The returned dir type must be Integer.
If select without direction, the returned dir is 1, otherwise, the returned dir is:

Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully returned.

ID = 1056

Set_select_coordinate(Select_Boxes select,Integer n,Real x,Real y,Real z,Real
Page 987Panels and Widgets

12d Model Programming Language Manual
ch,Real ht)
Name
Integer Set_select_coordinate(Select_Boxes select,Integer n,Real x,Real y,Real z,Real ch,Real ht)

Description
Get the coordinate, chainage and height of the snap point of the string selected for the n’th box
of the Select_Boxes select.
The input value of x, y, z, ch, and ht are of type of Real.
A function return value of zero indicates the coordinate was successfully set.
ID = 1450

Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real
&ch,Real &ht)
Name
Integer Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real &ch,Real
&ht)

Description
Get the coordinate, chainage and height of the snap point of the string selected for the n’th box
of the Select_Boxes select.
The return value of x, y, z, ch, and ht are of type of Real.
A function return value of zero indicates the coordinate was successfully returned.

ID = 1057

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 988 Panels and Widgets

Chapter
5.60.10.32 Sheet_Size_Box
The Sheet_Size_Box is a panel field designed to select a sheet size name, or type in a sheet
size by giving width and height separate by spaces. The units for width and height are
millimetres. If a sheet size name, or a width and height is typed into the box, then the sheet size
name, or the width and height, will be validated when <enter> is pressed.

A Sheet_Size_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a sheet size name, or widths and heights of a sheet (where

width and height are separated by spaces and the units are millimetres), or to display the
sheet size name if it is selected by the Sheet Size select button. This information area is in
the middle

and
(c) a Sheet Size choice button on the right.

A sheet size name can be typed into the information area, or widths and heights of a sheet
(where width and height are separated by spaces and the units are millimetres). Then hitting the
<enter> key will validate the sheet size.

Clicking LB or RB on the Sheet Size choice button brings up the Select Sheet Size Choice pop-
up. Selecting a sheet size from the pop-up list writes the sheet size name in the information area.

Sheet_Size_Box

title area information area

sheet size name

Sheet Size choice button

sheet size in width and height (mm)
Page 989Panels and Widgets

12d Model Programming Language Manual
Clicking MB on the Sheet Size choice button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and if
(a) the text in the information area is a valid sheet size choice, then a "sheet selected"

command is sent with the sheet size choice in message
(b) if the text is made up of two words then a "sheet selected" command is sent with nothing in

message (this could be a typed width height)
(c) if the text is not two words and is not a valid sheet size, then nothing is sent.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a justification after clicking on the Sheet Size Choice button sends a "sheet selected"
command and the sheet size choice in message.
Page 990 Panels and Widgets

Chapter
Create_sheet_size_box(Text title_text,Message_Box message)
Name
Sheet_Size_Box Create_sheet_size_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Sheet_Size_Box. See 5.60.10.32 Sheet_Size_Box.
The Sheet_Size_Box is created with the title title_text.
The Message_Box message is used to display sheet size information.
The function return value is the created Sheet_Size_Box.

ID = 946

Validate(Sheet_Size_Box box,Real &w,Real &h,Text &sheet)
Name
Integer Validate(Sheet_Size_Box box,Real &w,Real &h,Text &sheet)

Description
Validate the contents of Sheet_Size_Box box and return the width of the sheet as w, the height
of the sheet as h and the sheet size as Text sheet or blank if it is not a standard size.

The function returns the value of:
 NO_NAME if the Widget Sheet_Size_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and w, h, sheet are valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 947

Get_data(Sheet_Size_Box box,Text &text_data)
Name
Integer Get_data(Sheet_Size_Box box,Text &text_data)

Description
Get the data of type Text from the Sheet_Size_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 949

Set_data(Sheet_Size_Box box,Text text_data)
Name
Integer Set_data(Sheet_Size_Box box,Text text_data)

Description
Set the data of type Text for the Sheet_Size_Box box to text_data.

A function return value of zero indicates the data was successfully set.
Page 991Panels and Widgets

12d Model Programming Language Manual
ID = 948

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 992 Panels and Widgets

Chapter
5.60.10.33 Slider_Box
The Slider_Box is a panel field designed to display a slider (or bar) that the user is able to move
along the Slider_Box.

The programmer supplies a minimum and maximum value for the Slider_Box and as the slider is
moved in the Slider_Box, values are sent back to the macro indicating the position of the slider
between the minimum and maximum values.
The Slider_Box can be horizontal or vertical.

Commands and Messages for Wait_on_Widgets
Moving the slider will send a "slider_updated" command back to the macro via the
Wait_on_widgets(id,cmd,msg) call with the id of the Slider_Box. The actual value of the slider
position is then given by the call Get_slider_position. See Get_slider_position(Slider_Box
box,Integer &value).

"slider_updated" - generated by holding the cursor on the slider and moving it to the left/right
for a horizontal slider, or down/up for a vertical slider.
Moving the horizontal slider to the right increases the units
Moves the vertical slider down increases the units.

Moving the horizontal slider to the left decreases the units
Moves the vertical slider up decreases the units.

When the slider is finally released after moving it by the cursor, the "slider_end_tracking"
command is returned via Wait_on_widgets.

Horizontal Slider_Box

slider ticks

Vertical Slider_Box

minimum value
position

maximum value
position

minimum value
position

maximum value
position

height of
Slider_Box

height of
Slider_Box

width of slider box

width of slider box
Page 993Panels and Widgets

12d Model Programming Language Manual
When the slider is not being moved but the cursor is clicked on the slider and highlights it:
,

then other keystrokes are recognised and return the following text commands via the
Wait_on_widgets(id,cmd,msg) call with the id of the Slider_Box.

"slider_down" - generated by pressing the right arrow (->) key or the down arrow key.
Moves the horizontal slider to the right by one unit
Moves the vertical slider down by one unit.

"slider_up" - generated by pressing the up arrow key or the left arrow (<-) key.
Moves the vertical slider up by one unit.
Moves the horizontal slider to the left by one unit

"slider_top" - generated by pressing the Home key.
Moves the vertical slider up to the top, and hence to the minimum value.
Moves the horizontal slider to the far left, and hence to the minimum value.

"slider_bottom" - generated by pressing the End key.
Moves the vertical slider down to the bottom, and hence to the maximum value.
Moves the horizontal slider to the far right, and hence to the maximum value.

"slider_page_up" - generated by pressing the Page Up key.
Moves the vertical slider up by a number of units.
Moves the horizontal slider to the left by a number of units.

"slider_page_down" - generated by pressing the Page Down key.
Moves the vertical slider down by a number of units.
Moves the horizontal slider to the right by a number of units.

After any of the above keystrokes, the "slider_end_tracking" command is returned via
Wait_on_widgets.

After each of the commands, the value of the slider position is given by the call
Get_slider_position. See Get_slider_position(Slider_Box box,Integer &value).

Create_slider_box(Text name,Integer width,Integer height,Integer
min_value,Integer max_value,Integer tick_interval,Integer horizontal)
Name
Slider_Box Create_slider_box(Text name,Integer width,Integer height,Integer min_value,Integer
max_value,Integer tick_interval,Integer horizontal)

Description
Create an input Widget of type Slider_Box. See 5.60.10.33 Slider_Box.
The Slider_Box can be horizontal or vertical.

slider highlighted
Page 994 Panels and Widgets

Chapter
If horizontal = 1 then the Slider_Box is horizontal.
If horizontal = 0 then the Slider_Box is vertical.

The range of values returned by the Slider_Box are specified by a minimum value (min_val)
which is when the slider is at the left of a horizontal Slider_Box, or the top for a vertical
Slider_Box, and a maximum value (max_range) which is reached when the slider is at the right
of a horizontal Slider_Box, or at the bottom of a vertical Slider_Box.
min_value must be less than max_val.
Tick marks are drawn at the interval given by tick_interval on the bottom of a horizontal slider, of
to the right of a vertical slider.
The slider box is created with a width width and height height where the width and height are
given in screen units (pixels).

The function return value is the created Slider_Box.

Note: the height for a horizontal Slider_Box or the width for a vertical Slider_Box should be at
least 30 or there will be no room to display the slider and tick marks.

ID = 2706

Set_slider_position(Slider_Box box,Integer value)
Name
Integer Set_slider_position(Slider_Box box,Integer value)

Description
Move the slider of Slider_Box box to the position given by value units of the Slider_Box.

A function return value of zero indicates the set was successful.
 ID = 2707

Get_slider_position(Slider_Box box,Integer &value)
Name
Integer Get_slider_position(Slider_Box box,Integer &value)

Description
For the Slider_Box box, get the position of the slider in units of the Slider_Box and return the
number of units in value.
A function return value of zero indicates the get was successful.
ID = 2708
Page 995Panels and Widgets

12d Model Programming Language Manual
5.60.10.34 Source_Box
The Source_Box is a panel field designed to allow the user to define how to select data.

The Source_Box consists of a row of Data Source Choices for the user to select one from, and
when a Data Source Choice is selected, depending on the choice one or more additional fields
will be presented to fully define/refine what date the user wishes to select.
For example, if the user selects the Select Model Choice, a Model_Box is then displayed for the
user to enter a Model name.

Hence a Source_Box is made up of three items:
(a) a title area above the row of Data Source Choices with the user supplied title on it
(b) the row of Data Source Choices to pick from
(c) an area under the row of Data Source Choices to display the extra panel fields required to

fully define the users data selection method.

Note: If the panel appears to be sizing weirdly when there is a Source_Box involved, try putting
all the Input Widgets into a Vertical_Group and then append the Vertical_Group to the Panel.

Note: A Source_Box cannot be made optional

Source_Box
Model_Box displayed when

Data Source Choices

Select
Model

Select Model icon is pressed

Choice

Source_Box

Area to displayed the additional

Row of Data Source Choices

fields required for the selected choice

Title
Page 996 Panels and Widgets

Chapter
Source_Box Create_source_box(Text title_text,Message_Box box,Integer flags)
Name
Source_Box Create_source_box(Text title_text,Message_Box box,Integer flags)

Description
Create an input Widget of type Source_Box which is used to define how to select data. See
5.60.10.34 Source_Box.

The Source_Box is created with the title "Data " followed by title_text.
What Data Source Choices are displayed and hence available to select, is controlled by flags. i
If flags = 0, then all the choices are displayed.

 Model Source_Box_Model = 0x001 = 1
 View Source_Box_View = 0x002 = 2
 String Source_Box_String = 0x004 = 4
 Rectangle Source_Box_Rectangle = 0x008 = 8
 Trapezoid Source_Box_Trapezoid = 0x010 = 16
 Polygon Source_Box_Polygon = 0x020
 Lasso Source_Box_Lasso = 0x040
 Filter Source_Box_Filter = 0x080
 Models Source_Box_Models = 0x100
 Favourites Source_Box_Favorites = 0x200
 All Source_Box_All = 0xfff
 Fence inside Source_Box_Fence_Inside = 0x01000
 Fence cross Source_Box_Fence_Cross = 0x02000
 Fence outside Source_Box_Fence_Outside = 0x04000
 Fence string Source_Box_Fence_String = 0x08000
 Fence points Source_Box_Fence_Points = 0x10000
 Fence all Source_Box_Fence_All = 0xff000

Source_Box_Standard = Source_Box_All | Source_Box_Fence_Inside |
Source_Box_Fence_Outside | Source_Box_Fence_Cross |

 Source_Box_Fence_String
You can have just some of them by combining the ones you want with |.
For example Source_Box_Model | Source_Box_View

The Message_Box message is used to display information.
The function return value is the created Source_Box.

ID = 1675

Source_Box Create_source_box(Text text,Message_Box box,Integer flags, Integer
start_flag)
Name
Source_Box Create_source_box(Text text,Message_Box box,Integer flags,Integer start_flag)

Description
Same as the other Create_source_box function but with an extra start_flag to indicate the
choice of data source that the box starts with.
The function return value is the created Source_Box.
ID = 2626

Validate(Source_Box box,Dynamic_Element &de_results)
Page 997Panels and Widgets

12d Model Programming Language Manual
Name
Integer Validate(Source_Box box,Dynamic_Element &elements)

Description
Validate the contents of Source_Box box and return the Dynamic_Element de_results.
The function returns the value of:
 NO_NAME if the Widget Source_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and elements is valid.
 -2 if there is something wrong with the choices. For example the panel field is blank.
 FALSE (zero) if there is a drastic error.

Having no Elements returned in de_results is NOT an error.
Always check the number of Elements in de_results and make your decisions based on that.
 ierr = Get_number_of_items(de_results,no_elts);

So a function return value of zero indicates that there is a drastic error.
Warning this is the opposite of most 12dPL function return values
Double Warning: most times the function return code is non zero even when you think it should
be. For example, when nothing is entered into the box, the return code is -2, not 0.

ID = 1676

Set_data(Source_Box box,Text text_data)
Name
Integer Set_data(Source_Box box,Text text_data)

Description
Set the data of type Text for the Source_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 2156

Get_data(Source_Box box,Text &text_data)
Name
Integer Get_data(Source_Box box,Text &text_data)

Description
Get the data of type Text from the Source_Edit_Box box and return it in text_data.

text_data describes what has been selected in the Source_Box. Because of all the choices it is
very complicated looking.
A function return value of zero indicates the data was successfully returned.
ID = 2157

Read_favorite(Source_Box box,Text filename)
Name
Integer Read_favorite(Source_Box box,Text filename)
Page 998 Panels and Widgets

Chapter
Description
For the Source_Box box, read in and set the Source_Box selection from the file named
filename.
Note: the Read_favourite and Write_favourite calls allow Source_Box selection settings to be
saved, and passed around between different Source_Box’s.

A function return value of zero indicates filename was read and the Source_Box was
successfully set.
ID = 2158

Write_favorite(Source_Box box,Text filename)
Name
Integer Write_favorite(Source_Box box,Text filename)

Description
For the Source_Box box, write out the Source_Box selection information to the file named
filename.
Note: the Read_favourite and Write_favourite calls allow Source_Box selection settings to be
saved, and passed around between different Source_Box’s.

A function return value of zero indicates the file was successfully written.
ID = 2159

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 999Panels and Widgets

12d Model Programming Language Manual
5.60.10.35 Symbol_Box
The Symbol_Box is a panel field designed to select 12d Model symbols. If a symbol name is
typed into the box, then the symbol name will be validated when <enter> is pressed.

A Symbol_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a symbol name or to display the symbol name if it is selected

by the Symbol select button. This information area is in the middle
and

(c) a Symbol select button on the right.

A symbol name can be typed into the information area. Then hitting the <enter> key will validate
the symbol name.
MB clicked in the information area starts a "Same As" selection. A symbol is then selected and
the symbol name is written in the information area.

Clicking LB or RB on the Symbol select button brings up the Select Symbol pop-up. Selecting a
symbol from the pop-up list writes the symbol name in the information area.

Symbol_Box

title area information area symbol nameSymbol select button
Page 1000 Panels and Widgets

Chapter
Clicking MB on the Symbol select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command with the symbol choice in message, or blank if it is not a valid symbol choice
(that is, it is not in the Symbol list).
Pressing and releasing LB in the information area sends a "left_button_up" command.
Page 1001Panels and Widgets

12d Model Programming Language Manual
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a justification after clicking on the Symbol Select button sends a "text selected"
command and the symbol choice in message.

Symbol_Box Create_symbol_box(Text title_text,Message_Box message,Integer
mode)
Name
Symbol_Box Create_symbol_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Symbol_Box. See 5.60.10.35 Symbol_Box.
The Symbol_Box is created with the title title_text.
The Message_Box message is used to display information.
The value of mode is listed in the Appendix A - Linestyle mode. See Linestyle Mode.
The function return value is the created Symbol_Box.

ID = 2170

Validate(Symbol_Box box,Integer mode,Text &result)
Name
Integer Validate(Symbol_Box box,Integer mode,Text &result)

Description
Validate the contents of Symbol_Box box and return the name of the symbol in Text result.
The value of mode is listed in the Appendix A - Symbol mode. See Symbol Mode
The function returns the value of:

 NO_NAME if the Widget Symbol_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 2171

Get_data(Symbol_Box box,Text &text_data)
Name
Integer Get_data(Symbol_Box box,Text &text_data)

Description
Get the data of type Text from the Symbol_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
Page 1002 Panels and Widgets

Chapter
ID = 2172

Set_data(Symbol_Box box,Text text_data)
Name
Integer Set_data(Symbol_Box box,Text text_data)

Description
Set the data of type Text for the Symbol_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 2173

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1003Panels and Widgets

12d Model Programming Language Manual
5.60.10.36 Target_Box

Target_Box Create_target_box(Text title_text,Message_Box box,Integer flags)
Name
Target_Box Create_target_box(Text title_text,Message_Box box,Integer flags)

Description
Create an input Widget of type Target_Box. See 5.60.10.36 Target_Box.

The Target_Box is created with the title title_text.
The Message_Box message is used to display information.
The choices of targets are defined by flags. See Target Box Flags.

The function return value is the created Target_Box.
ID = 1677

Target_Box Create_target_box(Text title,Message_Box message,Integer
flags,Integer default_flag)
Name
Integer Target_Box Create_target_box(Text title,Message_Box message,Integer flags,Integer default_flag)

Description
Create an input Widget of type Target_Box with default flag default_flag. See 5.60.10.36
Target_Box.

The Target_Box is created with the title title_text.
The Message_Box message is used to display information.
The choices of targets are defined by flags. See Target Box Flags.

The function return value is the created Target_Box.
ID = 3101

Validate(Target_Box box)
Name
Integer Validate(Target_Box box)

Description
Validate the Target_Box box and return its choice as return value. See Target Box Flags.
A function return value of negative number indicates the call was not successful.
ID = 1678

Validate(Target_Box box,Integer &mode,Text &text_data)
Name
Integer Validate(Target_Box box,Integer &mode,Text &text_data)

Description
Validate the Target_Box box and return its choice in mode. See Target Box Flags.
A function return value of zero indicates the call was successful.

ID = 2653
Page 1004 Panels and Widgets

Chapter
For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1005Panels and Widgets

12d Model Programming Language Manual
5.60.10.37 Template_Box
The Template_Box is a panel field designed to select, or create 12d Model templates. If a
template name is typed into the box, then the template name will be validated when <enter> is
pressed.

A Template_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a template name or to display the template name if it is

selected by the template select button. This information area is in the middle
and

(c) a Template select button on the right.

A template name can be typed into the information area. Then hitting the <enter> key will
validate the template name.
Clicking LB or RB on the Template select button brings up the Select Template pop-up. Selecting
a template from the pop-up list writes the template name in the information area.

Clicking MB on the template select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command with the text in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu

Template_Box

title area information area template nameTemplate select button
Page 1006 Panels and Widgets

Chapter
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a template after clicking on the Justification Choice button sends a "text selected"
command and the template choice in message.

Create_template_box(Text title_text,Message_Box message,Integer mode)
Name
Template_Box Create_template_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Template_Box. See 5.60.10.37 Template_Box.
The Template_Box is created with the title title_text.
The Message_Box message is used to display template information.

The value of mode is listed in the Appendix A - Template mode.
The function return value is the created Template_Box.
ID = 942

Validate(Template_Box box,Integer mode,Text &result)
Name
Integer Validate(Template_Box box,Integer mode,Text &result)

Description
Validate the contents of Template_Box box and return the Text result.
The value of mode is listed in the Appendix A - Template mode. See Template Mode

The value result must be type of Text.
The function returns the value of:
 NO_NAME if the Widget Template_Box is optional and the box is left empty

 NO_TEMPLATE, TEMPLATE_EXISTS, DISK_TEMPLATE_EXISTS or NEW_TEMPLATE
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 943

Get_data(Template_Box box,Text &text_data)
Name
Integer Get_data(Template_Box box,Text &text_data)

Description
A function return value of zero indicates the data was successfully returned.

Get the data of type Text from the Template_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
Page 1007Panels and Widgets

12d Model Programming Language Manual
ID = 945

Set_data(Template_Box box,Text text_data)
Name
Integer Set_data(Template_Box box,Text text_data)

Description
Set the data of type Text for the Template_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 944

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1008 Panels and Widgets

Chapter
5.60.10.38 Text_Style_Box
The Text_Style_Box is a panel field designed to select 12d Model text styles. If a text style
name is typed into the box, then the text style name will be validated when <enter> is pressed.

A Text_Style_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a text style name or to display the text style name if it is

selected by the text style select button. This information area is in the middle
and

(c) a text style select button on the right.

A text style name can be typed into the information area. Then hitting the <enter> key will
validate the text style name.
MB clicked in the information area starts a "Same As" selection. A text string is then selected
and the text style of the string is written in the information area.
Clicking LB or RB on the Text Style select button brings up the Select Text Style pop-up.
Selecting a text style from the pop-up list writes the text style name in the information area.

Text_Style_Box

title area information area text style nameText Style select button
Page 1009Panels and Widgets

12d Model Programming Language Manual
Clicking MB on the Text Style select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command with the text in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a text style after clicking on the Text Style select button sends a "text selected"
command and the text style choice in message.

Create_text_style_box(Text title_text,Message_Box message)
Name
Text_Style_Box Create_text_style_box(Text title_text,Message_Box message)
Page 1010 Panels and Widgets

Chapter
Description
Create an input of type Text_Style_Box. See 5.60.10.38 Text_Style_Box.
The Text_Style_Box is created with the title title_text.
The Message_Box message is used to display the text style information.
The function return value is the created Text_Style_Box.
ID = 950

Validate(Text_Style_Box box,Text &result)
Name
Integer Validate(Text_Style_Box box,Text &result)

Description
Validate the contents of Text_Style_Box box and return name of the textstyle as the Text result.
The function returns the value of:
 NO_NAME if the Widget Text_Style_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 951

Get_data(Text_Style_Box box,Text &text_data)
Name
Integer Get_data(Text_Style_Box box,Text &text_data)

Description
Get the data of type Text from the Text_Style_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 953

Set_data(Text_Style_Box box,Text text_data)
Name
Integer Set_data(Text_Style_Box box,Text text_data)

Description
Set the data of type Text for the Text_Style_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 952

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1011Panels and Widgets

12d Model Programming Language Manual
5.60.10.39 Text_Units_Box
The Text_Units_Box is a panel field designed to select one item from a list of text units. If data is
typed into the box, then it will be validated when <enter> is pressed.

A Text_Units_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in text units or to display a units choice if it is selected by the text

units choice button. This information area is in the middle
and

(c) a Text Units choice button on the right.

A text units can be typed into the information area and hitting the <enter> key will validate the
text units. Note that to be valid, the typed in text units must exist in the Text Units choice pop-up
list.

Clicking LB or RB on the Text Units choice button brings up the Select Choice pop-up list.
Selecting a Text Units choice from the pop-up list writes the text units to the information area.

Clicking MB on the Text Units choice button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command with the text units choice in message, or blank if it is not a valid text unit.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a text unit after clicking on the Text Units Choice button sends a "text selected"
command and the text unit choice in message.

Create_text_units_box(Text title_text,Message_Box message)

Text_Units_Box
title area information area text units choiceText Units choice button
Page 1012 Panels and Widgets

Chapter
Name
Text_Units_Box Create_text_units_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Text_Units_Box. See 5.60.10.39 Text_Units_Box.
The Text_Units_Box is created with the title title_text.
The Message_Box message is used to display the text units information.

The function return value is the created Text_Units_Box.
ID = 954

Validate(Text_Units_Box box,Integer &result)
Name
Integer Validate(Text_Units_Box box,Integer &result)

Description
Validate the contents of Text_Units_Box box and return the Integer result.
The function returns the value of:

 NO_NAME if the Widget Text_Units_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

 ID = 955

Get_data(Text_Units_Box box,Text &text_data)
Name
Integer Get_data(Text_Units_Box box,Text &text_data)

Description
Get the data of type Text from the Text_Units_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 957

Set_data(Text_Units_Box box,Integer integer_data)
Name
Integer Set_data(Text_Units_Box box,Integer integer_data)

Description
Set the data of type Integer for the Text_Units_Box box to integer_data.
A function return value of zero indicates the data was successfully set.
ID = 956
Page 1013Panels and Widgets

12d Model Programming Language Manual
Set_data(Text_Units_Box box,Text text_data)
Name
Integer Set_data(Text_Units_Box box,Text text_data)

Description
Set the data of type Text for the Text_Units_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 1519

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1014 Panels and Widgets

Chapter
5.60.10.40 Textstyle_Data_Box

A Textstyle_Data_Box contains many field (or sub-component box). A subset of field is mapped
to an integer (named flags or optionals) which is the bitwise sum of numbers from the set:

favourite box = 0x00000001
textstyle box = 0x00000002

colour box = 0x00000004
type box = 0x00000008
size box = 0x00000010

offset box = 0x00000020
raise box = 0x00000040

justify box = 0x00000080
angle box = 0x00000100
slant box = 0x00000200

xfactor box = 0x00000400
name box = 0x00000800
draw box = 0x00001000

underline box = 0x00002000
strikeout box = 0x00004000
italic box = 0x00008000

weight box = 0x00010000
whiteout box = 0x00020000
border box = 0x00040000

outline box = 0x00080000
border style box = 0x00100000

Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer
flags)
Name
Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags)

Description
Create an input Widget of type Textstyle_Data_Box. See 5.60.10.40 Textstyle_Data_Box.
The Textstyle_Data_Box is created with the title title_text.
The Message_Box message is used to display the information.
The Integer flags indicates enable fields in the textstyle data box.
The function return value is the created Textstyle_Data_Box.

ID = 1671

Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer
flags,Integer optionals)
Name
Page 1015Panels and Widgets

12d Model Programming Language Manual
Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags,Integer
optionals)

Description
Create a new Textstyle_Data_Box with given Text text and Message_Box box.

The new textstyle data box is returned as the function call result.
The Integer flags indicates enable fields in the textstyle data box.
The Integer optionals indicates optional fields in the textstyle data box.

ID = 2866

Validate(Textstyle_Data_Box box,Textstyle_Data &data)
Name
Integer Validate(Textstyle_Data_Box box,Textstyle_Data &data)

Description
Validate the contents of Textstyle_Data_Box box and return the Textstyle_Data data.
The function returns the value of:
 NO_NAME if the Widget Textstyle_Data_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and data is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
 ID = 1672

Set_data(Textstyle_Data_Box box,Textstyle_Data data)
Name
Integer Set_data(Textstyle_Data_Box box,Textstyle_Data data)

Description
Set the data of type Textstyle_Data for the Textstyle_Data_Box box to data.
A function return value of zero indicates the data was successfully set.

ID = 1673

Set_data(Textstyle_Data_Box box,Text text_data)
Name
Integer Set_data(Textstyle_Data_Box box,Text text_data)

Description
Set the data of type Text for the Texstyle_Data_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 2161

Get_data(Textstyle_Data_Box box,Textstyle_Data &data)
Page 1016 Panels and Widgets

Chapter
Name
Integer Get_data(Textstyle_Data_Box box,Textstyle_Data &data)

Description
Get the data of type Textstyle_Data from the Textstyle_Data_Box box and return it in data.
A function return value of zero indicates the data was successfully returned.
ID = 1674

Get_data(Textstyle_Data_Box box,Text &text_data)
Name
Integer Get_data(Textstyle_Data_Box box,Text &text_data)

Description
Get the data of type Text from the Textstyle_Data_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 2160

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1017Panels and Widgets

12d Model Programming Language Manual
5.60.10.41 Text_Edit_Box

Create_text_edit_box(Text title_text,Message_Box box,Integer no_lines)
Name
Text_Edit_Box Create_text_edit_box(Text title_text,Message_Box box,Integer no_lines)

Description
Create an input Widget of type Text_Edit_Box. See 5.60.10.41 Text_Edit_Box.

The Text_Edit_Box is created with the title title_text.
The Message_Box box is used to display information.
The number of lines allowed is no_lines.

The function return value is the created Text_Edit_Box.
ID = 1372

Set_data(Text_Edit_Box box,Text text_data)
Name
Integer Set_data(Text_Edit_Box box,Text text_data)

Description
Set the data of type Text for the Text_Edit_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 1374

Set_data(Text_Edit_Box widget,Dynamic_Text dt_data)
Name
Integer Set_data(Text_Edit_Box widget,Dynamic_Text dt_data)

Description
Set the data of type Dynamic_Text for the Text_Edit_Box widget to dt_data.

A function return value of zero indicates the data was successfully set.
ID = 1617

Get_data(Text_Edit_Box widget,Text &text_data)
Name
Integer Get_data(Text_Edit_Box widget,Text &text_data)

Description
Get the data of type Text from the Text_Edit_Box widget and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 1373

Get_data(Text_Edit_Box widget,Dynamic_Text &dt_data)
Name
Integer Get_data(Text_Edit_Box widget,Dynamic_Text &dt_data)
Page 1018 Panels and Widgets

Chapter
Description
Get the data of type Dynamic_Text from the Text_Edit_Box widget and return it in dt_data.
A function return value of zero indicates the data was successfully returned.

ID = 1616

Set_word_wrap(Text_Edit_Box box,Integer mode)
Name
Integer Set_word_wrap(Text_Edit_Box box,Integer mode)

Description
Disable the word wrap for the Text_Edit_Box box if and mode is zero, enable the word wrap
otherwise.
A function return value of zero indicates that the function call was successful.
ID = 1596

Get_word_wrap(Text_Edit_Box box,Integer &mode)
Name
Integer Get_word_wrap(Text_Edit_Box box,Integer &mode)

Description
Set the value of Integer mode to:
0 if the word wrap is disable for the Text_Edit_Box box
1 otherwise.
A function return value of zero indicates that the function call was successful.
ID = 1597

Set_read_only(Text_Edit_Box widget,Integer mode)
Name
Integer Set_read_only(Text_Edit_Box widget,Integer mode)

Description
Set the Text_Edit_Box box to read-only if mode is non-zero, disable read-only otherwise.
A function return value of zero indicates that the function call was successful.

ID = 1598

Get_read_only(Text_Edit_Box widget,Integer &mode)
Name
Integer Get_read_only(Text_Edit_Box widget,Integer &mode)

Description
Set the value of Integer mode to:

1 if the Text_Edit_Box box is read-only.
0 otherwise.

A function return value of zero indicates that the function call was successful.
Page 1019Panels and Widgets

12d Model Programming Language Manual
ID = 1599

Set_vertical_scroll_bar(Text_Edit_Box widget,Integer mode)
Name
Integer Set_vertical_scroll_bar(Text_Edit_Box widget,Integer mode)

Description
Disable the vertical scroll bar for the Text_Edit_Box box if and mode is zero, enable the vertical
scroll bar otherwise.

A function return value of zero indicates that the function call was successful.
ID = 1600

Get_vertical_scroll_bar(Text_Edit_Box box,Integer &mode)
Name
Integer Get_vertical_scroll_bar(Text_Edit_Box widget,Integer &mode)

Description
Set the value of Integer mode to:
1 if the vertical scroll bar is enable for the Text_Edit_Box box
0 otherwise.

A function return value of zero indicates that the function call was successful.
ID = 1601F

Set_horizontal_scroll_bar(Text_Edit_Box widget,Integer mode)
Name
Integer Set_horizontal_scroll_bar(Text_Edit_Box widget,Integer mode)

Description
Disable the horizontal scroll bar for the Text_Edit_Box box if and mode is zero, enable the
vertical scroll bar otherwise.
A function return value of zero indicates that the function call was successful.

ID = 1602

Get_horizontal_scroll_bar(Text_Edit_Box widget,Integer &mode)
Name
Integer Get_horizontal_scroll_bar(Text_Edit_Box widget,Integer &mode)

Description
Set the value of Integer mode to:

1 if the horizontal scroll bar is enable for the Text_Edit_Box box
0 otherwise.
A function return value of zero indicates that the function call was successful.

ID = 1603
Page 1020 Panels and Widgets

Chapter
For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1021Panels and Widgets

12d Model Programming Language Manual
5.60.10.42 Texture_Box
The Texture_Box is a panel field designed to select 12d Model linestyles. If a texture name is
typed into the box, then the texture name will be validated when <enter> is pressed.

A Texture_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a texture name or to display the texture name if it is selected

by the Textstyle select button. This information area is in the middle
and

(c) a Texture select button on the right.

A texture name can be typed into the information area. Then hitting the <enter> key will validate
the texture name.
MB clicked in the information area starts a "Same As" selection. A string with a texture is then
selected and the texture of the string is written in the information area.
Clicking LB or RB on the Texture select button brings up the Select Texture pop-up. Selecting a
texture from the pop-up list writes the texture name in the information area.

Texture_Box

title area information area texture nameTexture select button
Page 1022 Panels and Widgets

Chapter
Clicking MB on the Textures select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "text
selected" command with the text in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a texture after clicking on the Texture select button sends a "text selected" command
and the texture choice in message.
Page 1023Panels and Widgets

12d Model Programming Language Manual
Texture_Box Create_texture_box(Text title_text,Message_Box message)
Name
Texture_Box Create_texture_box(Text title_text,Message_Box message)

Description
Create an input Widget of type Texture_Box. See 5.60.10.42 Texture_Box.

The Texture_Box is created with the title title_text.
The Message_Box message is used to display information.
The function return value is the created Texture_Box.

ID = 1875

Validate(Texture_Box box,Text &result)
Name
Integer Validate(Texture_Box box,Text &result)

Description
Validate the contents of Texture_Box box and return the name of the texture in Text result.
The function returns the value of:
 NO_NAME if the Widget Texture_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1876

Set_data(Texture_Box box,Text text_data)
Name
Integer Set_data(Texture_Box box,Text text_data)

Description
Set the data of type Text for the Texture_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 1877

Get_data(Texture_Box box,Text &text_data)
Name
Integer Get_data(Texture_Box box,Text &text_data)

Description
Get the data of type Text from the Texture_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 1878
Page 1024 Panels and Widgets

Chapter
For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1025Panels and Widgets

12d Model Programming Language Manual
5.60.10.43 Tick_Box
The Tick_Box has been superseded by the 5.60.10.22 Named_Tick_Box.

Create_tick_box(Message_Box message)
Name
Tick_Box Create_tick_box(Message_Box message)

Description
Create an input Widget of type Tick_Box. See 5.60.10.43 Tick_Box.
The Message_Box message is used to display the tick information.

The function return value is the created Tick_Box.
ID = 958

Validate(Tick_Box box,Integer &result)
Name
Integer Validate(Tick_Box box,Integer &result)

Description
Validate result (of type Integer) in the Tick_Box box.
Validate the contents of Tick_Box box and return the Integer result.
 result = 0 if the tick box is unticked
 result = 1 if the tick box is ticked
A function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values

ID = 959

Get_data(Tick_Box box,Text &text_data)
Name
Integer Get_data(Tick_Box box,Text &text_data)

Description
Get the data of type Text from the Tick_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 961

Set_data(Tick_Box box,Text text_data)
Name
Integer Set_data(Tick_Box box,Text text_data)

Description
Set the data of type Text for the Tick_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 960
Page 1026 Panels and Widgets

Chapter
For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1027Panels and Widgets

12d Model Programming Language Manual
5.60.10.44 Tin_Box
The Tin_Box is a panel field designed to select 12d Model tins. If a tins name is typed into the
tins box and <enter> pressed or a tins selected from the tins pop-up list, then the text in the
Tin_Box is validated.

A Tin_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a tin name or to display the tin name if it is selected by the tin

select button. This information area is in the middle
and

(c) a tin select button on the right.

A tin name can be typed into the information area. Then hitting the <enter> key validate the tin
name.

MB clicked in the information area starts a "Same As" selection. LJG This does nothing useful.
Clicking LB or RB on the tin select button brings up the Select Model pop-up. Selecting a tin from
the pop-up list writes the tin name in the information area and validation occurs.

Clicking MB on the tin select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a "tin
selected" command and the text in message.

Tin_Box

title area information area tin nametin select button
Page 1028 Panels and Widgets

Chapter
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a tin with the Tin Select button sends a "tin selected" command and the tin name in
message.

Create_tin_box(Text title_text,Message_Box message,Integer mode)
Name
Tin_Box Create_tin_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Tin_Box for inputting and validating Tins.

The Tin_Box is created with the title title_text (see 5.60.10.44 Tin_Box).
The Message_Box message is normally the message box for the panel and is used to display
Model_Box validation messages.
If <enter> is typed into the Tin_Box or a tin selected from the tin pop-up list, automatic validation
is performed by the Tin_Box according to mode. What the validation is, what messages are
written to Message_Box, and what actions automatically occur, depend on the value of mode.

For example,
CHECK_TIN_MUST_EXIST // if the tins exists, the message says "exists"
 // if it doesn’t exist, the messages says "ERROR"
The values for mode and their actions are listed in Appendix A (see Tin Mode).

The function return value is the created Tin_Box.
ID = 962

Validate(Tin_Box box,Integer mode,Tin &result)
Name
Integer Validate(Tin_Box box,Integer mode,Tin &result)

Description
Validate the contents of Tin_Box box and return the Tin result.
The value of mode will determine what validation occurs, what messages are written to the
Message_Box, what actions are taken and what the function return value is.
The values for mode and the actions are listed in Appendix A (see Tin Mode).

The function return values depends on mode and are given in Appendix A (see Tin Mode).
A function return value of zero indicates that there is a drastic error.
Warning this is the opposite of most 12dPL function return values

Double Warning: most times the function return code is not zero even when you think it should
be. The actual value of the function return code must be checked to see what is going on. For
example, when mode = CHECK_TIN_MUST_EXIST will return NO_TIN if the tin name is not
blank and no tin of that name exist (NO_TIN does not equal zero).

ID = 963
Page 1029Panels and Widgets

12d Model Programming Language Manual
Get_data(Tin_Box box,Text &text_data)
Name
Integer Get_data(Tin_Box box,Text &text_data)

Description
Get the data of type Text from the Tin_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 965

Set_data(Tin_Box box,Text text_data)
Name
Integer Set_data(Tin_Box box,Text text_data)

Description
Set the data of type Text for the Tin_Box box to text_data.

A function return value of zero indicates the data was successfully set.
ID = 964

Set_supertin(Tin_Box box,Integer mode)
Name
Integer Set_supertin(Tin_Box box,Integer mode)

Description
For the Tin_box box, set whether the pop up for the Tin_ box shows tins and super tins, or only
tins.
If mode = 0, only tins are displayed in the pop-up.

If mode = 1, only tins and super tins are displayed in the pop-up.
A function return value of zero indicates the data was successfully set.
ID = 1311

Set_tin_type(Tin_Box box,Integer type)
Name
Integer Set_tin_type(Tin_Box box,Integer type)

Description
Set the type of acceptable tin for the Tin_Box box to type.
The valid types of tin are: 1 normal tin, 2 super tin, 3 grid tin.

A return value of zero indicates the function call was successful.
ID = 2894

Set_tin_type(Tin_Box box,Integer type,Integer type2)
Name
Page 1030 Panels and Widgets

Chapter
Integer Set_tin_type(Tin_Box box,Integer type,Integer type2)

Description
Set the type of acceptable tin for the Tin_Box box to type, type2.

The valid types of tin are: 1 normal tin, 2 super tin, 3 grid tin.
A return value of zero indicates the function call was successful.
ID = 2895

Set_tin_type(Tin_Box box,Integer type,Integer type2,Integer type3)
Name
Integer Set_tin_type(Tin_Box box,Integer type,Integer type2,Integer type3)

Description
Set the type of acceptable tin for the Tin_Box box to type, type2, type3.

The valid types of tin are: 1 normal tin, 2 super tin, 3 grid tin.
A return value of zero indicates the function call was successful.
ID = 2896

Set_all_tin_types(Tin_Box box)
Name
Integer Set_all_tin_types(Tin_Box box)

Description
Set the type of acceptable tin for the Tin_Box box to all types.
A return value of zero indicates the function call was successful.

ID = 2897

Set_tin_mode(Tin_Box box,Integer mode)
Name
Integer Set_tin_mode(Tin_Box box,Integer mode)

Description
Set the mode the Tin_Box box to mode.

The valid modes for tin are: 1 section, 2 exact.
A return value of zero indicates the function call was successful.
ID = 2898

Set_tin_mode(Tin_Box box,Integer mode,Integer mode2)
Name
Integer Set_tin_mode(Tin_Box box,Integer mode,Integer mode2)

Description
Set the mode the Tin_Box box to mode, mode2.

The valid modes for tin are: 1 section, 2 exact.
Page 1031Panels and Widgets

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 2899

Set_all_tin_modes(Tin_Box box)
Name
Integer Set_all_tin_modes(Tin_Box box)

Description
Set the mode the Tin_Box box to all modes.
A return value of zero indicates the function call was successful.
ID = 2900

Set_tin_access(Tin_Box box,Integer access)
Name
Integer Set_tin_access(Tin_Box box,Integer access)

Description
Set the access type of the Tin_Box box to access.
The valid tin access types are: 1 read access, 2 write access.

A return value of zero indicates the function call was successful.
ID = 2901

Set_tin_access(Tin_Box box,Integer access,Integer access2)
Name
Integer Set_tin_access(Tin_Box box,Integer access,Integer access2)

Description
Set the access type of the Tin_Box box to access, access2.
The valid tin access types are: 1 read access, 2 write access.

A return value of zero indicates the function call was successful.
ID = 2902

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1032 Panels and Widgets

Chapter
5.60.10.45 View_Box
The View_Box is a panel field designed to select 12d Model views. If a view name is typed into
the view box and <enter> pressed or a view selected from the view pop-up list, then the text in
the View_Box is validated.

A View_Box is made up of three items:
(a) a title area on the left with the user supplied title on it
(b) an information area to type in a view name or to display the view name if it is selected by the

view select button. This information area is in the middle
and

(c) a view select button on the right.

A view name can be typed into the information area. Then hitting the <enter> key validates the
view name.
Clicking LB or RB on the view select button brings up the Select View pop-up. Selecting a view
from the pop-up list writes the view name in the information area and validation occurs.

Clicking MB on the view select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and if it is an
existing view, then a "view selected" command is sent with the view name in message.
Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

Picking a view with the View Select button sends a "view selected" command and the view
name in message.

View_Box

title area information area view nameview select button
Page 1033Panels and Widgets

12d Model Programming Language Manual
Create_view_box(Text title_text,Message_Box message,Integer mode)
Name
View_Box Create_view_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type View_Box for inputting and validating Views.

The View_Box is created with the title title_text (see 5.60.10.45 View_Box).
The Message_Box message is normally the message box of the panel and is used to display the
View_Box validation messages.
If an <enter> is typed in the View_Box or a view selected from the view pop-up list, automatic
validation is performed by the View_Box according to mode - what the validation is, what
messages are written to Message_Box, and what actions automatically occur, depend on the
value of mode.

For example,
CHECK_TIN_MUST_EXIST // if the model exists, the message says "exists" and
 // if it doesn’t exist, the messages says "ERROR"
The value of mode and their actions are listed in Appendix A (see View Mode).

The function return value is the created View_Box.
ID = 966

Validate(View_Box box,Integer mode,View &result)
Name
Integer Validate(View_Box box,Integer mode,View &result)

Description
Validate the contents of View_Box box and return the View result.
The value of mode will determine what validation occurs, what messages are written to the
Message_Box, what actions are taken and what the function return value is.

The values for mode and the actions are listed in Appendix A (see View Mode).
The function return value depends on mode and are given in Appendix A (see View Mode).
A function return value of zero indicates that there is a drastic error.

Warning this is the opposite of most 12dPL function return values
Double Warning: most times the function return code is not zero even when you think it should
be. The actual value of the function return code must be checked to see what is going on. For
example, when mode = CHECK_VIEW_MUST_EXIST will return NO_VIEW if the view name is
not blank and no view of that name exist (NO_VIEW does not equal zero).

ID = 967

Get_data(View_Box box,Text &text_data)
Name
Integer Get_data(View_Box box,Text &text_data)

Description
Get the data of type Text from the View_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.
ID = 969
Page 1034 Panels and Widgets

Chapter
Set_data(View_Box box,Text text_data)
Name
Integer Set_data(View_Box box,Text text_data)

Description
Set the data of type Text for the View_Box box to text_data.
A function return value of zero indicates the data was successfully set.

ID = 968

Set_view_type(View_Box box,Integer type)
Name
Integer Set_view_type(View_Box box,Integer type)

Description
Set acceptable view type for View_box box with Integer type.
A return value of 0 indicates the function call was successful.
List of values for view type

1 Plan,
2 Perspective,
3 Section,

4 Hidden,
A return value of zero indicates the function call was successful.
ID = 2942

Set_view_type(View_Box box,Integer type,Integer type2)
Name
Integer Set_view_type(View_Box box,Integer type,Integer type2)

Description
Set acceptable view types for View_box box with Integer type, type2.
A return value of 0 indicates the function call was successful.

List of values for view type
1 Plan,
2 Perspective,

3 Section,
4 Hidden,

A return value of zero indicates the function call was successful.

ID = 2943

Set_view_type(View_Box box,Integer type,Integer type2,Integer type3)
Name
Page 1035Panels and Widgets

12d Model Programming Language Manual
Integer Set_view_type(View_Box box,Integer type,Integer type2,Integer type3)

Description
Set acceptable view types for View_box box with Integer type, type2, type3.

A return value of 0 indicates the function call was successful.
List of values for view type

1 Plan,

2 Perspective,
3 Section,
4 Hidden,

A return value of zero indicates the function call was successful.
ID = 2944

Set_all_view_types(View_Box box)
Name
Integer Set_all_view_types(View_Box box)

Description
Set acceptable view types for View_box box with all view types.
A return value of zero indicates the function call was successful.

ID = 2945

Set_view_engine(View_Box box,Integer mode)
Name
Integer Set_view_engine(View_Box box,Integer mode)

Description
Set view engine mode for View_Box box with Integer mode.

A return value of zero indicates the function call was successful.
List of value for view engine mode

1 GDI

2 OpenGL
3 OpenGL GPU

ID = 2946

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1036 Panels and Widgets

Chapter
5.60.10.46 XYZ_Box
The XYZ_Box is a panel field designed to get X, Y and Z coordinates which are displayed in the
one information area, separated by spaces.

Also see 5.60.10.24 New_XYZ_Boxwhere each of X, Y and Z are each displayed in their own
information areas.

The XYZ_Box is made up of:

(a) a title area on the left with the user supplied title on it
(b) an information area to type in the X Y and Z values, each value separated by one or more

spaces, or to display the X Y Z coordinates if a position is selected by the XYZ select button.
This information area is in the middle

and

(c) a XYZ select button on the right.

XYZ coordinates can be typed into the information area, each value separated by one or more
spaces. Then hitting the <enter> key will validate that the three values are all Real numbers.

Clicking LB on the XYZ select button starts the XYZ Pick option and after selecting a position,
the X, Y and Z values are displayed information area separated by spaces.

Clicking RB on the XYZ select button brings up the XYZ Ops pop-up menu. Selecting Pick xyz
option starts the XYZ Pick option and after a position, the X, Y and Z values are displayed in the
information area separated by spaces.

Clicking MB on the XYZ select button does nothing.

Commands and Messages for Wait_on_Widgets
Typing in the information area will send a "keystroke" command and message which is the text
of the character typed in.
Pressing the Enter key in the information area sends a "keystroke" command and then a
"coordinate accepted" command and nothing in message.

Pressing and releasing LB in the information area sends a "left_button_up" command.
Pressing and releasing MB in the information area sends a "middle_button_up" command.
Pressing and releasing MB also starts a "Same As" and if a XYZ is selected then a "coordinate
accepted" command is sent with nothing in message.
Pressing and releasing RB in the information area sends a "right_button_up" command and
also brings up an options panel. The commands/messages send by items selected in the menu
are documented in the section 5.60.7 Widget Information Area Menu.

XYZ_Box

title area information area X Y Z coordinatesXYZ select button (separated by spaces)
Page 1037Panels and Widgets

12d Model Programming Language Manual
Picking a coordinate with the XYZ Select button sends a "coordinate accepted" command with
nothing in message.

Create_xyz_box(Text title_text,Message_Box message)
Name
XYZ_Box Create_xyz_box(Text title_text,Message_Box message)

Description
Create an input Widget of type XYZ_Box. See 5.60.10.46 XYZ_Box.
The XYZ_Box is created with the title title_text.
The Message_Box message is used to display the XYZ information.

The function return value is the created XYZ_Box.
ID = 970

Validate(XYZ_Box box,Real &x,Real &y,Real &z)
Name
Integer Validate(XYZ_Box box,Real &x,Real &y,Real &z)

Description
Validate the contents of the XYZ_Box box and check it decodes to three Reals.
The three Reals are returned in x, y, and z.

The function returns the value of:
 NO_NAME if the Widget XYZ_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and x, y and z are valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
ID = 971

Get_data(XYZ_Box box,Text &text_data)
Name
Integer Get_data(XYZ_Box box,Text &text_data)

Description
Get the data of type Text from the XYZ_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.
ID = 973

Set_data(XYZ_Box box,Real x,Real y,Real z)
Name
Integer Set_data(XYZ_Box box,Real x,Real y,Real z)
Page 1038 Panels and Widgets

Chapter
Description
Set the x y z data (all of type Real) for the XYZ_Box box to the values x, y and z.
A function return value of zero indicates the data was successfully set.

ID = 972

Set_data(XYZ_Box box,Text text_data)
Name
Integer Set_data(XYZ_Box box,Text text_data)

Description
Set the data of type Text for the XYZ_Box box to text_data.
A function return value of zero indicates the data was successfully set.
ID = 1520

For information on the other Input Widgets, go to 5.60.10 Input Widgets
Page 1039Panels and Widgets

12d Model Programming Language Manual
5.60.11 Message Boxes

See 5.60.11.1 Colour_Message_Box
See 5.60.11.2 Message_Box
Page 1040 Panels and Widgets

Chapter
5.60.11.1 Colour_Message_Box
The Colour_Message_Box is a panel field designed to display text messages. The background
colour for the text messages is under the programmers control and can vary between red, green,
yellow or no colour.

This is useful for differentiating between different types of messages such as errors, warnings
and successful.

The Colour_Message_Box consists of just an information area to display the text messages.

i

Data can not be typed into the Colour_Message_Box information area.

Note: The Colour_Message_Box is similar to a Message_Box (see 5.60.11.2 Message_Box)
except that a Message_Box has no coloured background.

When most other Input Widgets are created, a Colour_Message_Box or Message_Box needs
to be supplied and that Colour_Message_Box or Message_Box is used by the Widget to display
validation messages for the Widget.

Create_colour_message_box(Text message_text)
Name
Colour_Message_Box Create_colour_message_box(Text message_text)

Description
Create a box of type Colour_Message_Box for writing out messages. See 5.60.11.1
Colour_Message_Box.

The Colour_Message_Box is created with the text message_text displayed in it.
The background colour of the display area is set using Set_level (Colour_Message_Box, level),
or can be set with the message using Set_data(Colour_Message_Box box,Text text_data,Integer
level)).

The function return value is the created Colour_Message_Box.
ID = 2629

Set_data(Colour_Message_Box box,Text text_data,Integer level)
Name
Integer Set_data(Colour_Message_Box box,Text text_data,Integer level)

Description

Colour_Message_Box

information area

text message with no coloured background text message with red colour background
Page 1041Panels and Widgets

12d Model Programming Language Manual
Set the data of type Text for the Colour_Message_Box box as the Text text_data.
If the Colour_Message_Box box is on a panel then the message text_data will be displayed in
the information area of box with the background colour of the box set by level.
 A function return value of zero indicates the data was successfully set.

ID = 2632

Set_data(Colour_Message_Box box,Text text_data)
Name
Integer Set_data(Colour_Message_Box box,Text text_data)

Description
Set the data of type Text for the Colour_Message_Box box as the Text text_data.

If the Colour_Message_Box box is on a panel then the message text_data will be displayed in
the information area of box with the background colour previously defined by the Set_level call.
A function return value of zero indicates the data was successfully set.
ID = 2631

Set_level(Colour_Message_Box box,Integer level)
Name
Integer Set_level(Colour_Message_Box box,Integer level)

Description

Setting level defines the background colour to use when text messages are displayed in
the information area of box. This level will be over ridden if the
Set_data(Colour_Message_Box box,Text text_data,Integer level) call is used.

For level = 1, the colour is normal.
For level = 2, the colour is yellow (for Warning)
For level = 3, the colour is red (for Error)
For level = 4, the colour is green (for Good)

If no Set_level call is made then the default level is 1.
A function return value of zero indicates the level was successfully set.
ID = 2630

For information on the other Message Boxes go to 5.60.11 Message Boxes or for Input Widgets, go to
5.60.10 Input Widgets
Page 1042 Panels and Widgets

Chapter
5.60.11.2 Message_Box
The Message_Box is a panel field designed to display text messages.

The Message_Box consists of just an information area to display the text messages.
i

Data can not be typed into the Message_Box information area.

Note: The Message_Box is similar to a Colour_Message_Box (see 5.60.11.1
Colour_Message_Box) except that a Message_Box can not have a coloured background.

When most other Input Widgets are created, a Colour_Message_Box or Message_Box needs
to be supplied and that Colour_Message_Box or Message_Box is used by the Widget to display
validation messages for the Widget.

Create_message_box(Text message_text)
Name
Message_Box Create_message_box(Text message_text)

Description
Create a box of type Message_Box for writing out messages. See 5.60.11.2 Message_Box.
The Message_Box is created with the text message_text displayed in it.

The function return value is the created Message_Box.
ID = 847

Get_data(Message_Box box,Text &text_data)
Name
Integer Get_data(Message_Box box,Text &text_data)

Description
Get the data of type Text from the Message_Box box and return it in text_data.
A function return value of zero indicates the data was successfully returned.

ID = 1037

Set_data(Message_Box box,Text text_data)
Name
Integer Set_data(Message_Box box,Text text_data)

Description
Set the data of type Text for the Message_Box box as the Text text_data.

If the Message_Box box is on a panel then the message text_data will be displayed in the

Message_Box

information area text message displayed in the information area
Page 1043Panels and Widgets

12d Model Programming Language Manual
information area of box.
A function return value of zero indicates the data was successfully set.

ID = 1038

For information on the other Message Boxes go to 5.60.11 Message Boxes or for Input Widgets, go to
5.60.10 Input Widgets
Page 1044 Panels and Widgets

Chapter
5.60.12 Log_Box and Log_Lines
A Log_Box is a panel field that behaves like the standard 12d Model Output Window but may
be added to a Panel or a Vertical or Horizontal group.

The Log_Box covers and area for messages by supplying the parameters box_width and
box_height. The units of box_width and box_height are screen units (pixels).
The actual size of the Log_Box area is actual width and actual height pixels where:

the actual width of the area is the maximum of the width of the panel without the Draw_Box,
and box_width.

and
the height of the box is box_height.

Log_Lines are the method of passing information to the Log_Box, and unlike a message box
which just takes text messages, Log_Lines can contain extra information for the user such as a
link to a string that can be highlighted or edited by clicking on the Log_Line.

The Log_Box consists of just an information area to display the text messages.

Data can not be typed into the Log_Box information area.

After a log line is highlighted in the Log_Box, the
up arrow key moves the cursor up one log line
down arrow key moves the cursor down one log line
Home will go to the top log line in the Log_Box
End will go to the bottom log line in the Log_Box

Commands and Messages for Wait_on_Widgets

Log_Box

Log_Box with Log_Line

Log_Lines with their
messages displayed
in the Log_Box
Page 1045Panels and Widgets

12d Model Programming Language Manual
Pressing and releasing LB in the Log_Box with send a "click_lb" command and the line number
of the log line in message.

Create_log_box(Text name,Integer box_width,Integer box_height)
Name
Log_Box Create_log_box(Text name,Integer box_width,Integer box_height)

Description
Create an input Widget of type Log_Box with the message area defined by the parameters
box_width, box_height which are in screen units (pixels).See 5.60.12 Log_Box and Log_Lines.
A Log_Box behaves like the standard 12d Model Output Window but may be added to a Panel
or Vertical / Horizontal group.
Log_Lines are the method of passing messages to the Log_Box.

The function return value is the created Log_Box.
ID = 2671

Create_text_log_line(Text message,Integer log_level)
Name
Log_Line Create_text_log_line(Text message,Integer log_level)

Description
Create a Text Log_Line with the message message and a log level log_level.
The text message is displayed in a Log_Box with the log level log_level when the Log_Line is
added to the Log_Box.

Available log levels are
0 for none,
1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.

WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.

The function return code is the created Log_Line.
ID = 2663

Create_highlight_string_log_line(Text message,Integer log_level,Uid model_id,Uid

icons for log_level’s
Page 1046 Panels and Widgets

Chapter
string_id)
Name
Log_Line Create_highlight_string_log_line(Text message,Integer log_level,Uid model_id,Uid string_id)

Description
Create a Highlight String Log_Line giving a string by its model Uid model_id and string Uid
string_id, a text message and a log level log_level.
The text message is displayed in a Log_Box with the log level log_level when the Log_Line is
added to the Log_Box.
If LB is clicked on the log line, the string will be highlighted.
Available log levels are

0 for none,
1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.

WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.

The function return code is the created Log_Line.

ID = 2664

Create_highlight_string_log_line(Text message,Integer log_level,Uid model_id,Uid
string_id,Real x,Real y,Real z)
Name
Log_Line Create_highlight_string_log_line(Text message,Integer log_level,Uid model_id,Uid
string_id,Real x,Real y,Real z)

Description
Create a Highlight String Log_Line giving a string by its model Uid model_id and string Uid
string_id, a coordinate (x,y,z) on the string, a text message and a log level log_level.

highlight string log line with log level 2

Clicking LB on the Highlight String log line highlights the string in each view the string is on,
and autopans to the string.
Page 1047Panels and Widgets

12d Model Programming Language Manual
The text message is displayed in a Log_Box with the log level log_level when the Log_Line is
added to the Log_Box.
If LB is clicked on the log line, the coordinate (x,y,z) on the string, and the string, will be
highlighted.
Available log levels are

0 for none,
1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.

WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.

The function return code is the created Log_Line.
ID = 2665

Create_highlight_point_log_line(Text message,Integer log_level,Real x,Real y,Real
z)
Name
Log_Line Create_highlight_point_log_line(Text message,Integer log_level,Real x,Real y,Real z)

Description
Create a Log_Line giving a coordinate (x,y,z).
If LB is clicked on the log line, the coordinate (x,y,z) will be highlighted.
LJG? on which views?

It also displays the text message message and has a log level log_level.
Available log levels are

0 for none,
1 for General,
2 for Warning

highlight string (with xyz) log line and log level 2

Clicking LB on the highlight string (with xyz) log line highlights the string at the given position
(x,y,z) in each view the string is on, and autopans to the string.
Page 1048 Panels and Widgets

Chapter
3 for Error.
Log levels other than 0 will display a small icon to indicate their status.
WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.

The function return code is the created Log_Line.
 ID = 2666

Create_edit_string_log_line(Text message,Integer log_level,Uid model_id,Uid
string_id)
Name
Log_Line Create_edit_string_log_line(Text message,Integer log_level,Uid model_id,Uid string_id)

Description
Create an Edit Log_Line giving a string by its model Uid model_id and string Uid string_id, a
text message and a log level log_level.
The text message is displayed in a Log_Box with the log level log_level when the Log_Line is
added to the Log_Box.
If LB is clicked on the log line, the string will be highlighted.
If LB is double clicked on the log line, the string is edited.
If RB is clicked on the log line then an Options menu is displayed with the choices:

It also displays the text message message and has a log level log_level.
Available log levels are

0 for none,
1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.

Edit the string
Delete the string
Show the string properties
Not applicable
Page 1049Panels and Widgets

12d Model Programming Language Manual
WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.

The function return code is the created Log_Line.
ID = 2667

edit string log line with log level 1

Clicking LB on the edit string log line highlights the string in each view the string is on, and
autopans to the string.

Double clicking LB on the edit string log line highlights and edits the string. That is, it
highlights the string and also brings the string up in its editor

Clicking RB on the edit string log line brings up the Options for the string
Page 1050 Panels and Widgets

Chapter
Create_macro_log_line(Text message,Integer log_level,Text macro,Text
select_cmd_line)
Name
Log_Line Create_macro_log_line(Text message,Integer log_level,Text macro,Text select_cmd_line)

Description
This call creates a log line that will allow the user to run a macro when the log line is double
clicked. The macro is specified by the parameter macro and any optional arguments to be
passed to it are specified by cmd_line.
It also displays the text message message and has a log level log_level.
Available log levels are

0 for none
1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.
WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.

The function return code is the created Log_Line.
 ID = 2668

Create_macro_log_line(Text message,Integer log_level,Text macro,Text
select_cmd_line,Dynamic_Text menu_names,Dynamic_Text
menu_command_lines)
Name
Log_Line Create_macro_log_line(Text message,Integer log_level,Text macro,Text
select_cmd_line,Dynamic_Text menu_names,Dynamic_Text menu_command_lines)

Description
This call creates a log line that will allow the user to run a macro when the log line is double
clicked. The macro is specified by the parameter macro and any optional arguments to be
passed to it are specified by cmd_line.
This log line also provides options in a context menu when the user right clicks it. There are two
parameters required; a list of all the names to be displayed in the menu, stored in a
Dynamic_Text object called menu_names and the list of arguments to be passed down to the
macro when the menu item is selected, stored in menu_command_lines.
It also displays the text message message and has a log level log_level.
Available log levels are

0 for none,
1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.

WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel using
the Show_panel call.
Page 1051Panels and Widgets

12d Model Programming Language Manual
The function return code is the created Log_Line.
ID = 2669

Add_log_line(Log_Box box,Log_Line line)
Name
Integer Add_log_line(Log_Box box,Log_Line line)

Description
Add the Log_Line line to the existing Log_Box box.
WARNING
To be visible, a Log_Line is added to a Log_Box using the call Add_log_line(Log_Box box,Log_Line
line) BUT this call can only be made after the Log_Box is displayed in a panel using the
Show_panel call.
Note that each Log_Line can be added at most one time; the add destination can be one of the
three types: Output window; a Log_Box; or a parent Log_Line group. If the line is already added,
then the function will return -1.

A function return value of zero indicates the Log_Line was successfully added.
ID = 2672

Clear(Log_Box box)
Name
Integer Clear(Log_Box box)

Description
Clear any text and log lines from a Log_Box box.

A function return value of zero indicates the Log_Box was successfully cleared.
ID = 2673

Print_log_line(Log_Line line,Integer is_error)
Name
Integer Print_log_line(Log_Line line,Integer is_error)

Description
Print the Log_Line line to the 12d Model Output window.
If is_error = 1, the Output window will treat the Log_line as an error message and the Output
window will flash and/or pop up).
Note that each Log_Line can be added at most one time; the add destination can be one of the
three types: Output window; a Log_Box; or a parent Log_Line group. If the line is already added,
then the function will return -1.

A function return value of zero indicates the Log_Line was successfully printed.
ID = 2670

Log lines can be organised into a multiple level tree structure. A log line which is not a leaf in the
tree would be call a group log line.
A log line which is not a top level of a tree will have a parent log line.
Page 1052 Panels and Widgets

Chapter
Create_group_log_line(Text message,Integer log_level)
Name
Log_Line Create_group_log_line(Text message,Integer log_level)

Description
Create a group Log_Line with the message message and a log level log_level.
The text message is displayed in a Log_Box with the log level log_level when the Log_Line is
added to the Log_Box.

Available log levels are
0 for none,

1 for General,
2 for Warning
3 for Error.

Log levels other than 0 will display a small icon to indicate their status.
WARNING
To be visible, the created Log_Line is added to a Log_Box using the call Add_log_line(Log_Box
box,Log_Line line) BUT this call can only be made after the Log_Box is displayed in a panel
using the Show_panel call.

The function return code is the created group Log_Line.
ID = 3757

Get_type(Log_Line line,Integer &type)
Name
Integer Get_type(Log_Line line,Integer &type)

Description
Get the type of a given Log_Line line and return it in Integer type.
The value of type can be ???
As in v14 c2g the value is always 0.

A function return value of zero indicates the type was successfully returned.
ID = 3758

Get_type(Log_Line line,Text &type)
Name
Integer Get_type(Log_Line line,Text &type)

Description
Get the type of a given Log_Line line and return it in Text type.
The value of type can be ???
As in v14 c2g the value is always empty string.

A function return value of zero indicates the type was successfully returned.
ID = 3759
Page 1053Panels and Widgets

12d Model Programming Language Manual
Get_id(Log_Line line,Integer &id)
Name
Integer Get_id(Log_Line line,Integer &id)

Description
Get the Id of a given Log_Line line and return it in Integer id.

A function return value of zero indicates the id was successfully returned.
ID = 3760

Get_parent_id(Log_Line line,Integer &parent)
Name
Integer Get_parent_id(Log_Line line,Integer &parent)

Description
Get the Id of the parent of a given Log_Line line and return it in Integer parent.
A function return value of zero indicates the id was successfully returned.
ID = 3761

Get_parent(Log_Line line,Log_Line &parent)
Name
Integer Get_parent(Log_Line line,Log_Line &parent)

Description
Get the parent of a given Log_Line line and return it in Log_Line parent.
A function return value of zero indicates the parent was successfully returned.
ID = 3762

Append_log_line(Log_Line line,Log_Line parent)
Name
Integer Append_log_line(Log_Line line,Log_Line parent)

Description
Append a given Log_Line line to a parent Log_Line group parent.
If the parent is not a group, the function return -3.
Note that each Log_Line can be added at most one time; the add destination can be one of the
three types: Output window; a Log_Box; or a parent Log_Line group. If the line is already added,
then the function will return -4.

A function return value of zero indicates the append was successful.
ID = 3763
Page 1054 Panels and Widgets

Chapter
5.60.13 Buttons
There are four types of Buttons - the Button, Finish_Button, Select_Button and a special Help
button.

The Button and Finish_Button consist of just a Title, and a Text reply. When clicked the reply
is send as a command via Wait_on_widgets.
The Select_Button is used to select strings. This has now been superseded by the Select_Box
or the New_Select_Box.
The Help Button is created by a special call that allows the macro to hook into the Extra Help
system for 12d Model.
To the eye, the four types of buttons look identical but their behaviour is different.

See 5.60.13.1 Button
See 5.60.13.2 Finish Button
See 5.60.13.3 Select_Button
See 5.60.13.4 Help Button

Button Select_Button Finish_Button Help Button with extra help
Page 1055Panels and Widgets

12d Model Programming Language Manual
5.60.13.1 Button
A Button consists of a title, and a Text reply.

The Button is shown on the screen with title text surrounded by a rectangle to delineate the area
on the screen associated with the Button.
Whenever the mouse is moved over the Button area, it will highlight and if LB or RB is clicked on
the highlighted button, the Buttons sends the reply back to the macro as a command via
Wait_on_Widgets.

Commands and Messages for Wait_on_Widgets
Pressing and releasing LB or RB whilst highlighting the Button sends the Text reply as a
command with nothing in message.
Pressing and releasing MB does nothing.

Create_button(Text title_text,Text reply)
Name
Button Create_button(Text title_text,Text reply)

Description
Create a Widget of type Button.
The Button is created with title_text a the text on the Button.

The Text reply is the command that is sent by the Button back to the macro via Wait_on_widgets
when the Button is clicked on. See Wait_on_widgets(Integer &id,Text &cmd,Text &msg).
The function return value is the created Button.
ID = 850

Set_raised_button(Button button,Integer mode)
Name
Integer Set_raised_button(Button button,Integer mode)

Description
Not yet implemented
Set the button raised or sank depending on the mode value.

mode value
 -3 Raise
 0 Flat
 3 Sink

Button title Highlighting of Button when
mouse passes over it

rectangle showing
the Button extent

Button Widget
Page 1056 Panels and Widgets

Chapter
A function return value of zero indicates the button was successfully raised.
ID = 1058

Create_child_button(Text title_text)
Name
Button Create_child_button(Text title_text)

Description
Not implemented.
ID = 851

For information on the other Buttons, go to 5.60.13 Buttons
Page 1057Panels and Widgets

12d Model Programming Language Manual
5.60.13.2 Finish Button
The Finish Button is a special Button and there should only be one per panel.

A Finish Button consists of a title, and a Text reply.
Like a standard Button, the Finish Button is shown on the screen with title text surrounded by a
rectangle to delineate the area on the screen associated with the Finish Button.
Whenever the mouse is moved over the Finish Button area, it will highlight and if LB or RB is
clicked on the highlighted button, the Finish Button sends the reply back to the macro as a
command via Wait_on_Widgets.

Commands and Messages for Wait_on_Widgets
Pressing and releasing LB or RB whilst on the Button sends the Text reply as a command with
nothing in message.
Pressing and releasing MB does nothing.

Create_finish_button(Text title_text,Text reply)
Name
Button Create_finish_button(Text title_text,Text reply)

Description
Creates a Finish Button with title_text the text on the Button.
The Text reply is the command that is sent by the Button back to the macro via Wait_on_widgets
when the Button is clicked on. See Wait_on_widgets(Integer &id,Text &cmd,Text &msg).

This is a special button and there should only be one per panel. The title_text is normally "Finish"
At the end of the processing in the macro, Set_finish_button (see Set_finish_button(Widget
panel,Integer move_cursor)) should be called to put the cursor on the Finish button.
Set_finish_button needs to be called so that chains know that the macro has terminated
correctly.

The function return value is the created Button.
ID = 1367

Set_finish_button(Widget panel,Integer move_cursor)
Name
Integer Set_finish_button(Widget panel,Integer move_cursor)

Description
If move_cursor = 1 then the cursor is moved onto the finish button.

Finish Button title Highlighting of Finish Button
when mouse passes over it

rectangle showing
the Finish Button
 extent

(it does not have to be "finish")

Button Widget
Page 1058 Panels and Widgets

Chapter
ID = 1368

For information on the other Buttons, go to 5.60.13 Buttons
Page 1059Panels and Widgets

12d Model Programming Language Manual
5.60.13.3 Select_Button
A Select_Button consists of a title, and a Text reply.

Like a standard Button, the Select_Button is shown on the screen with the title text surrounded
by a rectangle to delineate the area on the screen associated with the Button.
Whenever the mouse is moved over the Button area, it will highlight.
However unlike a Button, clicking LB or RB on the Select_Button will start a String Select, and
the selected string is recorded so that it can be used by the macro.

Commands and Messages for Wait_on_Widgets
Clicking LB or RB on the Select_Botton:

sends a "start select" command with nothing in message, then as the mouse is moved over a
view, a "motion select" command is sent with the view coordinates and view name as text in
message.
Once in the select:

if a string is clicked on with LB, a "pick select" command is sent with the name of the view that the
string was selected in, in message. if the string is accepted (MB), an "accept select" command is
sent with the view name (in quotes) in message, or if RB is clicked and Cancel selected from the
Pick Ops menu, then a "cancel select" command is sent with nothing in message.

if a string is clicked on with MB (the pick and accept in one click method), a "pick select" com-
mand is sent with the name of the view that the string was selected in, in message, followed by an
"accept select" command with the view name (in quotes) in message.

Nothing else typed over the Select_Button sends any commands or messages.

Create_select_button(Text title_text,Integer mode,Message_Box box)
Name
Select_Button Create_select_button(Text title_text,Integer mode,Message_Box box)

Description
Create a button of type Select_Button.

This is a special Button that when clicked, allows the user to select a string.
 The button is created with the label text title_text.
The Message_Box box is selected to display the select information.
The value of mode is:
mode value
SELECT_STRING 5509

Select_Button title Highlighting of Select_Button
when mouse passes over it

rectangle showing
the Select_Button
extent

Select_Button Widget
Page 1060 Panels and Widgets

Chapter
SELECT_STRINGS 5510 not implemented!
Refer to the list in the Appendix A.
The function return value is the created Select_Button.

Note The Select_Button is now rarely used and has been replaced by the New_Select_Box or
the Select_Box. See 5.60.10.23 New_Select_Box and 5.60.10.30 Select_Box

ID = 881

Validate(Select_Button select,Element &string)
Name
Integer Validate(Select_Button select,Element &string)

Description
Validate the Element string that is selected via the Select_Button select.
The function returns the value of:
 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 12dPL function return values
 ID = 978

Validate(Select_Button select,Element &string,Integer silent)
Name
Integer Validate(Select_Button select,Element &string,Integer silent)

Description
Validate the contents of Select_Button select and return the selected Element in string.
If silent = 0, and there is an error, a message is written and the cursor goes back to the button.
If silent = 1 and there is an error, no message or movement of cursor is done.
The function returns the value of:

 TRUE (1) if no other return code is needed and string is valid.
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 1375

Set_data(Select_Button select,Element string)
Name
Integer Set_data(Select_Button select,Element string)
Page 1061Panels and Widgets

12d Model Programming Language Manual
Description
Sets the Element for the Select_Button select to string.
A function return value of zero indicates the data was successfully set.

ID = 1173

Set_data(Select_Button select,Text string)
Name
Integer Set_data(Select_Button select,Text string)

Description
Set the model and string name as a Text string in the form "model_name->string_name"

A function return value of zero indicates the data was successfully set.
ID = 979

Get_data(Select_Button select,Text &string)
Name
Integer Get_data(Select_Button select,Text &string)

Description
Get the model and string name for the selected string in the form "model_name->string_name".
Return the Text in string.
The returned string type must be Text.
A function return value of zero indicates the data was successfully returned.
ID = 980

Select_start(Select_Button select)
Name
Integer Select_start(Select_Button select)

Description
Starts the string selection for the Select_Button select. This is the same as if the button had been
clicked.
A function return value of zero indicates the start was successful.
ID = 1167

Select_end(Select_Button select)
Name
Integer Select_end(Select_Button select)

Description
Cancels the string selection that is running for the Select_Button select. This is the same as if
Cancel had been selected from the Pick Ops menu.
A function return value of zero indicates the end was successful.

ID = 1168
Page 1062 Panels and Widgets

Chapter
Set_select_type(Select_Button select,Text type)
Name
Integer Set_select_type(Select_Button select,Text type)

Description
Set the type of the string that can be selected to type for Select_Botton select. For example
“Alignment”, “3d”.
A function return value of zero indicates the type was successfully set.

ID = 1043

Set_select_snap_mode(Select_Button select,Integer snap_control)
Name
Integer Set_select_snap_mode(Select_Button select,Integer snap_control)

Description
Set the snap control snap_control for the Select_Button select.
 mode value
Ignore_Snap 0

User_Snap 1
Program_Snap 2
A function return value of zero indicates the type was successfully set.

ID = 1044

Get_select_direction(Select_Button select,Integer &dir)
Name
Integer Get_select_direction(Select_Button select,Integer &dir)

Description
Get the select_direction dir from the selected string.
The returned dir type must be Integer.

If select without direction, the returned dir is 1, otherwise, the returned dir:

Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully returned.
ID = 1046

Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text)
Name
Integer Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text)

Description
Page 1063Panels and Widgets

12d Model Programming Language Manual
Set the snap mode mode and snap control control
 for the Select_Button select.
When snap mode is:

Name_Snap 6
Tin_Snap 7
Model_Snap 8
the snap_text must be string name; tin name, model name accordingly, otherwise, leave the
snap_text blank “”.
A function return value of zero indicates the type was successfully set.

Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real
&ch,Real &ht)
Name
Integer Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description
Get the coordinate of the selected snap point.

The return value of x, y, z, ch and ht must be type of Real.
A function return value of zero indicates the coordinate was successfully returned.
 ID = 1047

For information on the other Buttons, go to 5.60.13 Buttons
Page 1064 Panels and Widgets

Chapter
5.60.13.4 Help Button
In 12d Model every inbuilt panel (that is ones not created by macros) can have a Help button
which when selected goes to the topic describing that panel. The default 12d Model Help is all in
one Help file but a method for displaying additional help information exists so 12d Solutions, 12d
Distributors and Users can supply additional (extra) Help information.

In the macro language there is also a method of creating one Help button that is used for all the
panels created in that macro and that Help button provides access to the context sensitive help
provides by 12d Solutions (only of use to 12d Solutions programmers) AND also access to the
Extra Help system that is available for all Users to supply their own, or additional (extra) Help
information.
If there is Extra Help available for an option, then Help* will appear instead of Help on the panel
button.

Create_help_button(Panel panel,Text title_txt)
Name
Button Create_help_button(Panel panel,Text title_txt)

Description
Create a button with the title title_text and return it as the function return value.
To set up the file for extra help, see How to Set Up Extra Help.
 ID = 2633

How to Set Up Extra Help
Any extra help for a macro is placed in a folder with the same name as the macro but without the
ending "4do" after the “.” and with any blanks or non alphanumeric characters replaced by a
underscore ("_").
For example, the extra help files for the macro called "testing help (3) system.4do" go in a folder
called testing_help__3__system. Note there is an underscore for the blanks and the "(" and ")" in
the macro name.

The extra help files for the macro that are placed in that folder can be a pdf, wmv, avi. txt etc.
The folder of Extra Help for the macro, is then placed in any one of the three places:
(a) in the Help folder in the 12d Model installation area: For example, for version 10,

c:\Program Files\12d\12d Model\10.00\Help
(b) in a folder called Help inside the Set_ups folder in the 12d Model installation area. For example

c:\Program Files\12d\12d Model\10.00\Set_ups\Help

or
(c) in a folder called Help inside the User folder in the 12d User area. For example

the Help button will be replaced with a Help *
If there is any documentation for the panel of the macro,

The * indicates that there is extra help available.
Page 1065Panels and Widgets

12d Model Programming Language Manual
c:\12d\10.00\User\Help
For a macro, each of these areas is searched and if any extra help is found, it is listed with the
full path to each extra help file.
If there is any extra help for a macro, the Help button on the panel will be replaced with a Help *
button. The * indicates that there is extra help available.

When you click on the Help * button, you will get a list of all the extra help files for that panel with
the full pathname to the extra help. Clicking on the file name will bring up that extra help.
Special Note:
Users can also have their own extra help files for macros (and also 12d Model panels) and the
files are simply placed in the correctly named folder under User\Help. For information on Help
information for 12d Model panels, see the 12d Model Help section in the 12d Model Reference
manual.

For information on the other Buttons, go to 5.60.13 Buttons
Page 1066 Panels and Widgets

Chapter
5.60.14 GridCtrl_Box
A GridCtrl_Box is made up of columns and rows of Widgets.

Each column must have a fixed Widget type, which is defined by supplying an array of Widgets of
the correct type, one for each column, in column order. The title for each Widget becomes the
title for the column of the GridCtrl_Box.
The only thing to be careful of is that if the variable types are not defined as actual Widget but are
derived from Widgets (for example the input boxes Real_Box, Input_Box, Named_Tick_Box etc)
then they must be cast to Widget before they can be loaded into the array to create the
GridCtrl_Box.
As an example, a section of code required to create a GridCtrl_Box, defined the columns for the
GridCtrl_Box using the array column_widgets[] and display it on the screen is:

 Widget cast(Widget w) // this small routine cast needs to be in the macro code.
 {
 return w;
 }
 void main()
 {
 Panel panel = Create_panel("Panel Grid Test");

 Widget column_widgets[3];
 Message_Box message_box = Create_message_box("");
 Real_Box col_1_box = Create_real_box("My Real", message_box);
 Input_Box col_2_box = Create_input_box("My Input", message_box);
 Named_Tick_Box col_3_box = Create_named_tick_box("Tick", 1, "resp");
 column_widgets[1] = cast(col_1_box);
 column_widgets[2] = cast(col_2_box);
 column_widgets[3] = cast(col_3_box);

 GridCtrl_Box grid_box = Create_gridctrl_box("MyGrid", 2, 3, column_widgets,1,
 message_box, 100, 200);
 Append(grid_box, panel);
 Show_widget(panel);

Important note: Loading data into the GridCtrl_Box can only be done after the Show_widget call
is made.

Two rows

Three columns with column types Real_Box, Input_Box, Tick_Box.
The titles of the Widgets are the headings for the columns.

Grid navigation

message box

boxes
Page 1067Panels and Widgets

12d Model Programming Language Manual
Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer
height)
Name
GridCtrl_Box Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer height)

Description
This call creates a new GridCtrl_Box object which can be added to Panels.
name is the name of the GridCtrl_Box and the number of rows that the grid initially has is
num_rows and the number of columns is num_columns (rows can also be added or deleted
after the GridCtrl_Box has been displayed).

column_widgets[] is an array of Widgets in column order, and each Widget is of the type for that
column. For an example see 5.60.14 GridCtrl_Box.
If show_nav is 1 then there are navigation boxes on the side of the GridCtrl_Box.
If show_nav is 0 then there are no navigation boxes.
The width of the grid cell is width and the height of the grid cell is height, The units for width and
height are screen units (pixels).

Important note: All Boxes, even through they have names like Real_Box and Input_Box,
derived from Widgets and can be used in many options that take a Widget. For example
Show_widget. However for the array of widgets column_widgets[] defining the GridCtrl_Box
columns, the array values need to be Widget and so the other types derived from Widget have to
be cast to a Widget before they can be used to fill the column_widgets[] array. The cast is easily
done by simply having the following cast function defined and in your macro code.
 Widget cast(Widget w)
 {
 return w;
 }

See 5.60.14 GridCtrl_Boxfor an example of using cast when defining values for
column_widgets[].

If the rows and columns are too large to fit inside the area defined by width and height, scroll bars
are automatically created so that all cells can be reached.

GridCtrl_Box with two row and three columns with column types Real_Box, Input_Box, Tick_Box
The titles of the Widgets are the headings for the columns

Grid navigation
boxes

show_nav = 1
show_nav = 0
so navigation boxes

so navigation boxes
Page 1068 Panels and Widgets

Chapter
The created GridCtrl_Box is returned as the function return value.
ID = 2393

Create_gridctrl_box(Text name,Integer num_rows, Integer num_columns,Widget
column_widgets[],Integer column_readonly[], Integer show_nav,Message_Box
messages,Integer width,Integer height) For V10 only
Name
GridCtrl_Box Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer column_readonly[],Integer show_nav,Message_Box messages,Integer
width,Integer height)

Description
This call creates a new GridCtrl_Box object which can be added to Panels.
This is the same as the previous GridCtrl_Box function except that there is also the array
column_readonly[] where

column_readonly[] is an Integer array of size num_columns where a value of 1 means that the
cell is read only, and 0 means that the cell can be edited.

See Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer height) for
more documentation for this function.

A horizontal scroll bar is automatically added when
the columns are wider than the given width

A vertical scroll bar is automatically added
when the rows are wider than the
given height

column_readonly[1] = 0;
column_readonly[2] = 1;
column_readonly[3] = 0;

Integer column_readonly[3];

Second column is read only

To set only the middle column
to be read only -
Page 1069Panels and Widgets

12d Model Programming Language Manual
The created GridCtrl_Box is returned as the function return value.
ID = 2654

Load_widgets_from_row(GridCtrl_Box grid,Integer row_num)
Name
Integer Load_widgets_from_row(GridCtrl_Box grid,Integer row_num)

Description
Let column_widgets[] be the array that was used to define the GridCtrl_Box columns in the
Create_gridcltrl_box call. See Create_gridctrl_box(Text name,Integer num_rows,Integer
num_columns,Widget column_widgets[],Integer show_nav,Message_Box messages,Integer
width,Integer height).

Load_widgets_from_row loads the values in row row_num of the GridCtrl_Box grid into
column_widgets[].
Load_widgets_from_row allows you to validate grid values for a row, or to get the values to use
for other purposes.
To change grid values, you first call Load_widgets_from_row to place the existing values for a
row into column_widgets[], change the values that you wish to change in column_widgets[],
and then call Load_row_from_widgets to load the new values from column_widgets[] back into
the row. See Load_row_from_widgets(GridCtrl_Box grid,Integer row_num).

Note - this call can only be made after the Show_widget call is made to display the panel
containing the GridCtrl_Box.
A function return value of zero indicates the load was successful.
 ID = 2394

Load_row_from_widgets(GridCtrl_Box grid,Integer row_num)
Name
Integer Load_row_from_widgets(GridCtrl_Box grid,Integer row_num)

Description
Let column_widgets[] be the array that was used to define the GridCtrl_Box columns in the
Create_gridcltrl_box call. See Create_gridctrl_box(Text name,Integer num_rows,Integer
num_columns,Widget column_widgets[],Integer show_nav,Message_Box messages,Integer
width,Integer height).

Load_row_from_widgets loads the values of column_widgets[] into row row_num of the
GridCtrl_Box grid.
Note - this call can only be made after the Show_widget call is made to display the panel
containing the GridCtrl_Box.
A function return value of zero indicates the load was successful.

ID = 2395

Insert_row(GridCtrl_Box grid)
Name
Integer Insert_row(GridCtrl_Box grid)
Page 1070 Panels and Widgets

Chapter
Description
This call inserts a blank row at the bottom of the GridCtrl_Box grid.
Note - this call can only be made after the Show_widget call is made to display the panel
containing the GridCtrl_Box.

A function return value of a positive number indicates the insertion was successful; and the
number should equal the number of rows after the insertion.
ID = 2396

Insert_row(GridCtrl_Box grid,Integer row_num,Integer is_before)
Name
Integer Insert_row(GridCtrl_Box grid,Integer row_num,Integer is_before)

Description
This call inserts a blank row into the GridCtrl_Box grid.
If is_before = 1, a blank row is inserted before row_num, so that the blank row becomes the
new row_num’th row. The old rows from row row_num onwards are all pushed down one row.

If is_before = 0, a blank row is after row row_num, so that the blank row becomes a new
(num_row+1)’th row. The old rows from row (num_row+1) onwards are pushed down one row.
t row number row_num of the GridCtrl_Box grid.
If you wish it to be inserted before the specified row, set is_before to 1, otherwise the row will be
inserted after.

Note: a GridCtrl_Box(grid) call should be done after the Insert_row(GridCtrl_Box grid,Integer
row_num,Integer is_before) call. See Format_grid(GridCtrl_Box grid).
A function return value of a positive number indicates the insertion was successful; and the
number should equal the number of rows after the insertion.
ID = 2397

Delete_row(GridCtrl_Box grid,Integer row_num)
 Name
Integer Delete_row(GridCtrl_Box grid,Integer row_num)

Description
Delete the row row_num from the GridCtrl_Box grid.
A function return value of zero indicates the row was successfully deleted.

ID = 2408

Delete_all_rows(GridCtrl_Box grid)
Name
Integer Delete_all_rows(GridCtrl_Box grid)

Description
Delete all the rows of the GridCtrl_Box grid.

A function return value of zero indicates the rows were successfully deleted.
ID = 2409
Page 1071Panels and Widgets

12d Model Programming Language Manual
Get_row_count(GridCtrl_Box grid)
Name
Integer Get_row_count(GridCtrl_Box grid)

Description
This call returns the number of rows currently in a GridCtrl_Box grid as the function return value.

 ID = 2398

Format_grid(GridCtrl_Box grid)
Name
Integer Format_grid(GridCtrl_Box grid)

Description
This call formats the GridCtrl_Box grid.

This means it makes sure all columns and rows are large enough to fit any entered data.
A function return value of zero indicates the format was successful.
ID = 2399

Set_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text value)
Name
Integer Set_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text value)

Description
For the cell with row number row_num and column number col_num of the GridCtrl_Box grid,
set the text value of the cell to text.
It is recommended that you use the Load_row_from_widgets call, as this call will not provide
any validation of data.
This call will return 0 if successful.
A function return value of zero indicates the set was successful.

ID = 2400

Get_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text &value)
Name
Integer Get_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text &value)

Description
Get the text value of the cell at row number row_num and column number col_num of the
GridCtrl_Box grid, and returns the text in value.

 It is recommended that you use the Load_widgets_from_row call instead, as this call will not
provide any validation of data.
A function return value of zero indicates the get was successful.
ID = 2401
Page 1072 Panels and Widgets

Chapter
Set_column_width(GridCtrl_Box grid,Integer col,Integer width)
Name
Integer Set_column_width(GridCtrl_Box grid,Integer col,Integer width)

Description
For the GridCtrl_Box grid, set the width of column number col to width. The units of width are
screen units (pixels).

The column can be made invisible by setting its width to 0.
A function return value of zero indicates the width was successfully set.
ID = 2402

Set_modified(GridCtrl_Box grid,Integer modified)
Name
Integer Set_modified(GridCtrl_Box grid,Integer modified)

Description
This call sets the modified state of the GridCtrl_Box grid.

If modified = 0 then the modified state is set to off.
If modified = 1 then the modified state is set to on.
A function return value of zero indicates the modified state was successfully set.
ID = 2403
Page 1073Panels and Widgets

12d Model Programming Language Manual
Set_warn_on_modified(GridCtrl_Box grid,Integer warn_on_modified)
 Name
Integer Set_warn_on_modified(GridCtrl_Box grid,Integer warn_on_modified)

Description
This call sets the warn on modified state of the GridCtrl_Box grid.
If warn_on_modified = 1 then if the panel containing grid is being closed and grid is in a modified
state, then the user is prompted to confirm that grid is to be closed.

If warn_on_modified = 0 then there is no warning when the panel containing grid is being closed
even if the panel has been modified.

Note: a GridCtrl_Box is in a in a modified state if data in the GridCtrl_Box has been changed and
the modified state has not been set off by a Set_modified(grid,0) call. See
Set_modified(GridCtrl_Box grid,Integer modified)
The default for a GridCtrl_Box is that a warning is given when attempting to close it.
A function return value of zero indicates the warn on modified state was successfully set.

ID = 2404
Page 1074 Panels and Widgets

Chapter
Get_selected_cells(GridCtrl_Box grid,Integer &start_row,Integer
&start_col,Integer &end_row,Integer &end_col)
Name
Integer Get_selected_cells(GridCtrl_Box grid,Integer &start_row,Integer &start_col,Integer
&end_row,Integer &end_col)

Description
For the GridCtrl_Box grid, return the minimum and maximum row and column numbers for the
current selected cells (the range of the selected cells).
The minimum and maximums are returned in start_row, start_col and end_row and end_col.
Note that not all the cells in the range need to be selected.

The function return value is zero if there are selected cells and the range is returned successfully.
The function return value is non-zero is there are no selected rows.
ID = 2410

Set_fixed_row_count(GridCtrl_Box grid,Integer num_fixed_rows)
Name
Integer Set_fixed_row_count(GridCtrl_Box grid,Integer num_fixed_rows)

Description
Sets the number of fixed rows in the GridCtrl_Box grid.
Fixed rows can not be deleted or moved and rows can not be inserted between two other fixed
rows.

A function return value of zero indicates the set was successful.
ID = 2655

start_row = 2
start_col= 1

end_row = 4
end_col = 4
Page 1075Panels and Widgets

12d Model Programming Language Manual
Get_fixed_row_count(GridCtrl_Box grid)
Name
Integer Get_fixed_row_count(GridCtrl_Box grid)

Description
Gets the number of fixed rows in the GridCtrl_Box grid.

Fixed rows can not be deleted or moved and rows can not be inserted between two other fixed
rows.
The number of fixed rows is returned as the function return value.
ID = 2656

Set_cell_read_only(GridCtrl_Box grid,Integer row,Integer col,Integer read_only)
Name
Integer Set_cell_read_only(GridCtrl_Box grid,Integer row,Integer col,Integer read_only)

Description
For the GridCtrl_Box grid, set the cell specified by row row and column col as read only.
Note that colouring may be removed when grid is formatted and the format_grid message
should be trapped to reapply these settings.

A function return value of zero indicates the set was successful.
ID = 2657

Get_cell_read_only(GridCtrl_Box grid,Integer row,Integer col)
Name
Integer Get_cell_read_only(GridCtrl_Box grid,Integer row,Integer col)

Description
For the GridCtrl_Box grid, check if the cell specified by row row and column column is read
only.
The function return value is:

1 if the cell is read only
zero if the cell is not read only.

ID = 2658
Page 1076 Panels and Widgets

Chapter
5.60.15 Tree Box Calls
The tree box is a widget that consists of two parts - a left hand side (Tree) and a right hand side
for displaying information for a particular part of the tree.

The tree on the left hand side is made up of nodes (or pages).
Each node (page) can have a set of Widgets that are displayed on the right hand side, when that
node is selected on the left hand side.
Each node (page) can have zero or more of children pages.

The Tree_Box is similar in style to the 12d Model panels for Super Alignment Parts Editor, the
Chain editor and the Env.4d editor.

 Create_tree_box(Text name,Text root_item_text,Integer tree_width,Integer
tree_height)
Name
Tree_Box Create_tree_box(Text name,Text root_item_text,Integer tree_width,Integer tree_height)

Description
This call creates a Tree_Box with the name name and with width tree_width and height
tree_height. The units for width and height are screen units (pixels).

An empty node/page at the root of the tree is created with the title root_item_text. This is called
the root page.

The right hand side of
Tree_Page "Page 1"
comes up when you
click on "Page 1" in the

Border around
right hand side
of "Page1"

Title for border

Tree on the left hand side

Left hand side of the Tree_Box

The Tree expands/collapses
when you click on + or -

Children of
Page 1"

Right hand side of the Tree_Box
Page 1077Panels and Widgets

12d Model Programming Language Manual
The created Tree_Box is returned as the function return value.
ID = 2571

Get_root_page(Tree_Box tree_box)
Name
Tree_Page Get_root_page(Tree_Box tree_box)

Description
Get the root page of the Tree_Box tree_box and return it as the function return value.
All Tree_Box’s automatically have a root page.

ID = 2572

 Create_tree_page(Tree_Page parent_page,Text name,Integer show_border, Integer
use_name_for_border)
Name
Tree_Page Create_tree_page(Tree_Page parent_page,Text name,Integer show_border,Integer
use_name_for_border)

Description
This call creates a new Tree_Page with the name name, as a child of the Tree_Page
parent_page.
When the right hand side of the created page exists and there is none or more than one Group
(either Horizontal_Group’s and/or Vertical_Group’s), then the right hand side can have an
optional border and be given the name of the Tree_Page as a title for the border.

If show_border = 1, a border is drawn around the right had side of the created Tree_Page.
If show_border = 0, no border is drawn around the right had side of the created Tree_Page.
If use_name_for_border = 1, name is used as the title when the border is drawn around the right
had side of the created Tree_Page.

An example of a section of the code required to create a Tree_Box with its root page is:
 Tree_Box tree_box = Create_tree_box("Tree", "Tree Root", 200, 200);
Page 1078 Panels and Widgets

Chapter
If use_name_for_border = 0, there is no title when the border is drawn around the right had side
of the created Tree_Page.

A parent page must exist before a child page can be created. The parent page may be the root
page that is automatically created for a Tree_Box and the Get_root_page call is used to get the
root page of a Tree_Box. See Get_root_page(Tree_Box tree_box)

A Tree_Page can contain any number of children pages.

The created Tree_Box is returned as the function return value.

Right hand side of
Tree_Page "Page 1"

The right hand side comes up when you
click on "Page 1" in the Tree on the left

Border around
right hand side
of "Page1"

Title for border

An example of a section of the code required to create a Tree_Box with its root page, and then one
child page of the root page is:
 Tree_Box tree_box = Create_tree_box("Tree", "Tree Root", 200, 200);

// get the root page to add a child page called "Page 1" to
 Tree_Page root_page = Get_root_page(tree_box);
 Tree_Page page_1 = Create_tree_page(root_page, "Page 1", 1, 1);
Page 1079Panels and Widgets

12d Model Programming Language Manual
ID = 2577

Append(Widget widget,Tree_Page page)
Name
Integer Append(Widget widget,Tree_Page page)

Description
Append the Widget widget to the Tree_Page page.

All Widgets appended to a Tree_Page page are displayed on the right hand side of the Tree_Box
when the user clicks on page on the left hand side of the Tree_Box.
A function return value of zero indicates the Widget was successfully appended.

An example of a section of the code required to create a Tree_Box with its root page, one child
page of the root page, and some boxes to show on the right had side of the child page is:
 Panel panel = Create_panel("Tree Box test");
 Tree_Box tree_box = Create_tree_box("Tree", "Tree Root", 200, 200);

// get the root page to add a child page to
 Tree_Page root_page = Get_root_page(tree_box);
 Tree_Page page_1 = Create_tree_page(root_page, "Page 1", 1, 1);
 Message_Box message_box = Create_message_box("");
 Input_Box ib_1 = Create_input_box("Input box", message_box);
 Real_Box db_1 = Create_real_box("Double box", message_box);
 Append(ib_1,page_1);
 Append(db_1,page_1);
 Append(message_box,page_1);
 Append(tree_box, panel);
 Show_widget(panel);

ID = 2583
Page 1080 Panels and Widgets

Chapter
Get_number_of_pages(Tree_Page page)
Name
Integer Get_number_of_pages(Tree_Page page)

Description
For the Tree_Page page, return the number of child pages belonging to page as the function
return value.

ID = 2578

Get_page(Tree_Page parent,Integer n,Tree_Page &child_page)
Name
Integer Get_page(Tree_Page parent,Integer page_index,Tree_Page &child_page)

Description
For the Tree_Page parent, find the n’th child page of parent and return the page as child_page.
A function return value of zero indicates a child page was successfully returned.
ID = 2579

Integer Has_child_page(Tree_Page child,Tree_Page parent)
Name
Has_child_page(Tree_Page child,Tree_Page parent)

Description
This call checks if the given child Tree_Page child belongs to the parent Tree_Page parent.
A non-zero function return value indicates that child is a child page of parent.
Warning this is the opposite of most 12dPL function return values
ID = 2580

Has_widget(Tree_Page page,Widget w)
Name
Integer Has_widget(Tree_Page page,Widget w)

Description
This call checks if the Tree_Page page contains the Widget w.
A non-zero function return value indicates that w is in page.
Warning this is the opposite of most 12dPL function return values

ID = 2581
Page 1081Panels and Widgets

12d Model Programming Language Manual
Get_page_name(Tree_Page page)
Name
Text Get_page_name(Tree_Page page)

Description
For the Tree_Page page, return the Text name of page as the function return value.

ID = 2582

Set_page(Tree_Box tree_box,Widget w)
Name
Integer Set_page(Tree_Box tree_box,Widget w)

Description
Set the current displayed page of the Tree_Box tree to the Tree_Page that contains the Widget
w.

This is particularly useful for validation, when validation fails.
A function return value of zero indicates the page was successfully displayed.
ID = 2573

Set_page(Tree_Box tree_box,Tree_Page page)
Name
Integer Set_page(Tree_Box tree_box,Tree_Page page)

Description
Set the current displayed page of the Tree_Box tree to the Tree_Page page.

A function return value of zero indicates the page was successfully displayed.
ID = 2574

Set_page(Tree_box tree_box,Text name)
Name
Integer Set_page(Tree_box tree_box,Text name)

Description
Set the current displayed page of the Tree_Box tree to the Tree_Page with name name.
A function return value of zero indicates the page was successfully displayed.
ID = 2575

Get_current_page(Tree_Box tree_box,Tree_Page ¤t_page)
Name
Integer Get_current_page(Tree_Box tree_box,Tree_Page ¤t_page)

Description
Get the Tree_Page that is currently selected and return it in current_page.
A function return value of zero indicates the page was successfully returned.

ID = 2576
Page 1082 Panels and Widgets

Chapter
5.61 General

See 5.61.1 Quick Sort
See 5.61.2 Name Matching
See 5.61.3 Null Data
See 5.61.11 Strings Edits
See 5.61.12 Place Meshes

See 5.61.4 Contour
See 5.61.5 Drape

See 5.61.7 Volumes

See 5.61.8 Interface
See 5.61.9 Templates
See 5.61.10 Applying Templates
Page 1083General

12d Model Programming Language Manual
5.61.1 Quick Sort
The Quick Sort routines sort into increasing order, the n values held in either an Integer array, a
Real array or a Text array, say val_array.

The data in the arrays is not actually moved but instead an Integer array index[] (called the Index
array) is also passed into the Quick Sort routines and the Index array is returned holding the
order of the sorted values.
That is, the i’th array value of Index is the array position of the i’th sorted value in val_array.
For example, if

ipos = Index[7],
and

val = val_array[ipos]

then val is the seventh sorted value from val_array.
So the loop below will go through the values in val_array in the sorted order from lowest value to
the highest value:
 for (Integer i=1;i<=n;i++) {

 val = val_array[index[i]];

Quick_sort(Integer count,Integer index[],Integer val_array[])
Name
Integer Quick_sort(Integer count,Integer index[],Integer val_array[])

Description
Sort the Integer array val_array[count] of size count, and return the sort order for val_array[] in
the Index array index[]. For more information see 5.61.1 Quick Sort.
The array index[] must be of at least size count.
A function return value of zero indicates that the sort was successful.

ID = 2745

Quick_sort(Integer count,Integer index[],Read val_array[])
Name
Integer Quick_sort(Integer count,Integer index[],Real val_array[])

Description
Sort the Real array val_array[count] of size count, and return the sort order for val_array[] in
the Index array index[]. For more information see 5.61.1 Quick Sort.

The array index[] must be of at least size count.
A function return value of zero indicates that the sort was successful.
ID = 2746
Page 1084 General

Chapter
Quick_sort(Integer count,Integer index[],Text val_array[])
Name
Integer Quick_sort(Integer count,Integer index[],Text val_array[])

Description
Sort the Text array val_array[count] of size count, and return the sort order for val_array[] in
the Index array index[]. For more information see 5.61.1 Quick Sort.

The array index[] must be of at least size count.
A function return value of zero indicates that the sort was successful.
ID = 2747

5.61.2 Name Matching
Match_name(Text name,Text reg_exp)
Name
Integer Match_name(Text name,Text reg_exp)

Description
Checks to see if the Text name matches a regular expression given by Text reg_exp.
The regular expression uses

* for a wild cards
? for a wild character
A function return value of non-zero indicates that there was a match.

A zero function return value indicates that there is no match or there was an error.
ID = 188

Match_name(Dynamic_Element de,Text reg_exp,Dynamic_Element &matched)
Name
Integer Match_name(Dynamic_Element de,Text reg_exp,Dynamic_Element &matched)

Description
Returns all the Elements from the Dynamic_Element de whose names match the regular
expression Text reg_exp.
The matching elements are returned by appended them to the Dynamic_Element matched.
A function return value of zero indicates there were no errors in the matching calculations.

ID = 189
Page 1085General

12d Model Programming Language Manual
5.61.3 Null Data
It often happens in modelling that the plan position of a point is known (that is, the (x,y) co-
ordinates are known) but the z-value is not defined.

For these situations, 12d Model has a special null z-value that is used to indicate that the z-value
is to be ignored.

Is_null(Real value)
Name
Integer Is_null(Real value)

Description
Checks to see if the Real value is null or not.
A non-zero function return value indicates the value is null.

A zero function return value indicates the value is not null.
Warning - this is the opposite of most 12dPL function return values
ID = 469

Null(Real &value)
Name
void Null(Real &value)

Description
This function sets the Real value to the 12d Model null-value.

There is no function return value.
ID = 470

Null_ht(Dynamic_Element elements,Real height)
Name
Integer Null_ht(Dynamic_Element elements,Real height)

Description
This function examines the z-values of each point for all non-Alignment strings in the
Dynamic_Element elements, and if the z-value of the point equals height, the z-value is reset to
the null value.
A returned value of zero indicates there were no errors in the null operation.
ID = 407
Page 1086 General

Chapter
Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max)
Name
Integer Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max)

Description
This function examines the z-values of each point for all non-Alignment strings in the
Dynamic_Element elements, and if the z-value of the point is between ht_min and ht_max, the
z-

value is reset to the null value.
A returned value of zero indicates there were no errors in the null operation.
ID = 408

Reset_null_ht(Dynamic_Element elements,Real height)
Name
Integer Reset_null_ht(Dynamic_Element elements,Real height)

Description
This function resets all the null z-values of all points of non-Alignment strings in the
Dynamic_Element elements, to the value height.
A returned value of zero indicates there were no errors in the reset operation.
ID = 409
Page 1087General

12d Model Programming Language Manual
5.61.4 Contour
Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer
cont_col,Dynamic_Element &cont_de,Real bold_inc,Integer
bold_col,Dynamic_Element &bold_de)
Name
Integer Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer cont_col,Dynamic_Element
&cont_de,Real bold_inc,Integer bold_col,Dynamic_Element &bold_de)

Description
Contour the triangulation tin between the minimum and maximum z values cmin and cmax.
The contour increment is cinc, and cref is a z value that the contours will pass through.

ccol is the colour of the normal contours and they are added to the Dynamic_Element cont_de.
bold_inc and bold_col are the increment and colour of the bold contours respectively. If
bold_inc is zero then no bold contour are produced.
Any bold contours are added to the Dynamic_Element bold_de.

A function return value of zero indicates the contouring was successful.
ID = 143

Tin_tin_depth_contours(Tin original,Tin new,Integer cut_colour,Integer
zero_colour,Integer fill_colour,Real interval,Real start_level,Real end_level,Integer
mode,Dynamic_Element &de)
Name
Integer Tin_tin_depth_contours(Tin original,Tin new,Integer cut_colour,Integer zero_colour,Integer
fill_colour,Real interval,Real start_level,Real end_level,Integer mode,Dynamic_Element &de)

Description
Calculate depth contours (isopachs) between the triangulations original and new.
The contour increment is interval, and the range is from start_level to end_level.
cut_colour, zero_colour and fill_colour are the colours of the cut, zero and fill contours
respectively.

If the value of mode is
0 2d strings are produced with depth as the z-value
1 3d strings are produced with the depth contours projected onto the Tin original.
2 3d strings are produced with the depth contours projected onto the Tin new.
The new strings are added to the Dynamic_Element de.
A function return value of zero indicates the contouring was successful.

 ID = 394
Page 1088 General

Chapter
Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de)
Name
Integer Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de)

Description
Calculate the intersection (daylight lines) between the triangulations original and new.

The intersection lines have colour colour and are added to the Dynamic_Element de.
Note
This is the same as the zero depth contours projected onto either Tin original or new (mode 1 or
2) that are produced by the function Tin_tin_depth_contours.

A function return value of zero indicates the intersection was successful.
ID = 479

Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element
&de,Integer mode)
Name
Integer Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de,Integer mode)

Description
Calculate the intersection (daylight lines) between the triangulations original and new.

The intersection lines have colour colour and are added to the Dynamic_Element de.
If mode is
0 the intersection line with z = 0 (2d string) is produced

1 the full 3d intersection is created.
A function return value of zero indicates the intersection was successful.
ID = 393
Page 1089General

12d Model Programming Language Manual
5.61.5 Drape
Drape(Tin tin,Model model,Dynamic_Element &draped_elts)
Name
Integer Drape(Tin tin,Model model,Dynamic_Element &draped_elts)

Description
Drape all the Elements in the Model model onto the Tin tin.

The draped Elements are returned in the Dynamic_Element draped_elts.
A function return value of zero indicates the drape was successful.

Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts)
Name
Integer Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts)

Description
Drape all the Elements in the Dynamic_Element de onto the Tin tin.
The draped Elements are returned in the Dynamic_Element draped_elts.
A function return value of zero indicates the drape was successful.

Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts, Integer
create_supers)
Name
Integer Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts, Integer create_supers)

Description
Drape all the Elements in the Dynamic_Element de onto the Tin tin.
The draped Elements are returned in the Dynamic_Element draped_elts.
The resulting elements in draped_elts will be super string only if create_supers is non zero.

A function return value of zero indicates the drape was successful.
ID = 3790

Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts)
Name
Integer Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts)

Description
Face drape all the Elements in the Model model onto the Tin tin.
The draped Elements are returned in the Dynamic_Element face_draped_elts.
A function return value of zero indicates the face drape was successful.
Page 1090 General

Chapter
Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element
&face_draped_strings)
Name
Integer Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element &face_draped_strings)

Description
Face drape all the Elements in the Dynamic_Element de onto the Tin tin.
The face draped Elements are returned in the Dynamic_Element face_draped_elts.
A function return value of zero indicates the face drape was successful.

ID = 145
Page 1091General

12d Model Programming Language Manual
5.61.6 Drainage
Get_drainage_intensity(Text rainfall_filename,Integer rainfall_method,Real
frequency,Real duration,Real &intensity)
Name
Integer Get_drainage_intensity(Text rainfall_filename,Integer rainfall_method,Real frequency,Real
duration,Real &intensity)

Description
The Rainfall Intensity information is part of a 12d Model Rainfall File (that ends in ".12dhdyro").
The Rainfall Files can be created and/or edited by the 12d Model Rainfall File Editor:

Water->Stormwater tools->Rainfall editor.

12d Model comes with some Rainfall Files and others can be created by users.
The Get_drainage_intensity call returns the intensity for a given rainfall method, frequency storm
duration.
The image below are the rainfall Intensity Methods from the "AUS ACT Canberra.12dhydro" file
loaded into the Rainfall File Editor.

durations

12d hydro
file name

intensities

IFD Table Intensity Method in the Rainfall File
Page 1092 General

Chapter
The function arguments are:

rainfall_filename is the local name of the ".12dhydro" file to get the Intensity from.
rainfall_method is one of:
 "IFD Table"
 "ARR 1987"
 "ARR 1977"
frequency is the frequency (ARI) in years

duration is the duration in minutes

12d hydro
file name

ARR 1987 Intensity Method in the Rainfall File

12d hydro
file name

ARR 1977 Intensity Method in the Rainfall File
Page 1093General

12d Model Programming Language Manual
intensity is returned and is the intensity calculated from the table given by the rainfall_method,
frequency and the duration.
A function return value of zero indicates that the intensity was successfully returned.
A non zero function return indicates that there was an error getting the intensity.

The value of the non-zero function value indicates the type of error:
 Error Codes
 -999 = no Drainage Analysis license
 -99 = error reading file
 -9 = no valid data found for specified method
 -8 = frequency outside valid range
 -4 = unsupported rainfall method
 -3 = error building ARR1977 storm data
 -2 = error building ARR1987 storm data
 -1 = error building IFD storm data

ID = 2209
Page 1094 General

Chapter
Get_rainfall_temporal_patterns_enabled(Text file,Real min_freq,Real
max_freq,Dynamic_Integer &storms,Integer &ret_num)
Name
Integer Get_rainfall_temporal_patterns_enabled(Text file,Real min_freq,Real max_freq,Dynamic_Integer
&storms,Integer &ret_num)

Description
The Rainfall Temporal Pattern information is part of a 12d Model Rainfall File (that ends in
".12dhdyro").
The Rainfall Files can be created and/or edited by the 12d Model Rainfall File Editor:

Water->Stormwater tools->Rainfall editor.

12d Model comes with some Rainfall Files and others can be created by users.
The rainfall Temporal Patterns transform the constant average rainfall to a time varied rainfall.

The Get_rainfall_temporal_patterns_enabled call returns a Dynamic_Integer list of storm
numbers for all the enabled storm patterns in a Rainfall File. These storm numbers are used to
retrieve the full storm data via the call

Get_rainfall_temporal_pattern(Text rainfall_filename,Integer storm_num,Integer &run,Text
&zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval,Real pattern[],Integer
max_num,Integer &ret_num)
The image below table is the is of the rainfall Temporal Patterns from the "AUS ACT
Canberra.12dhydro" file loaded into the Rainfall File Editor.

The function arguments are:

rainfall_filename is the local name of the ".12dhydro" file to get the temporal pattern values from.

Storm number

12d hydro flag to say Zone
 run storm file name filter

Storm name

total length
of storm

Average Recurrence
Interval (ARI)

from to

Temporal Patterns in the Rainfall File
or Storm ID
Page 1095General

12d Model Programming Language Manual
min_freq the From ARI value must match this argument.
max_freq the To ARI value must match this argument.
storms is a Dynamic_Integer list of storm numbers where the Run storm is selected. These
numbers are used in the following call to retrieve the full storm data.

Get_rainfall_temporal_pattern(Text rainfall_filename,Integer storm_num,Integer &run,Text
&zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval,Real pattern[],Integer
max_num,Integer &ret_num)

ret_num returns the actual number of storms returned
A function return value of zero indicates the data was successfully returned.
ID = 3187
Page 1096 General

Chapter
Get_rainfall_temporal_pattern(Text rainfall_filename,Integer storm_num,Integer
&run,Text &zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real
&interval,Real pattern[],Integer max_num,Integer &ret_num)
Name
Integer Get_rainfall_temporal_pattern(Text rainfall_filename,Integer storm_num,Integer &run,Text
&zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval,Real pattern[],Integer
max_num,Integer &ret_num)

Description
The Rainfall Temporal Pattern information is part of a 12d Model Rainfall File (that ends in
".12dhdyro").

The Rainfall Files can be created and/or edited by the 12d Model Rainfall File Editor:
Water->Stormwater tools->Rainfall editor.

12d Model comes with some Rainfall Files and others can be created by users.

The rainfall Temporal Patterns transform the constant average rainfall to a time varied rainfall.
The Get_rainfall_temporal_pattern call returns the information for one storm from the rainfall
Temporal Patterns in a Rainfall File.
The image below table is the is of the rainfall Temporal Patterns from the "AUS ACT
Canberra.12dhydro" file loaded into the Rainfall File Editor.

Storm number

12d hydro flag to say Zone
 run storm file name filter

Storm name

total length
of storm

Average Recurrence
Interval (ARI)

from to

Temporal Patterns in the Rainfall File
or Storm ID
Page 1097General

12d Model Programming Language Manual
The function arguments are:

rainfall_filename is the local name of the ".12dhydro" file to get the temporal pattern values from.

storm_num is the number of the storm in the file. With the addition of the frequent, intermediate
and rare temporal patterns all the storms are combined into one list in the order they appear in
the editor. The storm number in the index on this list.
The rest of the arguments of the call return values from the storm_num’th line of the Temporal
Pattern table.

run returns 1 if "Run Storm" is ticked
 0 if "Run Storm" is not ticked
zone_filter returns the value from "Zone Filter"
duration returns the total length of the storm

from_ari returns the "from ARI" (Average Recurrence Interval, also known as the Frequency or
Return Period)

to_ari returns the "to ARI" (Average Recurrence Interval, also known as the Frequency or Return
Period)

interval returns the time interval for each of the values in the temporal patterns table (which give
the percentage of the total storm that occurs in that period)

pattern[] is an array to return the values of the temporal pattern
max_num is the maximum size of the array pattern[]
ret_num returns the actual number of values returned in pattern

A function return value of zero indicates the data was successfully returned.
ID = 2405

interval temporal pattern values
file name

Temporal Pattern Table from the Rainfall File
Page 1098 General

Chapter
Get_rainfall_temporal_pattern(Text rainfall_filename,Text storm_name,Integer
&run,Text &zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real
&interval, Real pattern[],Integer max_num,Integer &ret_num)
Name
Integer Get_rainfall_temporal_pattern(Text rainfall_filename,Text storm_name,Integer &run,Text
&zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval,Real pattern[],Integer
max_num,Integer &ret_num)

Description
The Rainfall Temporal Pattern information is part of a 12d Model Rainfall File (that ends in
".12dhdyro").

The Rainfall Files can be created and/or edited by the 12d Model Rainfall File Editor:
Water->Stormwater tools->Rainfall editor.

12d Model comes with some Rainfall Files others can be created by users.

The rainfall Temporal Patterns give the mathematical description of one or more storms.
The Get_rainfall_temporal_pattern call returns the information for one storm from the rainfall
Temporal Patterns in a Rainfall File.
The image of the rainfall Temporal Patterns from the "AUS ACT Canberra.12dhydro" file loaded
into the Rainfall File Editor is given in Get_rainfall_temporal_pattern(Text
rainfall_filename,Integer storm_num,Integer &run,Text &zone_filter,Real &duration,Real
&from_ari,Real &to_ari,Real &interval,Real pattern[],Integer max_num,Integer &ret_num).

The difference between the two calls is that in the other call, the required storm in the Temporal
Patterns is given by a line number whereas in this function the storm is found by giving a storm
ID (storm name).
storm_name is the name (Storm ID) of the required storm in the file. The Storm ID is will give the
line in the Temporal Patterns to return the data from.
All the return values are the same as for the documentation in
Get_rainfall_temporal_pattern(Text rainfall_filename,Integer storm_num,Integer &run,Text
&zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval,Real pattern[],Integer
max_num,Integer &ret_num).

A function return value of zero indicates the data was successfully returned.
 ID = 2406
Page 1099General

12d Model Programming Language Manual
5.61.7 Volumes
See 5.61.7.1 End Area
See 5.61.7.2 Exact Volumes
Page 1100 General

Chapter
5.61.7.1 End Area

Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text
report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)
Name
Integer Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text report_name,Integer
report_mode,Real &cut,Real &fill,Real &balance)

Description
Calculate the volume from a tin tin_1 to a height ht inside the polygon poly using the end area
method. The sections used for the end area calculations are taken at the angle ang with a
separation of sep.
A report file is created called report_name which contains cut, fill and balance information.

If report_mode is equal to
0 only the total cut, fill and balance is given
1 the cut and fill value for every section is given.
If the file report_name is blank (""), no report is created.

The variables cut, fill and balance return the total cut, fill and balance.
A function return value of zero indicates the volume calculation was successful.
ID = 147

Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text
report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)
Name
Integer Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text report_name,Integer
report_mode,Real &cut,Real &fill,Real &balance)

Description
Calculate the volume from tin tin_1 to tin tin_2 inside the polygon poly using the end area
method. The sections used for the end area calculations are taken at the angle ang with a
separation of sep.

A report file is created called report_name which contains cut, fill and balance information.
If report_mode is equal to
0 only the total cut, fill and balance is given
1 the cut and fill value for every section is given.

If the file report_name is blank (""), no report is created.
The variables cut, fill and balance return the total cut, fill and balance.
A function return value of zero indicates the volume calculation was successful.

ID = 148
Page 1101General

12d Model Programming Language Manual
5.61.7.2 Exact Volumes

Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill,Real &balance)
Name
Integer Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill,Real &balance)

Description
Calculate the volume from a tin tin_1 to a height ht inside the polygon poly using the exact
method.

The variables cut, fill and balance return the total cut, fill and balance.
A function return value of zero indicates the volume calculation was successful.
ID = 149

Volume_exact(Tin tin_1,Tin tin_2,Element poly,Real &cut,Real &fill,Real
&balance)
Name
Integer Volume_exact(Tin tin_1,Tin tin_2,Element poly,Real &cut,Real &fill,Real &balance)

Description
Calculate the volume between tin tin_1 and tin tin_2 inside the polygon poly using the exact
method.

The variables cut, fill and balance return the total cut, fill and balance.
A function return value of zero indicates the volume calculation was successful.

 ID = 150
Page 1102 General

Chapter
5.61.8 Interface
Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real
search_dist,Integer side,Element &interface_string)
Name
Integer Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer
side,Element &interface_string)

Description
Perform an interface to the tin tin along the Element string.
Use cut and fill slopes of value cut_slope and fill_slope and a distance between sections of
sep. The units for slopes is 1:x.

Search to a maximum distance search_dist to find an intersection with the tin.
If side is negative, the interface is made to the left hand side of the string.
If side is positive, the interface is made to the right hand side of the string.

The resulting string is returned as the Element interface_string.
A function return value of zero indicates the interface was successful.
ID = 151

Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real
search_dist,Integer side, Element &interface_string,Dynamic_Element &tadpoles)
Name
Integer Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer
side,Element &interface_string,Dynamic_Element &tadpoles)

Description
Perform the interface as given in the previous function with the addition that slope lines are
created and returned in the Dynamic_Element tadpoles.

A function return value of zero indicates the interface was successful.
ID = 152
Page 1103General

12d Model Programming Language Manual
5.61.9 Templates
Template_exists(Text template_name)
Name
Integer Template_exists(Text template_name)

Description
Checks to see if a template with the name template_name exists in the project.

A non-zero function return value indicates the template does exist.
A zero function return value indicates that no template of that name exists.
Warning - this is the opposite of most 12dPL function return values

ID = 201

Get_project_templates(Dynamic_Text &template_names)
Name
Integer Get_project_templates(Dynamic_Text &template_names)

Description
Get the names of all the templates in the project.

The dynamic array of template names is returned in the Dynamic_Text template_names.
A function return value of zero indicates success.

ID = 233

Template_rename(Text original_name,Text new_name)
Name
Integer Template_rename(Text original_name,Text new_name)

Description
Change the name of the Template original_name to the new name new_name.

A function return value of zero indicates the rename was successful.
ID = 424
Page 1104 General

Chapter
5.61.10 Applying Templates
Apply(Real xpos,Real ypos,Real zpos,Real ang,Tin tin,Text template,Element
&xsect)
Name
Integer Apply(Real xpos,Real ypos,Real zpos,Real ang,Tin tin,Text template,Element &xsect)

Description
Applies the templates template at the point (xpos,ypos,zpos) going out at the plan angle, ang.
The Tin tin is used as the surface for any interface calculations and the calculated section is
returned as the Element xsect.
A function return value of zero indicates the apply was successful.
ID = 399

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text
left_template,Text right_template,Real &cut,Real &fill,Real &balance)
Name
Integer Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text
right_template,Real &cut,Real &fill,Real &balance)

Description
Applies the templates left_template and right_template to the Element string going from start
chainage start_ch to end chainage end_ch with distance sep between each section. The Tin tin
is used as the surface for any interface calculations.
The variables cut, fill and balance return the total cut, fill and balance for the apply.

A function return value of zero indicates the apply was successful.
ID = 195

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text
left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text report)
Name
Integer Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text
right_template,Real &cut,Real &fill,Real &balance,Text report)

Description
Applies templates as for the previous function with the addition of a report being created with the
name report.
A function return value of zero indicates the apply was successful.

ID = 196

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text
left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text
report,Integer do_strings,Dynamic_Element &strings,Integer
do_sections,Dynamic_Element §ions,Integer section_colour,Integer
do_polygons,Dynamic_Element &polygons,Integer
do_differences,Dynamic_Element &diffs,Integer difference_colour)
Page 1105General

12d Model Programming Language Manual
Name
Integer Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text
right_template,Real &cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element
&strings,Integer do_sections,Dynamic_Element §ions,Integer section_colour,Integer
do_polygons,Dynamic_Element &polygons,Integer do_differences,Dynamic_Element &diffs,Integer
difference_colour)

Description
Applies templates as for the previous function with the additions:
If do_strings is non-zero, the strings are returned in strings.
If do_sections is non-zero, design sections of colour section_colour are returned in sections.

If do_polygons is non-zero, polygons are returned in polygons.
If do_differences is non-zero, difference sections of colour difference_colour are returned in
diffs.
A function return value of zero indicates the apply was successful.

ID = 197

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut,Real &fill,Real &balance)
Name
Integer Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real
&fill,Real &balance)

Description
Applies the templates as specified in the file many_template_file to the Element string with
distance sep between each section. The Tin tin is used as the surface for any interface
calculations.
The variables cut, fill and balance return the total cut, fill and balance for the apply.

A function return value of zero indicates success.
ID = 198

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut_volume,Real &fill_volume,Real &balance_volume,Text report)
Name
Integer Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut_volume,Real &fill_volume,Real &balance_volume,Text report)

Description
Applies templates as for the previous function with the addition of a report being created with the
name report.
A function return value of zero indicates success.

ID = 199

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element
&strings,Integer do_sections,Dynamic_Element §ions,Integer
section_colour,Integer do_polygons,Dynamic_Element &polygons,Integer
Page 1106 General

Chapter
do_difference,Dynamic_Element &diffs,Integer difference_colour)
Name
Integer Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real
&fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer
do_sections,Dynamic_Element §ions,Integer section_colour,Integer do_polygons,Dynamic_Element
&polygons,Integer do_difference,Dynamic_Element &diffs,Integer difference_colour)

Description
Applies templates as for the previous function with the additions:

If do_strings is non-zero, the strings are returned in strings.
If do_sections is non-zero, design sections of colour section_colour are returned in sections.

If do_polygons is non-zero, polygons are returned in polygons.
If do_differences is non-zero, difference sections of colour difference_colour are returned in
diffs.
A function return value of zero indicates the apply was successful.

ID = 200
Page 1107General

12d Model Programming Language Manual
5.61.11 Strings Edits
String_reverse(Element in,Element &out)
Name
Integer String_reverse(Element in,Element &out)

Description
This functions creates a reversed copy of the string Element in and the reversed string is
returned in out. That is, the chainage of string out starts at the end of the original string in and
goes to the beginning of the original string in.

If successful, the new reversed string is returned in Element out.
A function return value of zero indicates the reverse was successful.
ID = 1134

Extend_string(Element elt,Real before,Real after,Element &newelt)
Name
Integer Extend_string(Element elt,Real before,Real after,Element &newelt)

Description
Extend the start and end of the string in Element elt.
The start of the string is extended by Real before.

The end of the string is extended by Real after.
If successful, the new element is returned in Element newelt.
Note that even when either before or after is zero, the two new points still being added to the
new element newelt (as duplicated of the old start/end).
A function return value of zero indicates the chainage was returned successfully.
ID = 664

Clip_string(Element string,Real chainage1,Real chainage2, Element
&left_string,Element &mid_string,Element &right_string)
Name
Integer Clip_string(Element string,Real chainage1,Real chainage2, Element &left_string,Element
&mid_string,Element &right_string)

Description
Clip a string about 2 chainages for the Element string. This will result in 3 new strings being
created.

The part that exists before Real chainage1 is returned in Element left_string.
The part that exists after Real chainage2 is returned in Element right_string.
The part that exists between Real chainage1 and Real chainage2 is returned in Element
mid_string.

A function return value of zero indicates the clip was successful.
Note
If the string is closed, right_string is not used.

If chainage1 is on or before the start of the string, left_string is not used.
Page 1108 General

Chapter
If chainage2 is on or after the end of the string, right_string is not used.
If chainage1 is greater than chainage2, they are first swapped.
ID = 542

Clip_string(Element string,Integer direction,Real chainage1,Real
chainage2,Element &left_string,Element &mid_string,Element &right_string)
Name
Integer Clip_string(Element string,Integer direction,Real chainage1,Real chainage2,Element
&left_string,Element &mid_string,Element &right_string)

Description
Clip a string about 2 chainages for the string Element string. This will result in 3 new strings
being created. The clipped parts are returned relative to Integer direction. If direction is
negative, string is first reversed before being clipped.
The part that exists before Real chainage1 is returned in Element left_string.
The part that exists after Real chainage2 is returned in Element right_string.

The part that exists between Real chainage1 and Real chainage2 is returned in Element
mid_string.
A function return value of zero indicates the clip was successful.
Note
If the string is closed, right_string is not used.
If chainage1 is on or before the start of the string, left_string is not used.
If chainage2 is on or after the end of the string, right_string is not used.

If chainage1 is greater than chainage2, they are first swapped.
ID = 549

Polygons_clip(Integer npts_clip,Real xclip[],Real yclip[],Integer npts_in,Real
xarray_in[],Real yarray_in [],Real zarray_in [],Integer &npts_out,Real
xarray_out[],Real yarray_out[],Real yarray_out[])
Name
 Integer Polygons_clip(Integer npts_clip,Real xclip[],Real yclip[],Integer npts_in,Real xarray_in[],Real
yarray_in [],Real zarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[],Real
yarray_out[])

Description
ID = 1440

Split_string(Element string,Real chainage,Element &string1,Element &string2)
Name
Integer Split_string(Element string,Real chainage,Element &string1,Element &string2)

Description
Split a string about a chainage for ELement string

This will result in 2 new strings being created.
The part that exists before Real chainage is returned in Element string1.
Page 1109General

12d Model Programming Language Manual
The part that exists after Real chainage is returned in Element string2.
A function return value of zero indicates the split was successful.
ID = 543

Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real
y2,Real z2,Element &joined_string)
Name
Integer Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real y2,Real
z2,Element &joined_string)

Description
Join the 2 strings Element string1 and Element string2 together to form 1 new string. The end of
string1 closest to x1,y1,z1 is joined to the end of string2 closest to x2,y2,z2.

The joined string is returned in Element joined_string.
A function return value of zero indicates the interface was successful.
Note
If the ends joined are no coincident, then a line between the ends is inserted.
The joined string is always of a type that preserves as much as possible about the original
strings.
If you join 2 strings of the same type, the joined string is of the same type.

ID = 544

Rectangle_clip(Real x1,Real y1,Real x2,Real y2,Integer npts_in,Real xarray_in
[],Real yarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[])
Name
 Integer Rectangle_clip(Real x1,Real y1,Real x2,Real y2,Integer npts_in,Real xarray_in [],Real yarray_in
[],Integer &npts_out,Real xarray_out[],Real yarray_out[])

Description
<no description>
ID = 1438

Super_offset(Element super,Real offset,Integer mode,Element &super_offset)
Name
Integer Super_offset(Element super,Real offset,Integer mode,Element &super_offset)

Description
Offset the super Element super by Real offset; assign the result to super Element
super_offset.
A return value of zero indicates the function call was successful.

The valid values for mode are:
0: joins ends of resulting segments by lines
1: intersects resulting segments

2: fillets any pair of resulting segments with change of direction
3: dual clipping
Page 1110 General

Chapter
4: clips any crossing part
ID = 2861
Page 1111General

12d Model Programming Language Manual
5.61.12 Place Meshes
Place_mesh(Real x,Real y,Real z,Integer source_type,Text source_name,Vector3
offset,Vector3 rotate,Vector3 scale,Element &mesh_string)
Name
Integer Place_mesh(Real x,Real y,Real z,Integer source_type,Text source_name,Vector3 offset,Vector3
rotate,Vector3 scale,Element &mesh_string)

Description
This call places a mesh on the vertex of a new super string, at the co-ordinate specified by
parameters x, y, z.
The source_type determines where the mesh will be loaded from:
 source_type = 0 for the Mesh Library
 , 1 for from a file
The source_name specifies the name of the mesh in the library or file, as defined by the
source_type parameter.

You can also set any additional offset, rotation or scale parameters in the offset, rotate or scale
vectors. If you are not intending to set additional parameters, you must set them to at least
default values:
 offset(0.0, 0.0, 0.0)
 rotate(0.0, 0.0, 0.0)
 scale(1.0, 1.0, 1.0);

The created super string will be stored in the element mesh_string.
This function returns 0 if it succeeds and non zero if it fails.
ID = 2803

Place_mesh(Real x,Real y,Real z,Text mesh_name,Vector3 offset,Vector3
rotate,Vector3 scale,Tin anchor_tin,Element &mesh_string)
Name
Integer Place_mesh(Real x,Real y,Real z,Text mesh_name,Vector3 offset,Vector3 rotate,Vector3 scale,Tin
anchor_tin,Element &mesh_string)

Description
This call places a mesh from the mesh library on the vertex of a new super string, at the co-
ordinate specified by parameters x, y, z and anchors it to the tin anchor_tin.

The Text mesh_name specifies the name of the mesh in the library.
You can also set any additional offset, rotation or scale parameters in the offset, rotate or scale
vectors. If you are not intending to set additional parameters, you must set them to at least
default values:
 offset(0.0, 0.0, 0.0)
 rotate(0.0, 0.0, 0.0)
 scale(1.0, 1.0, 1.0);

The created super string will be stored in the Element mesh_string.
This function returns 0 if it succeeds and non zero if it fails.
ID = 2804
Page 1112 General

Chapter
5.61.13 Image

Get_image_size(Text filename,Integer &width,Integer &height)
Name
Integer Get_image_size(Text filename,Integer &width,Integer &height)

Description
Read the image from the file named filename; return its size as number of pixels in width and
height.
A return value of zero indicates the function call was successful.

ID = 2634
Page 1113General

12d Model Programming Language Manual
5.61.14 Boundary polygon

Boundary_polygon(Dynamic_Element list,Real seed_x,Real seed_y,Real distance,
Element &result)
Name
Integer Boundary_polygon(Dynamic_Element list,Real seed_x,Real seed_y,Real distance,Element
&result)

Description
Boundary_polygon works on the plan projection of all the strings in list withing the radius
distance of the seed point (seed_x, seed_y), and if possible, creates a closed polygon from the
parts of the strings surrounding the seed point.
A straight line must be able to be drawn from the seed point to the lines/arcs that could be used
in the surrounding strings.

A return value of zero indicates the function call was successful.
ID = 1796

seed point is inside
the polygon to be created

Created polygon

Creating a Polygon by Seed Point Inside the Polygon
Page 1114 General

Chapter
5.61.15 Stack trace

Analysing the stack trace is sometimes effective way to debug running macros.

Print_stack_trace()
Name
void Print_stack_trace()

Description
Print the stack trace for the running macro to the output window. The stack trace is a list of the
line number followed by the line contents of the macro code.
ID = 2720

Get_stack_trace(Dynamic_Integer &stack)
Name
Integer Get_stack_trace(Dynamic_Integer &stack)

Description
Assign the list of line numbers of the running macro stack trace to Dynamic_Integer stack.
A return value of zero indicates the function call was successful.
ID = 2721

Print_stack_trace(Text msg)
Name
void Print_stack_trace(Text msg)

Description
Print the Text msg to the output window.
Then print the stack trace for the running macro to the output window. The stack trace is a list of
the line number followed by the line contents of the macro code.

ID = 2744
Page 1115General

12d Model Programming Language Manual
Page 1116 General

Chapter
5.62 Utilities

See 5.62.1 3D Chainage
See 5.62.2 Transformation
See 5.62.3 Chains
See 5.62.4 Convert
See 5.62.5 Cuts Through Strings
See 5.62.6 Factor
See 5.62.7 Fence
See 5.62.8 Filter
See 5.62.9 Head to Tail
See 5.62.10 Helmert Transformation
See 5.62.11 Polygon Centroid and Medial axis
See 5.62.12 Rotate
See 5.62.13 Share Status
See 5.62.14 Swap XY
See 5.62.15 Translate
Page 1117Utilities

12d Model Programming Language Manual
5.62.1 3D Chainage

Enable_3d(Element super_alignment)
Name
Integer Enable_3d(Element super_alignment)

Description
Enable 3D chainage calculation for a valid super alignment super_alignment.
A return value of 2 indicates the input element is not valid.
A return value of 3 indicates the input element is not a super alignment.

A return value of 5 indicates the vertical part of the input super alignment is not valid.
A return value of 6 indicates the horizontal part of the input super alignment is not valid.
A return value of 7 indicates the input super alignment has no vertical part.

A return value of zero indicates the function call was successful.
ID = 3011

Get_start_chainage_3d(Element super_alignment,Real &ch_3d)
Name
Integer Get_start_chainage_3d(Element super_alignment,Real &ch_3d)

Description
Get start 3D chainage ch_3d of a super alignment super_alignment.
A return value of zero indicates the function call was successful.

ID = 3012

Get_end_chainage_3d(Element super_alignment,Real &ch_3d)
Name
Integer Get_end_chainage_3d(Element super_alignment,Real &ch_3d)

Description
Get end 3D chainage ch_3d of a super alignment super_alignment.
A return value of zero indicates the function call was successful.
ID = 3013

Get_3d_length(Element super_alignment,Real &length_3d)
Name
Integer Get_3d_length(Element super_alignment,Real &length_3d)

Description
Get 3D length length_3d of a super alignment super_alignment.
A return value of zero indicates the function call was successful.
ID = 3014
Page 1118 Utilities

Chapter
Chainage_2d_to_3d(Element super_alignment,Real ch_2d,Real &length_3d)
Name
Integer Chainage_2d_to_3d(Element super_alignment,Real ch_2d,Real &length_3d)

Description
Calculate 3D length length_3d of a super alignment super_alignment from 2D chainage
ch_2d.

A return value of zero indicates the function call was successful.
ID = 3015

Chainage_3d_to_2d(Element super_alignment,Real length_3d,Real &ch_2d)
Name
Integer Chainage_3d_to_2d(Element super_alignment,Real length_3d,Real &ch_2d)

Description
Calculate 2D chainage ch_2d of a super alignment super_alignment from 3D length
length_3d.
A return value of zero indicates the function call was successful.

ID = 3016

Get_position_ex_3d(Element super_alignment,Real length_3d,Real offset,Real
dz,Real &x,Real &y,Real &z,Real &dir,Real &radius,Real &grade)
Name
Integer Get_position_ex_3d(Element super_alignment,Real length_3d,Real offset,Real dz,Real &x,Real
&y,Real &z,Real &dir,Real &radius,Real &grade)

Description
WARNING - this is NOT an ex version of get position call; and also the return value for &dir is the
opposite (zero minus the correct number) of the normal direction.
Get xyz-coordinate x y z, direction dir, radius radius, grade grade of a point based on a super
alignment super_alignment, 3D length length_3d, offset offset, change in z dz.
A return value of zero indicates the function call was successful.

ID = 3017

Get_position_3d(Element string,Real ch_3d,Real offset,Real dz,Real &x,Real
&y,Real &z,Real &dir,Real &radius,Real &grade)
Name
Integer Get_position_3d(Element string,Real ch_3d,Real offset,Real dz,Real &x,Real &y,Real &z,Real
&dir,Real &radius,Real &grade)

Description
Get xyz-coordinate x y z, direction dir, radius radius, grade grade of a point based on a super
alignment string, 3D chainage ch_3d, offset offset, change in z dz.
A return value of zero indicates the function call was successful.

ID = 3381
Page 1119Utilities

12d Model Programming Language Manual
Drop_point_3d(Element super_alignment,Real xd,Real yd,Real zd,Real &x,Real
&y,Real &z,Real &l,Real &o,Real &dir,Real &radius,Real &grade)
Name
Integer Drop_point_3d(Element super_alignment,Real xd,Real yd,Real zd,Real &x,Real &y,Real &z,Real
&l,Real &o,Real &dir,Real &radius,Real &grade)

Description
Get xyz-coordinate x y z, 3d length l, offset o, direction dir, radius radius, grade grade of the
dropped point from xyz-coordinate xd yd zd to a super alignment super_alignment.
A return value of zero indicates the function call was successful.
ID = 3018

General information about different types of chainage drop point

When a point is dropped to a string there are 4 possible drop types:

(a) In almost all conventional design we only use the one type - a vertical drop to the string's
vertical alignment with a 2d chainage.

Vertical drop, chainage 2d

For a convention road alignment where the design chainages are all 2d, the perpendicular
drop, 2d chainage is ideal.

(b) In real world circumstances heights must often be considered in respect to the grade of the
reference string to maintain clearances, e.g. tunnels and overhead obstructions such as
bridges. In these case it is necessary to drop the point perpendicularly to the reference
string's vertical alignment.

Perpendicular drop, chainage 2d
Page 1120 Utilities

Chapter
(c) For many mining application or for steep shafts the pure '3d' model, perpendicular drop, 3d
chainage is necessary.

Perpendicular drop, chainage 3d

(d) For completeness a 4th drop type is provided which unlikely to be used in any real world
scenario, vertical drop, 3d chainage.

Vertical drop, chainage 3d
Page 1121Utilities

12d Model Programming Language Manual
(e) Plumb z difference vs square z difference
Page 1122 Utilities

Chapter
There are four calls in total offering similar functionality.

1. Tunnel Profile 3d
2. Tunnel Profile 3d Extended
3. Tunnel Profile 3d Trimesh

4. Tunnel Profile 3d Trimesh Extended
The following decription applied for all tunnel profile 3D calls (to be completed)
General Process:

These calls are meant to expose similar functionality to that used by the 12dField Setout Tunnel
routine.
All calls provide results for a particular tunnel definition given by the tunnel_def parameter. The
trimesh calls allow for an additional trimesh to also be specified, with the results to that trimesh
also being calculated and returned. These are typically used for thickness or depth calculations.
The extended calls provide additional results for the various chainage drop modes (combinations
of vertical or perpendicular drop and 2d or 3d chainages).

The process for calculation is as follows:
1. Each coordinate given by point_x, point_y and point_z is dropped to the reference string,
ref_str, using the drop mode from the tunnel definition, tunnel_def.

2. The reference string chainage is calculated as pd_ref_chg. The chainage mode (2d or 3d) is
also taken from the tunnel definition, tunnel_def.
3. The tunnel definition, tunnel_def, is sectioned at the reference string chainage, pd_ref_chg.
The section is cut in the same mode as the drop mode specified in the tunnel definition and used
for the point drop so the original point_x/point_y/point_z is on the section plane.
4. The point coordinate is then dropped perpendicularly to the sectioned tunnel (on the section
plane).

5. Values are calculated from the section result.

For the calls using an additional trimesh, given by trimesh, the inner_extent and outer_extent
parameters must be provided. These are signed offsets (signed relative to the tunnel profile
direction) from the tunnel definition. They are used to create a 3d line perpendicular to the tunnel
definition (a 3d 'ray') to intersect the trimesh. These offsets need to be set by the macro author to
ensure the ray intersects the trimesh once and only once. If the ray does not intersect the
trimesh then the trimesh offset will not be returned. If the ray intersects the trimesh more than
once, then only the first intersection will be returned.

Input Parameters:

Element ref_str Reference string. Should be a Super Alignment with valid 3d
geometry.
Text tunnel_def tunnel definition, a definition describing the geometry of a tunnel
or any shape in general along a reference string. The definition can be stored either in a text file,
extension ".12d_tunnel" or as an attribute on the reference string under the group
"12d_tunnel_definitions".

Dynamic_Real point_x Set of x ordinates for which to calculate the results
Dynamic_Real point_y Set of y ordinates for which to calculate the results
Page 1123Utilities

12d Model Programming Language Manual
Dynamic_Real point_z Set of z ordinates for which to calculate the results
Element trimesh Additional trimesh element from which to calculate results.
Real inner_extent Signed offset from the tunnel definition for the intersection with
the additional trimesh.

Real outer_extent Signed offset from the tunnel definition for the intersection with
the additional trimesh.

Output Parameters:

Each result corresponds to the input point_x, point_y and point_z values dropped onto the tunnel
profile.

Dynamic_Real e_tun_ele_name tunnel element name, each profile is made up of a series
of elements, straights and arcs, each element has a unique name to identify it

Dynamic_Real e_tun_ele_idx tunnel element index, the 0 based index of the element in
the profile
Dynamic_Real e_tun_ele_dist tunnel element distance, the distance along a tunnel
element
Dynamic_Real e_tun_ele_per tunnel element percentage, the distance along a tunnel
element expressed as a percentage between 0.0 and 1.0, not 0 to 100%..

Dynamic_Real e_tun_ele_dir tunnel element direction, the instantaneous direction of the
current point on the tunnel element, (as an angle in radians).
Dynamic_Real e_tun_ele_prev_dir tunnel element previous direction, the instantaneous
direction at the end of the previous tunnel element, (as an angle in radians).

Dynamic_Real e_tun_ele_next_dir tunnel element next direction, the instantaneous
direction at the start of the following tunnel element, (as an angle in radians)
Dynamic_Real e_tun_ele_radius tunnel element radius, the signed radius of the current
element, negative if left, null if no radius.
Dynamic_Real e_tun_ele_os tunnel element offset, the signed offset of the point from
the tunnel element, negative if left

Dynamic_Real e_tun_prf_ch tunnel profile chainage, the distance to the dropped point
from the start of the profile.
Dynamic_Real e_ex in section the offset from the centreline of the point on the
current element, negative if left
Dynamic_Real e_ey in section the height difference from the centreline of the point
on the current element, negative if under

Dynamic_Real e_ez not yet used, always null

Dynamic_Integer pd_status_2d the status of the 2d drop of the point to the reference
string, both drops are always performed even if the tunnel is a 2d definition.

There are 3 possible return values.
1 – the drop was successful
4 – the drop was successful but to non-tangential horizontal or vertical elements

5 – the drop was unsuccessful.
Dynamic_Integer pd_status_3d the status of the 3d drop of the point to the reference
string, both drops are always performed even if the tunnel is a 2d definition.
There are 3 possible return values.
Page 1124 Utilities

Chapter
1 – the drop was successful
4 – the drop was successful but to non-tangential horizontal or vertical elements
5 – the drop was unsuccessful.

Dynamic_Real pd_dist_3d not yet used, always null
Dynamic_Real pd_dist_2d not yet used, always null

Dynamic_Real pd_sqr_vt_ch link to perpendicular drop, chainage 3d
Dynamic_Real pd_plm_vt_ch link to vertical drop, chainage 3d
Dynamic_Real pd_sqr_hz_ch link to perpendicular drop, chainage 2d

Dynamic_Real pd_plm_hz_ch link to vertical drop, chainage 2d
Dynamic_Real pd_ref_ch the chainage based on the tunnel definition settings

Dynamic_Real pd_sqr_zd square z difference, the height difference to the centreline
of the 3d drop
Dynamic_Real pd_sqr_di distance from the point to drop to the perpendicular drop
point
Dynamic_Real pd_plm_zd plumb z difference, the height difference to the centreline
of the 2d drop

Dynamic_Real pd_ref_zd square z difference based on the tunnel definition settings
Dynamic_Real pd_plm_os horizontal offset from the centreline at the vertical drop
point
Dynamic_Real pd_sqr_os horizontal offset from the centreline at the perpendicular
drop point

Dynamic_Real pd_ref_os horizontal offset from the centreline based on the tunnel
definition
Dynamic_Real pd_cl_grd instantaneous grade of the reference string at the dropped
point based on the tunnel definition
Dynamic_Real trimesh_offset offset of the trimesh from the dropped point perpendicular
to the tunnel profile

Text message Error or status messages.

Tunnel_profile_3d(Element ref_str,Text tunnel_def,Dynamic_Real
point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text
&e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real
&e_tun_ele_dist,Dynamic_Real &e_tun_ele_per,Dynamic_Real
&e_tun_ele_dir,Dynamic_Real &e_tun_ele_prev_dir,Dynamic_Real
&e_tun_ele_next_dir,Dynamic_Real &e_tun_ele_radius,Dynamic_Real
&e_tun_ele_os,Dynamic_Real &e_tun_prf_ch,Dynamic_Real
&e_ex,Dynamic_Real &e_ey,Dynamic_Real &e_ez,Dynamic_Integer
&pd_status_3d,Dynamic_Integer &pd_status_2d,Dynamic_Real
&pd_dist_3d,Dynamic_Real &pd_dist_2d,Dynamic_Real
&pd_sqr_vt_ch,Dynamic_Real &pd_plm_vt_ch,Dynamic_Real
&pd_sqr_hz_ch,Dynamic_Real &pd_plm_hz_ch,Dynamic_Real
&pd_ref_ch,Dynamic_Real &pd_sqr_zd,Dynamic_Real
Page 1125Utilities

12d Model Programming Language Manual
&pd_sqr_di,Dynamic_Real &pd_plm_zd,Dynamic_Real
&pd_ref_zd,Dynamic_Real &pd_plm_os,Dynamic_Real
&pd_sqr_os,Dynamic_Real &pd_ref_os,Dynamic_Real &pd_cl_grd,Text
&message)
Name
Integer Tunnel_profile_3d(Element ref_str,Text tunnel_def,Dynamic_Real point_x,Dynamic_Real
point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer
&e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real &e_tun_ele_per,Dynamic_Real
&e_tun_ele_dir,Dynamic_Real &e_tun_ele_prev_dir,Dynamic_Real &e_tun_ele_next_dir,Dynamic_Real
&e_tun_ele_radius,Dynamic_Real &e_tun_ele_os,Dynamic_Real &e_tun_prf_ch,Dynamic_Real
&e_ex,Dynamic_Real &e_ey,Dynamic_Real &e_ez,Dynamic_Integer &pd_status_3d,Dynamic_Integer
&pd_status_2d,Dynamic_Real &pd_dist_3d,Dynamic_Real &pd_dist_2d,Dynamic_Real
&pd_sqr_vt_ch,Dynamic_Real &pd_plm_vt_ch,Dynamic_Real &pd_sqr_hz_ch,Dynamic_Real
&pd_plm_hz_ch,Dynamic_Real &pd_ref_ch,Dynamic_Real &pd_sqr_zd,Dynamic_Real
&pd_sqr_di,Dynamic_Real &pd_plm_zd,Dynamic_Real &pd_ref_zd,Dynamic_Real
&pd_plm_os,Dynamic_Real &pd_sqr_os,Dynamic_Real &pd_ref_os,Dynamic_Real &pd_cl_grd,Text
&message)

Description
Some warning and error message would be set to the Text message.

A return value of zero indicates the function call was successful.
ID = 3531

Tunnel_profile_3d(Element ref_str,Text tunnel_def,Dynamic_Real
point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text
&e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real
&e_tun_ele_dist,Dynamic_Real &e_tun_ele_per,Dynamic_Real
&e_tun_ele_radius,Dynamic_Real &e_tun_ele_os,Dynamic_Real
&e_tun_prf_ch,Dynamic_Real &e_ex,Dynamic_Real &e_ey,Dynamic_Real
&e_ez,Dynamic_Integer &pd_status_3d,Dynamic_Integer
&pd_status_2d,Dynamic_Real &pd_ref_ch,Text &message)
Name
Integer Tunnel_profile_3d(Element ref_str,Text tunnel_def,Dynamic_Real point_x,Dynamic_Real
point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer
&e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real &e_tun_ele_per,Dynamic_Real
&e_tun_ele_radius,Dynamic_Real &e_tun_ele_os,Dynamic_Real &e_tun_prf_ch,Dynamic_Real
&e_ex,Dynamic_Real &e_ey,Dynamic_Real &e_ez,Dynamic_Integer &pd_status_3d,Dynamic_Integer
&pd_status_2d,Dynamic_Real &pd_ref_ch,Text &message)

Description
Some warning and error message would be set to the Text message.

A return value of zero indicates the function call was successful.
ID = 3532

Tunnel_profile_3d(Element ref_str,Text tunnel_def,Element trimesh,Real
inner_extent,Real outer_extent,Dynamic_Real point_x,Dynamic_Real
point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer
&e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real
&e_tun_ele_per,Dynamic_Real &e_tun_ele_dir,Dynamic_Real
&e_tun_ele_prev_dir,Dynamic_Real &e_tun_ele_next_dir,Dynamic_Real
Page 1126 Utilities

Chapter
&e_tun_ele_radius,Dynamic_Real &e_tun_ele_os,Dynamic_Real
&e_tun_prf_ch,Dynamic_Real &e_ex,Dynamic_Real &e_ey,Dynamic_Real
&e_ez,Dynamic_Integer &pd_status_3d,Dynamic_Integer
&pd_status_2d,Dynamic_Real &pd_dist_3d,Dynamic_Real
&pd_dist_2d,Dynamic_Real &pd_sqr_vt_ch,Dynamic_Real
&pd_plm_vt_ch,Dynamic_Real &pd_sqr_hz_ch,Dynamic_Real
&pd_plm_hz_ch,Dynamic_Real &pd_ref_ch,Dynamic_Real
&pd_sqr_zd,Dynamic_Real &pd_sqr_di,Dynamic_Real
&pd_plm_zd,Dynamic_Real &pd_ref_zd,Dynamic_Real
&pd_plm_os,Dynamic_Real &pd_sqr_os,Dynamic_Real
&pd_ref_os,Dynamic_Real &pd_cl_grd,Dynamic_Real &trimesh_offset,Text
&message)
Name
Integer Tunnel_profile_3d(Element ref_str,Text tunnel_def,Element trimesh,Real inner_extent,Real
outer_extent,Dynamic_Real point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text
&e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real
&e_tun_ele_per,Dynamic_Real &e_tun_ele_dir,Dynamic_Real &e_tun_ele_prev_dir,Dynamic_Real
&e_tun_ele_next_dir,Dynamic_Real &e_tun_ele_radius,Dynamic_Real &e_tun_ele_os,Dynamic_Real
&e_tun_prf_ch,Dynamic_Real &e_ex,Dynamic_Real &e_ey,Dynamic_Real &e_ez,Dynamic_Integer
&pd_status_3d,Dynamic_Integer &pd_status_2d,Dynamic_Real &pd_dist_3d,Dynamic_Real
&pd_dist_2d,Dynamic_Real &pd_sqr_vt_ch,Dynamic_Real &pd_plm_vt_ch,Dynamic_Real
&pd_sqr_hz_ch,Dynamic_Real &pd_plm_hz_ch,Dynamic_Real &pd_ref_ch,Dynamic_Real
&pd_sqr_zd,Dynamic_Real &pd_sqr_di,Dynamic_Real &pd_plm_zd,Dynamic_Real
&pd_ref_zd,Dynamic_Real &pd_plm_os,Dynamic_Real &pd_sqr_os,Dynamic_Real
&pd_ref_os,Dynamic_Real &pd_cl_grd,Dynamic_Real &trimesh_offset,Text &message)

Description
Some warning and error message would be set to the Text message.

A return value of zero indicates the function call was successful.
ID = 3533

Tunnel_profile_3d(Element ref_str,Text tunnel_def,Element trimesh,Real
inner_extent,Real outer_extent,Dynamic_Real point_x,Dynamic_Real
point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer
&e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real
&e_tun_ele_per,Dynamic_Real &e_tun_ele_radius,Dynamic_Real
&e_tun_ele_os,Dynamic_Real &e_tun_prf_ch,Dynamic_Real
&e_ex,Dynamic_Real &e_ey,Dynamic_Real &e_ez,Dynamic_Integer
&pd_status_3d,Dynamic_Integer &pd_status_2d,Dynamic_Real
&pd_ref_ch,Dynamic_Real &trimesh_offset,Text &message)
Name
Integer Tunnel_profile_3d(Element ref_str,Text tunnel_def,Element trimesh,Real inner_extent,Real
outer_extent,Dynamic_Real point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text
&e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real
&e_tun_ele_per,Dynamic_Real &e_tun_ele_radius,Dynamic_Real &e_tun_ele_os,Dynamic_Real
&e_tun_prf_ch,Dynamic_Real &e_ex,Dynamic_Real &e_ey,Dynamic_Real &e_ez,Dynamic_Integer
&pd_status_3d,Dynamic_Integer &pd_status_2d,Dynamic_Real &pd_ref_ch,Dynamic_Real
&trimesh_offset,Text &message)

Description
Some warning and error message would be set to the Text message.
Page 1127Utilities

12d Model Programming Language Manual
A return value of zero indicates the function call was successful.
ID = 3534
Page 1128 Utilities

Chapter
5.62.2 Transformation
Affine(Dynamic_Element elements, Real rotate_x,Real rotate_y,Real scale_x,Real
scale_y,Real dx,Real dy)
Name
Integer Affine(Dynamic_Element elements,Real rotate_x,Real rotate_y,Real scale_x,Real scale_y,Real
dx,Real dy)

Description
Apply to all the elements in the Dynamic_Element elements, the Affine transformation with
parameters:
X axis rotation rotate_x (in radians)

Y axis rotation rotate_y (in radians)
X scale factor scale_x
Y scale factor scale_y
Translation (dx,dy)
Note that if the scales or the rotates are different between x and y, the true transformation of arcs
(or cirles) would be no longer arcs. 12D would try to approximate the arcs result in some cases,
otherwise the radius of segments would be lost.
A function return value of zero indicates the transformation was successful.

ID = 414

Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real
tz,Real ox,Real oy,Real oz,Integer call_inverse,Element &ele)
Name
Integer Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real
oy,Real oz,Integer call_inverse,Element &ele)

Description
Apply to element ele the Helmert 3d transformation with parameters:
X axis rotation rx (in radians)
Y axis rotation ry (in radians)

Z axis rotation rz (in radians)
scale factor scale
Translation (tx,ty,tz)

Origin (ox,oy,oz)
If Integer call_inverse is not zero, then the reserve of the given transformation will be use
instead.
A function return value of zero indicates the transformation was successful.

ID = 3485

Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real
tz,Real ox,Real oy,Real oz,Integer call_inverse,Dynamic_Element &elements)
Name
Integer Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real
Page 1129Utilities

12d Model Programming Language Manual
oy,Real oz,Integer call_inverse,Dynamic_Element &elements)

Description
Apply to all the elements in the Dynamic_Element elements, the Helmert 3d transformation with
parameters:

X axis rotation rx (in radians)
Y axis rotation ry (in radians)
Z axis rotation rz (in radians)

scale factor scale
Translation (tx,ty,tz)
Origin (ox,oy,oz)

If Integer call_inverse is not zero, then the reserve of the given transformation will be use
instead.
A function return value of zero indicates the transformation was successful.
ID = 3486

Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real
tz,Real ox,Real oy,Real oz,Integer call_inverse,Real &x,Real &y,Real &z)
Name
Integer Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real
oy,Real oz,Integer call_inverse,Real &x,Real &y,Real &z)

Description
Apply to the 3D point with xyz-coordinate (x,y,z), the Helmert 3d transformation with parameters:
X axis rotation rx (in radians)
Y axis rotation ry (in radians)

Z axis rotation rz (in radians)
scale factor scale
Translation (tx,ty,tz)

Origin (ox,oy,oz)
If Integer call_inverse is not zero, then the reserve of the given transformation will be use
instead.
A function return value of zero indicates the transformation was successful.

ID = 3487

Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real
tz,Real ox,Real oy,Real oz,Integer call_inverse,Dynamic_Real &x,Dynamic_Real
&y,Dynamic_Real &z)
Name
Integer Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real
oy,Real oz,Integer call_inverse,Dynamic_Real &x,Dynamic_Real &y,Dynamic_Real &z)

Description
Apply to the list 3D points with xyz-coordinates in three lists x,y,z , the Helmert 3d transformation
with parameters:
X axis rotation rx (in radians)
Page 1130 Utilities

Chapter
Y axis rotation ry (in radians)
Z axis rotation rz (in radians)
scale factor scale
Translation (tx,ty,tz)
Origin (ox,oy,oz)
If Integer call_inverse is not zero, then the reserve of the given transformation will be use
instead.

A function return value of zero indicates the transformation was successful.
ID = 3488

Get_carto_projection_datum_data(Text datum_name,Text carto_file_name,Text
&datum_data)
Name
Integer Get_carto_projection_datum_data(Text datum_name,Text carto_file_name,Text &datum_data)

Description
Looking up the datum_data of a projection of given datum_name using a given carto file
carto_file_name.

If carto_file_name is the string "carto.4d", then it will be the same file using in all builtin 12D
panels.
A function return value of zero indicates the transformation was successful.
ID = 3724

Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer
from_long_lat,Element &ele)
Name
Integer Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer from_long_lat,Element
&ele)

Description
Convert the x and y values of an Element ele between Easting-Northing and Longtitude-Latitude
using:

The datum_data being used. Note: this is the actual data not the name.
The direction of the conversion: from_long_lat from long-lat to Easting-Northing: zero being
false; one being true.
The angle mode of the longtitude, latitude longlat_angle_mode :zero being radians; one being
decimal degrees; two being DMS degrees minutes seconds.

A function return value of zero indicates the transformation was successful.
ID = 3725

Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer
from_long_lat,Dynamic_Element &ele_list)
Name
Integer Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer
from_long_lat,Dynamic_Element &ele_list)
Page 1131Utilities

12d Model Programming Language Manual
Description
Convert the x and y values of all Element from a given list ele_list between Easting-Northing and
Longtitude-Latitude using:
The datum_data being used. Note: this is the actual data not the name.

The direction of the conversion: from_long_lat from long-lat to Easting-Northing: zero being
false; one being true.
The angle mode of the longtitude, latitude longlat_angle_mode :zero being radians; one being
decimal degrees; two being DMS degrees minutes seconds.
A function return value of zero indicates the transformation was successful.

ID = 3726

Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer
from_long_lat,Real &x,Real &y)
Name
Integer Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer from_long_lat,Real
&x,Real &y)

Description
Convert the value of two Real x,y between Easting-Northing and Longtitude-Latitude using:
The datum_data being used. Note: this is the actual data not the name.

The direction of the conversion: from_long_lat from long-lat to Easting-Northing: zero being
false; one being true.
The angle mode of the longtitude, latitude longlat_angle_mode :zero being radians; one being
decimal degrees; two being DMS degrees minutes seconds.
A function return value of zero indicates the transformation was successful.

ID = 3727

Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer
from_long_lat,Dynamic_Real &x,Dynamic_Real &y)
Name
Integer Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer
from_long_lat,Dynamic_Real &x,Dynamic_Real &y)

Description
Convert the values of in the two lists (of the same sizes) Dynamic_Real x,y between Easting-
Northing and Longtitude-Latitude using:
The datum_data being used. Note: this is the actual data not the name.
The direction of the conversion: from_long_lat from long-lat to Easting-Northing: zero being
false; one being true.

The angle mode of the longtitude, latitude longlat_angle_mode :zero being radians; one being
decimal degrees; two being DMS degrees minutes seconds.
A function return value of zero indicates the transformation was successful.
ID = 3728
Page 1132 Utilities

Chapter
5.62.3 Chains

Run_chain(Text chain)
Name
Integer Run_chain(Text chain)

Description
Run the chain in the file named chain.
A function return value of zero indicates the chain was successfully run.

ID = 2096
Page 1133Utilities

12d Model Programming Language Manual
5.62.4 Convert
Convert(Dynamic_Element in_de,Integer mode,Integer pass_others,
Dynamic_Element &out_de)
Name
Integer Convert(Dynamic_Element in_de,Integer mode,Integer pass_others,Dynamic_Element &out_de)

Description
Convert the strings in Dynamic_Element in_de using Integer mode and when mode equals
1 convert 2d to 3d
2 convert 3d to 2d if the 3d string has constant z

3 convert 4d to 3d (the text is dropped at each point)
The converted strings are returned by appending them to the Dynamic_Element out_de.
If Integer pass_others is non zero, any strings in in_de that cannot be converted will be copied
to out_de.

A function return value of zero indicates the conversion was successful.
ID = 139

Convert(Element elt,Text type,Element &newelt)
Name
Integer Convert(Element elt,Text type,Element &newelt)

Description
Tries to convert the Element elt to the Element type given by Text type.
If successful, the new element is returned in Element newelt.
A function return value of zero indicates the conversion was successful.
ID = 655
Page 1134 Utilities

Chapter
5.62.5 Cuts Through Strings
Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element
&result)
Name
Integer Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result)

Description
Cut all the strings from the list Dynamic_Element seed with the strings from the list
Dynamic_Element strings and add to Dynamic_Element result.
The strings created are 4d strings which have at each vertex the string cut.

Cuts are only considered valid if they have heights. Any cut at a point where
the string height is null, will not be included.

A function return value of zero indicates the cut calculations was successful.
ID = 541

Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element
&result,Integer create_supers)
Name
Integer Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result,Integer
create_supers)

Description
Cut all the strings from the list Dynamic_Element seed with the strings from the list
Dynamic_Element strings and add to Dynamic_Element result.
If create_supers is zero, the strings created are 4d strings which have at each vertex the string
cut.
If create_supers is non zero, the strings created are super strings which have at each vertex the
string cut.
Cuts are only considered valid if they have heights. Any cut at a point where

the string height is null, will not be included.
A function return value of zero indicates the cut calculations was successful.
ID = 3788

Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element
strings,Dynamic_Element &result)
Name
Integer Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element
&result)

Description
Cut all the strings from the list Dynamic_Element seed with the strings from the list

Dynamic_Element strings and add to Dynamic_Element result.
The strings created are 4d strings which have at each vertex the string cut.

A function return value of zero indicates the cut calculations was successful.
Page 1135Utilities

12d Model Programming Language Manual
ID = 548

Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element
strings,Dynamic_Element &result,Integer create_supers)
Name
Integer Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element
&result,Integer create_supers)

Description
Cut all the strings from the list Dynamic_Element seed with the strings from the list
Dynamic_Element strings and add to Dynamic_Element result.
If create_supers is zero, the strings created are 4d strings which have at each vertex the string
cut.

If create_supers is non zero, the strings created are super strings which have at each vertex the
string cut.
A function return value of zero indicates the cut calculations was successful.
ID = 3789
Page 1136 Utilities

Chapter
5.62.6 Factor
Factor(Dynamic_Element elements,Real xf,Real yf,Real zf)
Name
Integer Factor(Dynamic_Element elements,Real xf,Real yf,Real zf)

Description
Multiply all the co-ordinates of all the elements in the Dynamic_Element elements by the factors
(xf,yf,zf).
Note that if the xf and yf are different, then the true transformation of arcs (or cirles) would be no
longer arcs. 12D would try to approximate the arcs result in some cases, otherwise the radius of
segments would be lost.
A function return value of zero indicates the factor was successful.

ID = 411
Page 1137Utilities

12d Model Programming Language Manual
5.62.7 Fence
Fence(Dynamic_Element data_to_fence,Integer mode,Element
user_poly,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)
Name
Integer Fence(Dynamic_Element data_to_fence,Integer mode,Element user_poly,Dynamic_Element
&ret_inside,Dynamic_Element &ret_outside)

Description
This function fences all the Elements in the Dynamic_Element data_to_list against the user
supplied polygon Element user_poly.
The fence mode is given by Integer mode and when mode equals
0 get the inside of the polygon
1 get the outside of the polygon
2 get the inside and the outside of the polygon

If the inside is required, the data is returned by appending it to the Dynamic_Element ret_inside.
If the outside is required, the data is returned by appending it to the Dynamic_Element
ret_outside
A returned value of zero indicates there were no errors in the fence operation.

Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element
polygon_list,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)
Name
Integer Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element
polygon_list,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)

Description
This function fences all the Elements in the Dynamic_Element data_to_list against one or more
user supplied polygons given in the Dynamic_Element polygon_list.
The fence mode is given by Integer mode and when mode equals
0 get the inside of each of the polygons
1 get the outside of all the polygons
2 get the inside and the outside of the polygons

If the inside is required, the data is returned by appending it to the Dynamic_Element ret_inside.
If the outside is required, the data is returned by appending it to the Dynamic_Element
ret_outside
A returned value of zero indicates there were no errors in the fence operation Head to Tail

ID = 137

Check_polygon_fence(Element polygon,Integer &good_polygon,Integer
&good_fence)
Name
Integer Check_polygon_fence(Element polygon,Integer &good_polygon,Integer &good_fence)

Description
This function check the input polygon and set.
Integer good_polygon to 1 if the input is a simple polygon; 0 otherwise.
Page 1138 Utilities

Chapter
Integer good_polygon to 1 if the input polygon can be used as the fence; 0 otherwise.
A returned value of zero indicates there were no errors in the checking operation.
ID = 3543

Check_polygon(Element polygon_in,Integer &good_polygon,Element
&polygon_out)
Name
Integer Check_polygon(Element polygon_in,Integer &good_polygon,Element &polygon_out)

Description
This function check the input polygon_in and set.
Integer good_polygon to 1 if the input is a simple polygon; 0 otherwise.
When the input is not a good polygon, there will be an attempt to fix some problems and return
the fixed polygon as polygon_out.
A returned value of zero indicates there were no errors in the checking operation.
ID = 3544
Page 1139Utilities

12d Model Programming Language Manual
5.62.8 Filter
Filter(Dynamic_Element in_de,Integer mode,Integer pass_others,Real
tolerance,Dynamic_Element &out_de)
Name
Integer Filter(Dynamic_Element in_de,Integer mode,Integer pass_others,Real
tolerance,Dynamic_Element &out_de)

Description
Filter removes points from 2d and/or 3d strings that do not deviate by more than the distance
tolerance from the straight lines joining successive string points.
Hence the function Filter filters the data from in_de where mode means:
0 only 2d strings are filtered.

1 2d and 3d strings are filtered.
The filtered data is placed in the Dynamic_Element out_de.
If pass_others is non-zero, elements that can't be processed using the mode will be copied to
out_de.

A function return value of zero indicates the filter was successful.
ID = 140
Page 1140 Utilities

Chapter
5.62.9 Head to Tail
Head_to_tail(Dynamic_Element in_list,Dynamic_Element &out_list)
Name
Integer Head_to_tail(Dynamic_Element in_list,Dynamic_Element &out_list)

Description
Perform head to tail processing on the data in Dynamic_Element in_list.
The resulting elements are returned by appending them to the Dynamic_Element out_list.
A function return value of zero indicates there were no errors in the head to tail process.

ID = 138
Page 1141Utilities

12d Model Programming Language Manual
5.62.10 Helmert Transformation
Helmert(Dynamic_Element elements,Real rotate,Real scale,Real dx,Real dy)
Name
Integer Helmert(Dynamic_Element elements,Real rotate,Real scale,Real dx,Real dy)

Description
Apply to all the elements in the Dynamic_Element elements, the Helmert transformation with
parameters:

Rotation rotate (in radians)
Scale factor scale
Translation (dx,dy)

A function return value of zero indicates the transformation was successful.
ID = 413
Page 1142 Utilities

Chapter
5.62.11 Polygon Centroid and Medial axis
Medial_axis_polygon(Element polygon,Real &cx,Real &cy,Real &radius)
Name
Integer Medial_axis_polygon(Element polygon,Real &cx,Real &cy,Real &radius)

Description
Get xy-coordinate cx cy of the medial axis point and the radius of biggest circle of an Element
polygon
A return value of zero indicates the function call was successful.
ID = 3031

Medial_axis_polygon(Element polygon,Real &cx,Real &cy,Real &radius,Real
radius_tolerance)
Name
Integer Medial_axis_polygon(Element polygon,Real &cx,Real &cy,Real &radius,Real radius_tolerance)

Description
Get xy-coordinate cx cy of the medial axis point and the radius of biggest circle of an Element
polygon.
In some cases, such as when the polygon is almost a long rectangle, the biggest circle is at one
end of the (almost) rectangle. For many purposes (such as labelling), the desired centre is the
middle of the rectangle. A radius_tolerance (a positive number less than 0.2) is used to adjust
the centre in such cases. E.g. the medial axis centre will be moved toward the middle of the
polygon when the radius of the largest circle being reduced by less than the given tolerance. The
value of radius_tolerance in the other call for medial_axis_polygon is 0.05 (5 percent).
A return value of zero indicates the function call was successful.
ID = 3462

Get_polygon_centroid(Element polygon,Real &cx,Real &cy)
Name
Integer Get_polygon_centroid(Element polygon,Real &cx,Real &cy)

Description
Get xy-coordinate cx cy of the centroid of an Element polygon.
A return value of zero indicates the function call was successful.

ID = 3479
Page 1143Utilities

12d Model Programming Language Manual
5.62.12 Rotate
Rotate(Dynamic_Element elements,Real xorg,Real yorg,Real ang)
Name
Integer Rotate(Dynamic_Element elements,Real xorg,Real yorg,Real ang)

Description
Rotate all the elements in the Dynamic_Element elements about the centre point (xorg,yorg)
through the angle ang.

A function return value of zero indicates the rotate was successful.
ID = 410
Page 1144 Utilities

Chapter
5.62.13 Share Status

Share_status(Model model,Integer &is_share_out,Integer &is_share_in)
Name
Integer Share_status(Model model,Integer &is_share_out,Integer &is_share_in)

Description
Check share status of the Model model
Share out status is_share_out: 0 not share out, 1 share out

Share out status is_share_in: 0 not share in, 1 share in
A return value of zero indicates the function call was successful.
ID = 3051

Share_status(Tin tin,Integer &is_share_out,Integer &is_share_in)
Name
Integer Share_status(Tin tin,Integer &is_share_out,Integer &is_share_in)

Description
Check share status of the Tin tin
Share out status is_share_out: 0 not share out, 1 share out

Share out status is_share_in: 0 not share in, 1 share in
A return value of zero indicates the function call was successful.
ID = 3052

Share_status(Model model,Integer &is_share_out,Integer &is_share_in,Text
&share_in_location)
Name
Integer Share_status(Model model,Integer &is_share_out,Integer &is_share_in,Text &share_in_location)

Description
Check share status of the Model model
Share out status is_share_out: 0 not share out, 1 share out
Share out status is_share_in: 0 not share in, 1 share in
Location for share return in share_in_location
A return value of zero indicates the function call was successful.
ID = 3064

Share_status(Tin tin,Integer &is_share_out,Integer &is_share_in,Text
&share_in_location)
Name
Integer Share_status(Tin tin,Integer &is_share_out,Integer &is_share_in,Text &share_in_location)

Description
Page 1145Utilities

12d Model Programming Language Manual
Check share status of the Tin tin
Share out status is_share_out: 0 not share out, 1 share out
Share out status is_share_in: 0 not share in, 1 share in

Location for share return in share_in_location
A return value of zero indicates the function call was successful.
ID = 3065
Page 1146 Utilities

Chapter
5.62.14 Swap XY
Swap_xy(Dynamic_Element elements)
Name
Integer Swap_xy(Dynamic_Element elements)

Description
Swap the x and y co-ordinates for all the elements in the Dynamic_Element elements.

A function return value of zero indicates the swap was successful.
ID = 412
Page 1147Utilities

12d Model Programming Language Manual
5.62.15 Translate
Translate(Dynamic_Element elements,Real dx,Real dy,Real dz)
Name
Integer Translate(Dynamic_Element elements,Real dx,Real dy,Real dz)

Description
Translate translates all the elements in the Dynamic_Element elements by the amount
(dx,dy,dz).

A function return value of zero indicates the translate was successful.
ID = 400
Page 1148 Utilities

Chapter
5.62.16 Miscellaneous
Set_inquire_style(Text inquire_style)
Name
Integer Set_inquire_style(Text inquire_style)

Description
Set the current inquire style of the project to the one with name inquire_style.

A function return value of zero indicates the style was set successfully.
ID = 3838
Page 1149Utilities

12d Model Programming Language Manual
5.63 12d Model Macro_Functions
A 12d Model Function is not a function call in the macro language, but a special type of object in
12d Model. Typical 12d Model Functions are the Apply, Apply Many, Interface and Survey Data
Reduction functions.
The macro language also allows the creation of Functions called Macro_Functions, or Functions
for short that will appear in the standard 12d Model Function list and can be run from the
standard 12d Model Recalc option.

The special things about 12d Model Functions and Macro_Functions are that they:
(a) Have a unique name amongst all the 12d Model Functions in a project.
(b) Have a unique function type so that pop-ups can be restricted to only Functions of that

type.
(c) Remember the answers for the fields in the panel that creates the Function (the Function

input data) so that when Editing the Function, all the fields can be automatically filled in with
the same answers as when the Function was last run.

(d) Can record which input Elements are such that if they are modified in 12d Model, then the
results of the Function will be incorrect and the Functions needs to be rerun (recalced) to
update the results. These Elements are known as the Functions dependency Elements.
For a Macro_Function, the dependency Elements are set and retrieved using function
dependency calls and the other answers for the panel fields are recorded as Function
attributes.

(e) Remember the data that was created by the Function.
For a Macro_Function, these are normally elements and are recorded as function attributes
as Uids and/or Uid ranges. This is the data that needs to be deleted when the Function is
rerun.

(f) Can be Recalculated (or Recalced for short).
When a 12d Model Function is recalced, the Function first deletes all the data that it created
in the previously run, and then runs the Function again.

(g) Can on command, replace (delete or modify) all the data that the Function created on the
pervious run with the data from this run.

The Macro_Function macro is just one macro and it is called with different command line
arguments to let it know which mode it is in, and how it must behave.

The command line arguments that are used for a Macro_Function macro_function are:
(a) macro_function with no command line arguments

When there are no command line arguments, the function is being run for the first time and
the macro panel is displayed.

(b) macro_function -function_recalc
The command line argument -function_recalc tells the macro that it is being recalced. So
the macro needs to delete all the old data it created, and run the option again using the input
information already stored in the Function. No panel is displayed when the macro_function
is recalced.
12d Model calls the macro with the -function_recalc command line argument when the
macro function is called from the 12d Model Utilities =>Functions =>Recalc option.

(c) macro_function -function_edit
The command line argument -function_edit tells the macro that it is being pulled up to be
edited. That is, the macro_function needs to create the panel for the macro but the panel
fields are filled with the input information that is stored with the function.
Page 1150 12d Model Macro_Functions

Chapter
The panel fields can be modified and when the process button is pressed, the old data
created by the function must be deleted and the option run again.
12d Model calls the macro with the -function_edit command line argument when the macro
function is called from the 12d Model Utilities =>Functions=> Recalc=>Editor option.

(d) macro_function -function_delete
12d Model calls the macro with the -function_delete command line argument when the
macro function is called from the 12d Model Utilities =>Functions=> Recalc=>Delete option.

So the macro must first check for a command line argument.

More detailed information to help understand how the Macro_Function calls are used in a macro
is given in the following sections:
See 5.63.1 Processing Command Line Arguments in a Macro_Function
See 5.63.2 Creating and Populating the Macro_Function Panel
See 5.63.3 Storing the Panel Information for Processing
See 5.63.4 Recalcing
See 5.63.5 Storing Calculated Information

All the 12d Model Macro_Function calls are given in 5.63.6 Macro_Function Functions.

5.63.1 Processing Command Line Arguments in a
Macro_Function

The command line arguments -function_recalc, -function_edit, -function_delete and no
arguments at all, need to be recognised and processed by the Macro_Function (for general
information on command line arguments, see 5.4 Command Line-Arguments).

The following is an example of some code from Example 15 (see 6.20 Example 15) to trap and
process the command line arguments for a Macro_Function:

void main()

// --
// This is where the macro starts and checks for command line arguments
// --
{
 Integer argc = Get_number_of_command_arguments();
 if(argc > 0) {
 Text arg;

 Get_command_argument(1,arg); // check for the first command line argument
 if(arg == "-function_recalc") { // check if it is -function_recalc
 Text function_name;

 Get_command_argument(2,function_name); // the second command line argument
 // is the function name
 recalc_macro(function_name);
 } else if(arg == "-function_edit") { // check if it is -function_edit

 Text function_name;
 Get_command_argument(2,function_name); // the second command line argument
 // is the function name
Page 115112d Model Macro_Functions

12d Model Programming Language Manual
 show_panel(function_name,1); // tell show_panel the name of the function to
 // get the panel field answers from for recalc
 // See 5.63.2 Creating and Populating the Macro_Function
Panel
 } else if(arg == "-function_delete") {
// not implemented yet

 Text function_name;
 Get_command_argument(2,function_name);
 Error_prompt("function_delete not implemented");
 } else if(arg == "-function_popup") {

// not implemented yet
 Text function_name;
 Get_command_argument(2,function_name);
 Error_prompt("function_popup not implemented");

 } else {
// normal processing?
 Error_prompt("huh ? say what"); // don’t know what the command is
 }

 } else { // there are no command line arguments
 // show the panel with no information from a previous run
 // See 5.63.2 Creating and Populating the Macro_Function Panel
 show_panel("",0);
 }
}

Continue to 5.63.2 Creating and Populating the Macro_Function Panel

All the 12d Model Macro_Function calls are given in 5.63.6 Macro_Function Functions.

5.63.2 Creating and Populating the Macro_Function Panel
The main difference between a panel in a standard macro and a panel in a Macro_Function is
that for the Macro_Function, the panel has an Edit mode.

When in Edit mode, the Macro_Function has already been run before and the panel information
for the macro is loaded from the previous run of the macro.

The easiest way to set this up is to build the panel in a function in the same way as you would in
a standard macro, but pass down to the panel function an edit flag where:

when edit is zero, the panel is being run for the first time and there is no data to load from a
previous run. This is the case when there are no command line arguments. See 5.63.1
Processing Command Line Arguments in a Macro_Function.
when edit is one, the panel is in Edit mode and the values from a previous run are loaded into
the panel fields. This is the case when the command line argument is "-function_edit". See
5.63.1 Processing Command Line Arguments in a Macro_Function.

The following is an example of some code from Example 15 (see 6.20 Example 15) to build a
panel for both the first time the Macro_Function is called, and when it is called in Edit mode:
Page 1152 12d Model Macro_Functions

Chapter
Integer show_panel(Text function_name,Integer edit)
// ---
// edit = 0 for the first time that the macro has been run
// edit = 1 when in edit mode. That is, the macro has been run before
// function_name is the function name. This is only known if the macro has been run before.
// That is, when edit = 1
// Note: in the section that processes the command line arguments,
// edit is set to 1 when the command line argument is "-function_edit"
// edit is set to 0 when their are no command line arguments
// See 5.63.1 Processing Command Line Arguments in a Macro_Function
//--
// Macro_Function Dependencies
// "string" Element
//
// Macro_Function attributes
// "offset" Real
// "start point" Text
// "end point" Text
// "new name" Text
// "new model" Text
// "new colour" Text
// "functype" Text
// "model" Uid
// "element" Uid
//--
{

 Macro_Function macro_function;
 Get_macro_function(function_name,macro_function);
 Panel panel = Create_panel("Parallel String Section");
 Vertical_Group vgroup = Create_vertical_group(0);
 Message_Box message = Create_message_box(" ");

// function box
 Function_Box function_box = Create_function_box("Function name", message,
 CHECK_FUNCTION_CREATE,RUN_MACRO_T);
 Set_type(function_box,"parallel_part"); // set the function type so that the pop-up for the
 // function_box only shows functions of this type
 Append(function_box,vgroup);

 if(edit) Set_data(function_box,function_name); // when in edit mode, function name is known
 // so load function_box with function_name
// string to parallel
 New_Select_Box select_box = Create_new_select_box("String to parallel","Select string",
 SELECT_STRING, message);

 Append(select_box,vgroup);
 if(edit) { // when in edit mode, load select_box with the string from the last run.
 Element string;

 Get_dependancy_element(macro_function,"string",string);
 Set_data(select_box,string);
 }
// offset distance

 Real_Box value_box = Create_real_box("Offset",message);
 Append(value_box,vgroup);
Page 115312d Model Macro_Functions

12d Model Programming Language Manual
 if(edit) { // when in edit mode, load value_box with the offset from the last run
 // offset was stored as a Real macro function attribute called "offset"
 Real offset;
 Get_function_attribute(macro_function,"offset",offset);
 Set_data(value_box,offset);
 }
 . . .

Continue to 5.63.3 Storing the Panel Information for Processing

All the 12d Model Macro_Function calls are given in 5.63.6 Macro_Function Functions.

5.63.3 Storing the Panel Information for Processing
The panel information needs to be stored in the Macro_Function so that it is available at future
times.

The following is an example of some code from Example 15 (see 6.20 Example 15) that goes in
the section after the Process button has been selected. The panel information has been
validated and the next step is to store the information into the Macro_Function and call
macro_recalc.

// Store the panel information in the Macro_Function

 Delete_all_dependancies(macro_function); // clean out any data already there

 Set_function_attribute(macro_function,"functype","parallel_part"); // type of function

 Add_dependancy_element(macro_function,"string",string); // string to be paralleled

 Set_function_attribute(macro_function,"offset", offset); // offset value
 Set_function_attribute(macro_function,"start point",start); // start chainage for parallel
 Set_function_attribute(macro_function,"end point",end); // end chainage for parallel
 Set_function_attribute(macro_function,"new name",name); // name of the created string
 Set_function_attribute(macro_function,"new model",name); // model for the created string
 Set_function_attribute(macro_function,"new colour",colour_txt); // colour of the created string

// Now do the processing
 Integer res = recalc_macro(function_name);

 . . .

Continue to 5.63.4 Recalcing

All the 12d Model Macro_Function calls are given in 5.63.6 Macro_Function Functions.

5.63.4 Recalcing
For a Macro_Function, it is usually best to put all the processing into its own function, say
recalc_macro.
Page 1154 12d Model Macro_Functions

Chapter
That way the one calculation function can be used for each of the three processing cases:
1. when a Recalc is done.
2. when the Macro_Function is run for the first time and the process button is selected

3. when an Edit is done, the panels fields modified and the process button then selected
In the first case of a Recalc, all the information required for processing must already be
contained in the Macro_Function itself and it is accessed via Get_dependency and
Get_function_attribute calls.
For cases 2 and 3, a panel is actually displayed, information collected and then a process button
selected. In both cases, the Macro_Function structure can be used to pass information through
to the processing function by simply loading the information into Macro_Function via the function
dependencies and function attributes before the processing function recalc_macro.

So in all cases, the information is accused by the processing function recalc_maco in exactly the
same way (See 5.63.3 Storing the Panel Information for Processingon how to store the
information).
So with recalc_macro function should:

(a) load and validate the panel data stored in the Macro_Function
(b) check that the data created by the previous run can be replaced (deleted or modified), and

clean it up as required.
For example, a string can not be deleted if it is locked by another option.

(c) if there are no problems, do the processing.
(d) save links to the new created data as attributes in the Macro_Function.

Continue to 5.63.3 Storing the Panel Information for Processing

All the 12d Model Macro_Function calls are given in 5.63.6 Macro_Function Functions.

5.63.5 Storing Calculated Information
The data created by the Macro_Function are usually Elements such as Tins, Model and Strings.
Models and Tins could be stored by their names since their names are unique to a project. On
the other hand, a Model or Tin name may be changed so maybe their Uid’s should be saved. Or
both the name and the Uid could be saved.

Strings do not have unique names and usually it is best to save them by their Uids. If the
processing produces strings with sequential Uids, then just the first and the last Uids need to be
stored.
There is no definite answer to how the information should be stored because it varies with every
macro.

In the code extract below from Example 15 (see 6.20 Example 15) the paralleled string is stored
as the Uid of the model containing the string, and the Uid of the string.
// store details of the created string in function attributes
 Uid mid, eid;

 Get_id(model,mid); // get the Uid of the model containing elt
 Get_id(elt,eid); // get the Uid of elt
 Set_function_attribute(macro_function,"model",mid);
 Set_function_attribute(macro_function,"element",eid);

All the 12d Model Macro_Function calls are given in 5.63.6 Macro_Function Functions.
Page 115512d Model Macro_Functions

12d Model Programming Language Manual
5.63.6 Macro_Function Functions
Create_macro_function(Text function_name,Macro_Function &func)
Name
Integer Create_macro_function(Text function_name,Macro_Function &func)

Description
Create a user defined 12d Model Function with the name function_name and return the
created Function as func.
If a Function with the name function_name already exists, the function fails and a non-zero
function return value is returned.
A function return value of zero indicates the Function was successfully created.

ID = 1135

Function_recalc(Function func)
Name
Integer Function_recalc(Function func)

Description
Recalc (i.e. re-run) the Function func.
A function return value of zero indicates the recalc was successful.
 ID = 1138

Function_exists(Text function_name)
Name
Integer Function_exists(Text function_name)

Description
Checks to see if a 12d or user 12d Function with the name function_name exists.
A non-zero function return value indicates a Function does exist.

A zero function return value indicates that no Function of name function_name exists.
Warning - this is the opposite of most 12dPL function return values.
ID = 1141

Function_rename(Text original_name,Text new_name)
Name
Integer Function_rename(Text original_name,Text new_name)

Description
Change the name of the Function original_name to the new name new_name.
A function return value of zero indicates the rename was successful.

ID = 425
Page 1156 12d Model Macro_Functions

Chapter
Get_name(Function func,Text &name)
Name
 Integer Get_name(Function func,Text &name)

Description
Get the name of the Function func and return it in name.

A function return value of zero indicates the Function name was successfully returned.
ID = 1455

Get_type(Function func,Integer &func_type)
Name
 Integer Get_type(Function func,Integer &func_type)

Description
Get the type of the Function func and return it in func_type.
The value of func_type is listed in the Appendix A - Function type. See Function Type.

A function return value of zero indicates the Function name was successfully returned.
ID = 3530

Get_function(Text function_name)
Name
Function Get_function(Text function_name)

Description
Get the Function with the name function_name and return it as the function return value.
If the function does not exist, a null function will be returned.
The existence of a function with the name function_name can first be checked by the call
Function_exists(function_name).

ID = 1140

Get_macro_function(Text function_name,Macro_Function &func)
Name
Integer Get_macro_function(Text function_name,Macro_Function &func)

Description
Get the Macro Function with the name function_name and return it as func.

If the Function named function_name does not exist, or it does exist but is not a Macro
Function, then the function fails and a non-zero function return value is returned.
A function return value of zero indicates the Macro Function was successfully returned.
ID = 1142

Get_all_functions(Dynamic_Text &functions)
Name
Integer Get_all_functions(Dynamic_Text &functions)
Page 115712d Model Macro_Functions

12d Model Programming Language Manual
Description
Get all names of the 12d and user defined Function currently in the project. The Function names
are returned in the Dynamic_Text functions.
A function return value of zero indicates the Function names are returned successfully.

ID = 1139

Function_delete(Text function_name)
Name
Integer Function_delete(Text function_name)

Description
Delete the Function with the name function_name.

Note that the data in the function is not deleted.
If a Function with the name function_name does not exist, the function fails and a non-zero
function return value is returned.
A function return value of zero indicates the Function was successfully deleted.

ID = 1137

Get_time_created(Function func,Integer &time)
Name
Integer Get_time_created(Function func,Integer &time)

Description
Get the time that the Function func was created and return the time in time.
The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully returned.

ID = 2117

Get_time_updated(Function func,Integer &time)
Name
Integer Get_time_updated(Function func,Integer &time)

Description
Get the time that the Function func was last updated and return the time in time.

The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully returned.
ID = 2118

Set_time_updated(Function func,Integer time)
Name
Integer Set_time_updated(Function func,Integer time)

Description
Set the update time for the Function func to time.
Page 1158 12d Model Macro_Functions

Chapter
The time time is given as seconds since January 1 1970.
A function return value of zero indicates the time was successfully set.
ID = 2119

Add_dependancy_file(Macro_Function func,Text name,Text file)
Name
Integer Add_dependancy_file(Macro_Function func,Text name,Text file)

Description
Record in the Macro Function func, that the disk file named file is dependant on func and on a
recalc of func, needs to be checked for changes from the last time that func was recalced.

The dependency is added with the unique name name.
If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.
A function return value of zero indicates the dependency was successfully set.

ID = 1143

Add_dependancy_model(Macro_Function func,Text name,Model model)
Name
Integer Add_dependancy_model(Macro_Function func,Text name,Model model)

Description
Record in the Macro Function func, that the Model model is dependant on func and on a recalc
of func, needs to be checked for changes from the last time that func was recalced.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.
A function return value of zero indicates the dependency was successfully set.
ID = 1144

Add_dependancy_tin(Macro_Function func,Text name,Tin tin)
Name
Integer Add_dependancy_tin(Macro_Function func,Text name,Tin tin)

Description
Record in the Macro Function func, that the Tin tin is dependant on func and on a recalc of
func, needs to be checked for changes from the last time that func was recalced.
If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.

A function return value of zero indicates the dependency was successfully set.
ID = 1145

Integer Add_dependancy_template(Macro_Function func,Text name,Text
template)
Name
Page 115912d Model Macro_Functions

12d Model Programming Language Manual
Integer Add_dependancy_template(Macro_Function func,Text name,Text template)

Description
Record in the Macro Function func, that the template name template is dependant on func and
on a recalc of func, needs to be checked for changes from the last time that func was recalced.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.
A function return value of zero indicates the dependency was successfully set.
ID = 1146

Add_dependancy_element(Macro_Function func,Text name,Element elt)
Name
Integer Add_dependancy_element(Macro_Function func,Text name,Element elt)

Description
Record in the Macro Function func, that the Element elt is dependant on func and on a recalc of
func, needs to be checked for changes from the last time that func was recalced.
If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.

A function return value of zero indicates the dependency was successfully set.
ID = 1147

Get_number_of_dependancies(Macro_Function func,Integer &count)
Name
Integer Get_number_of_dependancies(Macro_Function func,Integer &count)

Description
For the Macro_Function func, return the number of dependencies that exist for func and return
the number in count.
A function return value of zero indicates the count was successfully returned.

ID = 1148

Get_dependancy_name(Macro_Function func,Integer i,Text &name)
Name
Integer Get_dependancy_name(Macro_Function func,Integer i,Text &name)

Description
For the Macro_Function func, return the name of the i’th dependencies in name.

A function return value of zero indicates the name was successfully returned.
ID = 1149

Get_dependancy_type(Macro_Function func,Integer i,Text &type)
Name
Integer Get_dependancy_type(Macro_Function func,Integer i,Text &type)

Description
Page 1160 12d Model Macro_Functions

Chapter
For the Macro_Function func, return the type of the i’th dependencies as the Text type.
The valid types are:
 unknown
 File
 Element
 Model
 Template
 Tin
 Integer
 Real
 Text

A function return value of zero indicates the type was successfully returned.
ID = 1150

Get_dependancy_file(Macro_Function func,Integer i,Text &file)
Name
Integer Get_dependancy_file(Macro_Function func,Integer i,Text &file)

Description
For the Macro_Function func, if the i’th dependency is a file then return the name of the file in
name.
If the i’th dependency is not a file then a non-zero function return value is returned.

A function return value of zero indicates the file name was successfully returned.
ID = 1151

Get_dependancy_model(Macro_Function func,Integer i,Model &model)
Name
Integer Get_dependancy_model(Macro_Function func,Integer i,Model &model)

Description
For the Macro_Function func, if the i’th dependency is a Model then return the Model in model.
If the i’th dependency is not a Model then a non-zero function return value is returned.
A function return value of zero indicates the Model was successfully returned.

 ID = 1152

Get_dependancy_tin(Macro_Function func,Integer i,Tin &tin)
Name
Integer Get_dependancy_tin(Macro_Function func,Integer i,Tin &tin)

Description
For the Macro_Function func, if the i’th dependency is a Tin then return the Tin in tin.

If the i’th dependency is not a Tin then a non-zero function return value is returned.
A function return value of zero indicates the Tin was successfully returned.

ID = 1153
Page 116112d Model Macro_Functions

12d Model Programming Language Manual
Get_dependancy_template(Macro_Function func,Integer i,Text &template)
Name
Integer Get_dependancy_template(Macro_Function func,Integer i,Text &template)

Description
For the Macro_Function func, if the i’th dependency is a Template then return the template name
in template.

If the i’th dependency is not a Template then a non-zero function return value is returned.
A function return value of zero indicates the Tin was successfully returned.
ID = 1154

Get_dependancy_element(Macro_Function func,Integer i,Element &element)
Name
Integer Get_dependancy_element(Macro_Function func,Integer i,Element &element)

Description
For the Macro_Function func, if the i’th dependency is an Element then return the Element in elt.
If the i’th dependency is not an Element then a non-zero function return value is returned.

A function return value of zero indicates the Element was successfully returned.
ID = 1155

Get_dependancy_data(Macro_Function func,Integer i,Text &text)
Name
Integer Get_dependancy_data(Macro_Function func,Integer i,Text &text)

Description
For the Macro_Function func, a text description of the i’th dependency is returned in text.
For an Element, the text description is: model_name->element_name is return in text.

For a File/Model/Template/Tin, the text description is the name of the File/Model/Template/Tin.
For an Integer, the text description is the Integer converted to Text.
For a Real, the text description is the Real converted to Text. LJG? how many decimals

For a Text, the text description is just the text.
A function return value of zero indicates the Macro_Function description was successfully
returned.
ID = 1156

Get_dependancy_type(Macro_Function func,Text name,Text &type)
Name
Integer Get_dependancy_type(Macro_Function func,Text name,Text &type)

Description
For the Macro_Function func, return the type of the dependency with the name name as the Text
type.
The valid types are:

 unknown
Page 1162 12d Model Macro_Functions

Chapter
 File
 Element
 Model
 Template
 Tin
 Integer // not implemented or accessible from macros
 Real // not implemented or accessible from macros
 Text // not implemented or accessible from macros
If a dependency called name does not exist then a non-zero function return value is returned.
A function return value of zero indicates the type was successfully returned.

ID = 1157

Get_dependancy_file(Macro_Function func,Text name,Text &file)
Name
Integer Get_dependancy_file(Macro_Function func,Text name,Text &file)

Description
For the Macro_Function func, get the dependency called name and if it is a File, return the file
name as file.
If no dependency called name exists, or it does exist and it is not a file, then a non-zero function
return value is returned; and also file remains unchanged.
A function return value of zero indicates the file name was successfully returned.

ID = 1158

Get_dependancy_model(Macro_Function func,Text name,Model &model)
Name
Integer Get_dependancy_model(Macro_Function func,Text name,Model &model)

Description
For the Macro_Function func, get the dependency called name and if it is a Model, return the
Model as model.
If no dependency called name exists, or it does exist and it is not a Model, then a non-zero
function return value is returned; and also model remains unchanged.
A function return value of zero indicates the Model was successfully returned.
ID = 1159

Get_dependancy_tin(Macro_Function func,Text name,Tin &tin)
Name
Integer Get_dependancy_tin(Macro_Function func,Text name,Tin &tin)

Description
For the Macro_Function func, get the dependency called name and if it is a Tin, return the Tin as
tin.
If no dependency called name exists, or it does exist and it is not a Tin, then a non-zero function
return value is returned; and also tin remains unchanged.

A function return value of zero indicates the Tin was successfully returned.
ID = 1160
Page 116312d Model Macro_Functions

12d Model Programming Language Manual
Get_dependancy_template(Macro_Function func,Text name,Text &template)
Name
Integer Get_dependancy_template(Macro_Function func,Text name,Text &template)

Description
For the Macro_Function func, get the dependency called name and if it is a Template, return the
Template name as template.
If no dependency called name exists, or it does exist and it is not a Template, then a non-zero
function return value is returned; and also template remains unchanged.

A function return value of zero indicates the template name was successfully returned.
ID = 1161

Get_dependancy_element(Macro_Function func,Text name,Element &elt)
Name
Integer Get_dependancy_element(Macro_Function func,Text name,Element &element)

Description
For the Macro_Function func, get the dependency called name and if it is an Element, return the
Element as elt.
If no dependency called name exists, or it does exist and it is not an Element, then a non-zero
function return value is returned; and also elt remains unchanged.

A function return value of zero indicates the Element was successfully returned.
ID = 1162

Get_dependancy_data(Macro_Function func,Text name,Text &text)
Name
Integer Get_dependancy_data(Macro_Function func,Text name,Text &text)

Description
For the Macro_Function func, get the dependency called name and if it is a Text, return the Text
as text.
If no dependency called name exists, or it does exist and it is not a Text, then a non-zero function
return value is returned; and also text remains unchanged.
A function return value of zero indicates the Text was successfully returned.

ID = 1163

Delete_dependancy(Macro_Function func,Text name)
Name
Integer Delete_dependancy(Macro_Function func,Text name)

Description
For the Macro_Function func, if the dependency called name exist then it is deleted from the list
of dependencies for func.

Warning: if a dependency is deleted then the dependency number of all dependencies after the
deleted one will be reduced by one.
Page 1164 12d Model Macro_Functions

Chapter
If no dependency called name exists then a non-zero function return value is returned.
A function return value of zero indicates the dependency was successfully deleted.
 ID = 1164

Delete_all_dependancies(Macro_Function func)
Name
Integer Delete_all_dependancies(Macro_Function func)

Description
For the Macro_Function func, delete all the dependencies.

A function return value of zero indicates all the dependency were successfully deleted.
 ID = 1165

Get_id(Function func,Uid &id)
Name
Integer Get_id(Function func,Uid &id)

Description
For the Function/Macro_Function func, get its unique Uid in the Project and return it in id.
A function return value of zero indicates the Uid was successfully returned.
 ID = 1909

Get_id(Function func,Integer &id)
Name
Integer Get_id(Function func,Integer &id)

Description
For the Function/Macro_Function func, get its unique id in the Project and return it in id.
A function return value of zero indicates the id was successfully returned.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_id(Function func,Uid &id) instead.
ID = 1177

Get_function_id(Element elt,Uid &id)
Name
Integer Get_function_id(Element elt,Uid &id)

Description
For an Element elt, check if it has a function Uid and if it has, return it in id.
If the element doesn’t have a function Uid, id will be set as null.
A function return value of zero indicates the Uid was successfully returned.

 ID = 1910
Page 116512d Model Macro_Functions

12d Model Programming Language Manual
Get_function_id(Element elt,Integer &id)
Name
Integer Get_function_id(Element elt,Integer &id)

Description
For an Element elt, check if it has a function id and if it has, return it in id.

If elt doesn’t have a function id, id will be set to 0 and the return value is also zero
A function return value of zero indicates the id was successfully returned.
Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_function_id(Element elt,Uid &id) instead.

ID = 1178

Set_function_id(Element elt,Uid id)
Name
Integer Set_function_id(Element elt,Uid id)

Description
For an Element elt, set its function Uid to id.

A function return value of zero indicates the function Uid was successfully set.
ID = 1911

Set_function_id(Element elt,Integer id)
Name
Integer Set_function_id(Element elt,Integer id)

Description
For an Element elt, set its function id to id.
A function return value of zero indicates the function id was successfully set.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Set_function_id(Element elt,Uid id) instead.
ID = 1179

Get_function(Uid function_id)
Name
Function Get_function(Uid function_id)

Description
Find the Function/Macro_Function with the Uid function_id.
The Function is returned as the function return value.
If there is no Function/Macro_Function with the Uid function_id, then a null Function/
Macro_Function is returned as the function return value.

ID = 1916

Get_function(Integer function_id)
Page 1166 12d Model Macro_Functions

Chapter
Name
Function Get_function(Integer function_id)

Description
Find the Function/Macro_Function with the Id function_id.
The Function is returned as the function return value.
If there is no Function/Macro_Function with the Id function_id, then a null Function/
Macro_Function is returned as the function return value.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_function(Uid function_id) instead.
ID = 1188

Function_exists(Uid function_id)
Name
Integer Function_exists(Uid function_id)

Description
Checks to see if a Function/Macro_Function with Uid function_id exists.
A non-zero function return value indicates that a Function does exist.

A zero function return value indicates that no Function exists.
Warning this is the opposite of most 12dPL function return values
ID = 1915

Function_attribute_exists(Macro_Function fcn,Text att_name)

Function_attribute_exists(Function fcn,Text att_name)
Name
Integer Function_attribute_exists(Macro_Function fcn,Text att_name)

Integer Function_attribute_exists(Function fcn,Text att_name)

Description
Checks to see if an attribute with the name att_name exists for the Macro_Function/Function
fcn.

A non-zero function return value indicates that the attribute does exist.
A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values

ID = 1109

Function_attribute_exists(Function fcn,Text name,Integer &no)

Function_attribute_exists(Macro_Function fcn,Text name,Integer &no)
Name
Integer Function_attribute_exists(Function fcn,Text name,Integer &no)

Integer Function_attribute_exists(Macro_Function fcn,Text name,Integer &no)

Description
Page 116712d Model Macro_Functions

12d Model Programming Language Manual
Checks to see if an attribute with the name att_name exists for the Macro_Function/Function
fcn.
If the attribute exists, its position is returned in Integer no.
This position can be used in other Attribute functions described below.

A non-zero function return value indicates the attribute does exist.
A zero function return value indicates that no attribute of that name exists.
Warning this is the opposite of most 12dPL function return values

ID = 1110

Function_attribute_delete(Macro_Function fcn,Text att_name)

Function_attribute_delete(Function fcn,Text att_name)
Name
Integer Function_attribute_delete(Macro_Function fcn,Text att_name)

Integer Function_attribute_delete(Function fcn,Text att_name)

Description
Delete the attribute with the name att_name from the Macro_Function/Function fcn.
A function return value of zero indicates the attribute was deleted.
ID = 1111

Function_attribute_delete(Macro_Function fcn,Integer att_no)

Function_attribute_delete(Function fcn,Integer att_no)
Name
Integer Function_attribute_delete(Macro_Function fcn,Integer att_no)

Integer Function_attribute_delete(Function fcn,Integer att_no)

Description
Delete the attribute with the number att_no from the Macro_Function/Function fcn.
A function return value of zero indicates the attribute was deleted.
ID = 1112

Function_attribute_delete_all(Function fcn)

Function_attribute_delete_all(Macro_Function fcn)
Name
Integer Function_attribute_delete_all(Function fcn)

Integer Function_attribute_delete_all(Macro_Function fcn)

Description
Delete all the attributes from the Macro_Function/Function fcn.

A function return value of zero indicates all the attribute were deleted.
ID = 1113
Page 1168 12d Model Macro_Functions

Chapter
Function_attribute_dump(Function fcn)

Function_attribute_dump(Macro_Function fcn)
Name
Integer Function_attribute_dump(Function fcn)

Integer Function_attribute_dump(Macro_Function fcn)

Description
Write out information about the Macro_Function/Function attributes to the Output Window.
 A function return value of zero indicates the function was successful.
ID = 1114

Function_attribute_debug(Macro_Function fcn)

Function_attribute_debug(Function fcn)
Name
Integer Function_attribute_debug(Macro_Function fcn)

Integer Function_attribute_debug(Function fcn)

Description
Write out even more information about the Macro_Function/Function attributes to the Output
Window.
A function return value of zero indicates the function was successful.
ID = 1115

Get_function_number_of_attributes(Function fcn,Integer &no_atts)

Get_function_number_of_attributes(Macro_Function fcn,Integer &no_atts)
Name
Integer Get_function_number_of_attributes(Function fcn,Integer &no_atts)

Integer Get_function_number_of_attributes(Macro_Function fcn,Integer &no_atts)

Description
Get the number of top level attributes in the Macro_Function/Function fcn and return it in
no_atts.

A function return value of zero indicates the number is successfully returned
ID = 1116

Get_function_attribute(Macro_Function fcn,Text att_name,Text &txt)

Get_function_attribute(Function fcn,Text att_name,Text &txt)
Name
Integer Get_function_attribute(Macro_Function fcn,Text att_name,Text &att)

Integer Get_function_attribute(Function fcn,Text att_name,Text &txt)

Description
For the Macro_Function/Function fcn, get the attribute called att_name and return the attribute
Page 116912d Model Macro_Functions

12d Model Programming Language Manual
value in txt. The attribute must be of type Text.
If the attribute is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1117

Get_function_attribute(Macro_Function fcn,Text att_name,Integer &int)

Get_function_attribute(Function fcn,Text att_name,Integer &int)
Name
Integer Get_function_attribute(Macro_Function fcn,Text att_name,Integer &int)

Integer Get_function_attribute(Function fcn,Text att_name,Integer &int)

Description
For the Macro_Function/Function fcn, get the attribute called att_name and return the attribute
value in int. The attribute must be of type Integer.
If the attribute is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

ID = 1118

Get_function_attribute(Function fcn,Text att_name,Real &real)

 Get_function_attribute(Macro_Function fcn,Text att_name,Real &real)
Name
Integer Get_function_attribute(Function fcn,Text att_name,Real &real)

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Real &real)

Description
For the Macro_Function/Function fcn, get the attribute called att_name and return the attribute
value in real. The attribute must be of type Real.
If the attribute is not of type Real then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1119

Get_function_attribute(Function fcn,Integer att_no,Text &txt)

Get_function_attribute(Macro_Function fcn,Integer att_no,Text &txt)
Name
Integer Get_function_attribute(Function fcn,Integer att_no,Text &txt)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Text &txt)
Page 1170 12d Model Macro_Functions

Chapter
Description
For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in txt. The attribute must be of type Text.
If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1120

Get_function_attribute(Function fcn,Integer att_no,Integer &int)

Get_function_attribute(Macro_Function fcn,Integer att_no,Integer &int)
Name
Integer Get_function_attribute(Function fcn,Integer att_no,Integer &int)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Integer &int)

Description
For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in int. The attribute must be of type Integer.
If the attribute is not of type Integer then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1121

 Get_function_attribute(Function fcn,Integer att_no,Real real)

Get_function_attribute(Macro_Function fcn,Integer att_no,Real real)
Name
Integer Get_function_attribute(Function fcn,Integer att_no,Real real)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Description
For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in real. The attribute must be of type Real.
If the attribute is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1122

Get_function_attribute_name(Macro_Function fcn,Integer att_no,Text &txt)

Get_function_attribute_name(Function fcn,Integer att_no,Text &txt)
Name
Page 117112d Model Macro_Functions

12d Model Programming Language Manual
Integer Get_function_attribute_name(Macro_Function fcn,Integer att_no,Text &txt)

Integer Get_function_attribute_name(Function fcn,Integer att_no,Text &txt)

Description
For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in txt. The attribute must be of type Text.
If the attribute is not of type Text then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1123

Get_function_attribute_type(Macro_Function fcn,Text att_name,Integer
&att_type)

Get_function_attribute_type(Function fcn,Text att_name,Integer &att_type)
Name
Integer Get_function_attribute_type(Macro_Function fcn,Text att_name,Integer &att_type)

Integer Get_function_attribute_type(Function fcn,Text att_name,Integer &att_type)

Description
For the Macro_Function/Function fcn, get the type of the attribute called att_name and return
the attribute type in att_type.
A function return value of zero indicates the attribute type is successfully returned.
 ID = 1124

Get_function_attribute_type(Function fcn,Integer att_no,Integer &att_type)

Get_function_attribute_type(Macro_Function fcn,Integer att_no,Integer
 &att_type)
Name
Integer Get_function_attribute_type(Function fcn,Integer att_no,Integer &att_type)

Integer Get_function_attribute_type(Macro_Function fcn,Integer att_no,Integer &att_type)

Description
For the Macro_Function/Function fcn, get the type of the attribute with attribute number att_no
and return the attribute type in att_type.
A function return value of zero indicates the attribute type is successfully returned.
ID = 1125

Get_function_attribute_length(Function fcn,Text att_name,Integer &att_len)

Get_function_attribute_length(Macro_Function fcn,Text att_name,Integer
&att_len)
Name
Integer Get_function_attribute_length(Function fcn,Text att_name,Integer &att_len)
Page 1172 12d Model Macro_Functions

Chapter
Integer Get_function_attribute_length(Macro_Function fcn,Text att_name,Integer &att_len)

Description
For the Macro_Function/Function fcn, get the length in bytes of the attribute of name att_name.
The number of bytes is returned in att_len.

 This is mainly for use with attributes of types Text and Binary (blobs)
A function return value of zero indicates the attribute length is successfully returned.
ID = 1126

Get_function_attribute_length(Function fcn,Integer att_no,Integer &att_len)

Get_function_attribute_length(Macro_Function fcn,Integer att_no,Integer
&att_len)
 Name
Integer Get_function_attribute_length(Function fcn,Integer att_no,Integer &att_len)

Integer Get_function_attribute_length(Macro_Function fcn,Integer att_no,Integer &att_len)

Description
For the Macro_Function/Function fcn, get the length in bytes of the attribute with attribute
number att_no. The number of bytes is returned in att_len.
 This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.
ID = 1127

Set_function_attribute(Function fcn,Text att_name,Text txt)

Set_function_attribute(Macro_Function fcn,Text att_name,Text txt)
Name
Integer Set_function_attribute(Function fcn,Text att_name,Text txt)

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Text txt)

Description
For the Macro_Function/Function fcn,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text, or the attribute does not exist, then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

ID = 1128

Set_function_attribute(Function fcn,Text att_name,Integer int)

Set_function_attribute(Macro_Function fcn,Text att_name,Integer int)
Name
Page 117312d Model Macro_Functions

12d Model Programming Language Manual
Integer Set_function_attribute(Function fcn,Text att_name,Integer int)

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Integer int)

Description
For the Macro_Function/Function fcn,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.
If the attribute exists and is not of type Integer, or the attribute does not exist, then a non-zero
return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.
ID = 1129

Set_function_attribute(Macro_Function fcn,Text att_name,Real real)

Set_function_attribute(Function fcn,Text att_name,Real real)
Name
Integer Set_function_attribute(Macro_Function fcn,Text att_name,Real real)

Integer Set_function_attribute(Function fcn,Text att_name,Real real)

Description
For the Macro_Function/Function fcn,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.
If the attribute exists and is not of type Real, or the attribute does not exist, then a non-zero return
value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

ID = 1130

Set_function_attribute(Macro_Function fcn,Integer att_no,Text txt)

 Set_function_attribute(Function fcn,Integer att_no,Text txt)
Name
Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Text txt)

Integer Set_function_attribute(Function fcn,Integer att_no,Text txt)

Description
For the Macro_Function/Function fcn,
 if the attribute with attribute number att_no does not exist then create it as type Text and give it
the value txt.
 if the attribute with attribute number att_no does exist and it is type Text, then set its value to
txt.
If the attribute exists and is not of type Text, or the attribute does not exist, then a non-zero return
value is returned.
Page 1174 12d Model Macro_Functions

Chapter
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_function_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
ID = 1131

Set_function_attribute(Function fcn,Integer att_no,Integer int)

Set_function_attribute(Macro_Function fcn,Integer att_no,Integer int)
Name
Integer Set_function_attribute(Function fcn,Integer att_no,Integer int)

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Integer int)

Description
For the Macro_Function/Function fcn,
 if the attribute with attribute number att_no does not exist then create it as type Integer and
give it the value int.
 if the attribute with attribute number att_no does exist and it is type Integer, then set its value to
int.
If the attribute exists and is not of type Integer, or the attribute does not exist, then a non-zero
return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
ID = 1132

Set_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Set_function_attribute(Function fcn,Integer att_no,Real real)
Name
Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Integer Set_function_attribute(Function fcn,Integer att_no,Real real)

Description
For the Macro_Function/Function fcn,
 if the attribute with attribute number att_no does not exist then create it as type Real and give
it the value real.
 if the attribute with attribute number att_no does exist and it is type Real, then set its value to
real.
If the attribute exists and is not of type Real, or the attribute does not exist, then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully set.
Note - the Get_function_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
ID = 1133

Get_function_attributes(Function fcn,Attributes &att)
Page 117512d Model Macro_Functions

12d Model Programming Language Manual
Get_function_attributes(Macro_Function fcn,Attributes &att)
Name
Integer Get_function_attributes(Function fcn,Attributes &att)

Integer Get_function_attributes(Macro_Function fcn,Attributes &att)

Description
For the Function/Macro_Function fcn, return the Attributes for the Function/Macro_Function as
att.
If fcn has no Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute is successfully returned.

ID = 1992

Set_function_attributes(Function fcn,Attributes att)

Set_function_attributes(Macro_Function fcn,Attributes att)
Name
Integer Set_function_attributes(Function fcn,Attributes att)

Integer Set_function_attributes(Macro_Function fcn,Attributes att)

Description
For the Function/Macro_Function fcn, set the Attributes for the Function/Macro_Function fcn to
att.
A function return value of zero indicates the attribute is successfully set.

ID = 1993

Get_function_attribute(Function fcn,Text att_name,Uid &uid)

Get_function_attribute(Macro_Function fcn,Text att_name,Uid &uid)
Name
Integer Get_function_attribute(Function fcn,Text att_name,Uid &uid)

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Uid &uid)

Description
From the Function/Macro_Function fcn, get the attribute called att_name and return the attribute
value in uid. The attribute must be of type Uid.
If the attribute is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1994

Get_function_attribute(Macro_Function fcn,Text att_name,Attributes &att)

Get_function_attribute(Function fcn,Text att_name,Attributes &att)
Name
Integer Get_function_attribute(Macro_Function fcn,Text att_name,Attributes &att)
Page 1176 12d Model Macro_Functions

Chapter
Integer Get_function_attribute(Function fcn,Text att_name,Attributes &att)

Description
From the Function/Macro_Function fcn, get the attribute called att_name and return the attribute
value in att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1995

Get_function_attribute(Macro_Function fcn,Integer att_no,Uid &uid)

Get_function_attribute(Function fcn,Integer att_no,Uid &uid)
Name
Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Uid &uid)

Integer Get_function_attribute(Function fcn,Integer att_no,Uid &uid)

Description
From the Function/Macro_Function fcn, get the attribute with number att_no and return the
attribute value in uid. The attribute must be of type Uid.
If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.
ID = 1996

Get_function_attribute(Function fcn,Integer att_no,Attributes &att)

Get_function_attribute(Macro_Function fcn,Integer att_no,Attributes &att)
Name
Integer Get_function_attribute(Function fcn,Integer att_no,Attributes &att)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Attributes &att)

Description
From the Function/Macro_Function fcn, get the attribute with number att_no and return the
attribute value in att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully returned.
Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

ID = 1997

Set_function_attribute(Function fcn,Text att_name,Uid uid)

Set_function_attribute(Macro_Function fcn,Text att_name,Uid uid)
Name
Page 117712d Model Macro_Functions

12d Model Programming Language Manual
Integer Set_function_attribute(Function fcn,Text att_name,Uid uid)

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Uid uid)

Description
For the Function/Macro_Function fcn,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.
If the attribute exists and is not of type Uid then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
ID = 1998

Set_function_attribute(Macro_Function fcn,Text att_name,Attributes att)

Set_function_attribute(Function fcn,Text att_name,Attributes att)
Name
Integer Set_function_attribute(Macro_Function fcn,Text att_name,Attributes att)

Integer Set_function_attribute(Function fcn,Text att_name,Attributes att)

Description
For the Function/Macro_Function fcn,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.
If the attribute exists and is not of type Attributes then a non-zero return value is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

ID = 1999

Set_function_attribute(Macro_Function fcn,Integer att_no,Uid uid)

Set_function_attribute(Function fcn,Integer att_no,Uid uid)
Name
Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Uid uid)

Integer Set_function_attribute(Function fcn,Integer att_no,Uid uid)

Description
For the Function/Macro_Function fcn, if the attribute number att_no exists and it is of type Uid,
then its value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2000
Page 1178 12d Model Macro_Functions

Chapter
Set_function_attribute(Function fcn,Integer att_no,Attributes att)

Set_function_attribute(Macro_Function fcn,Integer att_no,Attributes att)
Name
Integer Set_function_attribute(Function fcn,Integer att_no,Attributes att)

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Attributes att)

Description
For the Function/Macro_Function fcn, if the attribute number att_no exists and it is of type
Attributes, then its value is set to att.
If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
A function return value of zero indicates the attribute value is successfully set.
Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

ID = 2001
Page 117912d Model Macro_Functions

12d Model Programming Language Manual
5.63.7 Function Property Collections
Create_function_property_collection()
Name
Function_Property_Collection Create_function_property_collection()

Description
Create a Function_Property_Collection.

Function_Property_Collection’s are used to transfer information about a function such as the
Apply Many function instead of needing a large number of function calls which would need to be
updated every time a new parameter was added to the Apply Many,
The function return value is the created Function_Property_Collection.
ID = 2726

Set_property(Function_Property_Collection collection,Text name,Integer int_val)
Name
Integer Set_property(Function_Property_Collection collection,Text name,Integer int_val)

Description
In the Function Property Collection collection, set the value of the Integer property called name
to int_val.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The return value is zero if name doesn’t exist or it is not Integer property.
A function return value of zero indicates the value is successfully set.

ID = 2727

Set_property(Function_Property_Collection collection,Text name,Real real_val)
Name
Integer Set_property(Function_Property_Collection collection,Text name,Real real_val)

Description
In the Function Property Collection collection, set the value of the Real property called name to
real_val.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The return value is zero if name doesn’t exist or it is not Real property.
A function return value of zero indicates the value is successfully set.

ID = 2728

Set_property(Function_Property_Collection collection,Text name,Text txt_val)
Name
Integer Set_property(Function_Property_Collection collection,Text name,Text txt_val)

Description
In the Function Property Collection collection, set the value of the Text property called name to
Page 1180 12d Model Macro_Functions

Chapter
txt_val.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The return value is zero if name doesn’t exist or it is not Text property.

A function return value of zero indicates the value is successfully set.
ID = 2729

Set_property_colour(Function_Property_Collection collection,Text name,Text
colour_name)
Name
Integer Set_property_colour(Function_Property_Collection collection,Text name,Text colour_name)

Description
In the Function Property Collection collection, set the value of the Colour property called name
to the colour given by colour_name.

For more information on which properties are available for the function in question, please see
the section Function Properties.
The return value is zero if name doesn’t exist or it is not Text property.
A function return value of zero indicates the value is successfully set.

ID = 2730

Set_property(Function_Property_Collection collection,Text name,Element
element)
Name
Integer Set_property(Function_Property_Collection collection,Text name,Element element)

Description
In the Function Property Collection collection, set the value of the Element property called
name to element.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The return value is zero if name doesn’t exist or it is not Element property.

A function return value of zero indicates the value is successfully set.
ID = 2731

Set_property(Function_Property_Collection collection,Text name,Tin tin)
Name
Integer Set_property(Function_Property_Collection collection,Text name,Tin tin)

Description
In the Function Property Collection collection, set the tin of the Tin property called name to tin.
For more information on which properties are available for the function in question, please see
the section Function Properties.

The return value is zero if name doesn’t exist or it is not Tin property.
A function return value of zero indicates the value is successfully set.
Page 118112d Model Macro_Functions

12d Model Programming Language Manual
ID = 2732

Set_property(Function_Property_Collection collection,Text name,Model model)
Name
Integer Set_property(Function_Property_Collection collection,Text name,Model model)

Description
In the Function Property Collection collection, set the model of the Model property called name
to model.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The return value is zero if name doesn’t exist or it is not Model property.
A function return value of zero indicates the value is successfully set.

ID = 2733

Get_property(Function_Property_Collection collection,Text name,Integer
&int_val)
Name
Integer Get_property(Function_Property_Collection collection,Text name,Integer &int_val)

Description
From the Function Property Collection collection, get the value of the Integer property called
name and return it in int_val.
For more information on which properties are available for the function in question, please see
the section Function Properties.

The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Integer.
A function return value of zero indicates the value was successfully returned.
ID = 2737

Get_property(Function_Property_Collection collection,Text name,Real &real_val)
Name
Integer Get_property(Function_Property_Collection collection,Text name,Real &real_val)

Description
From the Function Property Collection collection, get the value of the Real property called name
and return it in real_val.
For more information on which properties are available for the function in question, please see
the section Function Properties.

The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Real.
A function return value of zero indicates the value was successfully returned.
ID = 2738

Get_property(Function_Property_Collection collection,Text name,Text &txt_val)
Page 1182 12d Model Macro_Functions

Chapter
Name
Integer Get_property(Function_Property_Collection collection,Text name,Text &txt_val)

Description
From the Function Property Collection collection, get the value of the Text property called name
and return it in txt_val.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Text.

A function return value of zero indicates the value was successfully returned.
ID = 2739

Get_property(Function_Property_Collection collection,Text name,Tin &tin)
Name
Integer Get_property(Function_Property_Collection collection,Text name,Tin &tin)

Description
From the Function Property Collection collection, get the Tin from the Tin property called name
and return it in tin.
For more information on which properties are available for the function in question, please see
the section Function Properties.

The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Tin.
A function return value of zero indicates the value was successfully returned.
ID = 2740

Get_property(Function_Property_Collection collection,Text name,Element
&element)
Name
Integer Get_property(Function_Property_Collection collection,Text name,Element &element)

Description
From the Function Property Collection collection, get the Element from the Element property
called name and return it in element.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Element.
A function return value of zero indicates the value was successfully returned.

ID = 2741

Get_property(Function_Property_Collection collection,Text name,Model &model)
Name
Integer Get_property(Function_Property_Collection collection,Text name,Model &model)

Description
Page 118312d Model Macro_Functions

12d Model Programming Language Manual
From the Function Property Collection collection, get the Model from the Tin property called
name and return it in model.
For more information on which properties are available for the function in question, please see
the section Function Properties.
The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Model.

A function return value of zero indicates the value was successfully returned.
ID = 2742

Get_property_colour(Function_Property_Collection collection,Text name,Text
&colour_name)
Name
Integer Get_property_colour(Function_Property_Collection collection,Text name,Text &colour_name)

Description
From the Function Property Collection collection, get the Colour from the Colour property called
name and return the name of the colour in colour_name.
For more information on which properties are available for the function in question, please see
the section Function Properties.

The function return value is non zero if there is no property called name, or if it does exist, it is
not of type Colour.
A function return value of zero indicates the value was successfully returned.

ID = 2743

Create_apply_many_function(Text function_name,Function_Property_Collection
properties,Apply_Many_Function &function,Text &msg)
Name
Integer Create_apply_many_function(Text function_name,Function_Property_Collection
properties,Apply_Many_Function &function,Text &msg)

Description
Create an Apply Many function with the function name function_name using the values supplied
in the Function_Property_Collection properties.
For more information on which properties are available, please see Apply Many Function
Properties.
Any errors such as missing properties, or properties of an incorrect type, will be reported in the
Text msg.

A non zero function return value indicates that there was a problem creating the Apply Many
function.
A function return value of zero indicates the Apply Many was successfully created.
ID = 2734

Set_apply_many_function_properties(Apply_Many_Function
function,Function_Property_Collection properties,Text &msg)
Name
Integer Set_apply_many_function_properties(Apply_Many_Function function,
Page 1184 12d Model Macro_Functions

Chapter
Function_Property_Collection properties,Text &msg)

Description
For the Apply_Many_Function function, set the values of function to be those in the
Function_Property_Collection properties.

For more information on which properties are available, please see Apply Many Function
Properties.
Any errors such as missing properties, or properties of an incorrect type, will be reported in the
Text msg.
A non zero function return value indicates that there was a problem creating the Apply Many
function.

A function return value of zero indicates the Apply Many was successfully created.

ID = 2735

Get_apply_many_function_properties(Apply_Many_Function
function,Function_Property_Collection &properties)
Name
Integer Get_apply_many_function_properties(Apply_Many_Function
function,Function_Property_Collection &properties)

Description
Load the values of the Function_Property_Collection properties from the Apply Many Function
function.
For more information on which properties are available, please see Apply Many Function
Properties.
A function return value of zero indicates the get was successful.

ID = 2736

Get_apply_many_function(Text name, Apply_Many_Function &function)
Name
Integer Get_apply_many_function(Text name, Apply_Many_Function &function)

Description
Get and existing 12d Model Apply Many Function with the name name and create an
Apply_Many_Function with the values from the existing 12d Model Apply Many Function.

A non zero function return value indicates that there was no 12d Model Apply Many Function
with the name name, or thee was a problem creating the Apply_Many_Function.
A function return value of zero indicates the creation of the Apply_Many_Function was
successful.
ID = 2748

Function Properties

Apply Many Function Properties
Page 118512d Model Macro_Functions

12d Model Programming Language Manual
Name Type Description
tin Tin / Text The tin to be used by the apply many
Mtf Text The mtf used by the apply many
Separation Real The separation between sections
start_chainage Real The optional start chainage for the apply

many
end_chainage Real The optional end chainage for the apply

many
left_prefix Text The optional left prefix for template names
right_prefix Text The optional right prefix for template names
Reference Element The centreline / reference string to run the

apply many down
Hinge Element The optional hinge string
report_file Text The optional report file
road_surface_strings Model/Text The road strings model to be created by the

apply many
road_surface_sections Model/Text The road sections model to be created by the

apply many
road_surface_colour Text The name of the colour for the road surface

strings and sections
boxing_strings_N Model/Text The optional model or name of a model for

boxing strings for layer N (1 to 8)
boxing_sections_N Model/ Text The optional model or name of a model for

boxing sections for layer N (1 to 8)
boxing_colour_N Text The optional name of the colour for the

strings created for boxing layer N (1 to 8)
difference_sections Model/Text The optional model or name of a model for

difference sections
difference_colour Text The name of the colour for difference

sections
polygons_model Model/Text The optional model or name of a model for

apply many polygons
road_boundary_model Model/Text The optional model or name of a model for

the road boundary
create_arcs Integer What type of arcs to create

0 - no arcs
1 - alignments
2 - polylines
3 - super strings

chord_arc_tolerance Real The chord arc tolerance value
volume_correction Integer Whether or not to perform volume correction

(0 or 1)
partial_interfaces Integer Whether or not to create partial interfaces (0

or 1)
sections_as_4d Integer Whether or not to create sections as 4d

strings (0 or 1)
copy_hinge Integer Whether or not to copy the hinge string (0 or

1)
Page 1186 12d Model Macro_Functions

Chapter
use_stripping Integer Whether or not to use stripping (0 or 1)
show_stripping_volumes Integer Whether or not to show detailed stripping

volumes (0 or 1)
calculate_natural_surface_to_de
sign_volumes

Integer Whether or not to calculate natural surface to
design volumes (0 or 1)

calculate_road_to_subgrade_vol
ume

Integer Whether or not to calculate road to subgrade
volumes (0 or 1)

calculate_inter_boxing_layer_v
olumes

Integer Whether or not to calculate inter boxing
layer volumes (0 or 1)

map_file Text The optional name of a map file to create
create_road_tin Integer Whether or not to create a tin (0 or 1)
road_tin Tin/Text The tin or the name of the tin to create
road_tin_colour Text The name of the colour for the created tin
road_tin_model Model/Text The model or the name of the model to

create the tin in
create_depth_range_polygons Integer Whether or not to create depth range

polygons (0 or 1)
depth_range_file Text The name of the depth range file to use when

creating depth range polygons
depth_range_polygons_model Model/Text The model or name of the model to create

depth range polygons in
road_tin_number_extra_models Integer The optional number of extra models for the

road tin
road_tin_extra_model_N Model/Text The model or name of the Nth model to be

used as an extra model for the road tin
calculate_sight_distance Integer Whether or not to calculate sight distances (0

or 1)
sight_distance_min Real The minimum sight distance
sight_distance_max Real The maximum sight distance
sight_distance_eye_height Real The eye height for the sight distance calcs
sight_distance_eye_offset Real The eye offset for the sight distance calcs

sight_distance_target_height Real The target height for the sight distance calcs
sight_distance_target_offset Real The target offset for the sight distance calcs
sight_distance_calc_interval Real The calc interval for the sight distance calcs
sight_distance_trial_interval Real The trial interval for the sight distance calcs
sight_distance_report Text The optional report for the sight distance

calc
create_separation_barrier_lines Integer Whether or not to create separation and

barrier lines (0 or 1)
barrier_distance Real The barrier distance
min_barrier_road_length Real The min barrier road length
min_barrier_line_length Real The min barrier line length
min_barrier_between Real The min distance between barriers
filter_cross_sections Integer Whether or not to filter cross sections (0 or

1)
filter_sections_model Model/Text The model or name of model for filtered

cross sections
filter_sections_colour Text The name of the colour for filtered cross

sections
Page 118712d Model Macro_Functions

12d Model Programming Language Manual
filter_sections_interval Real The interval at which to filter cross sections
filter_sections_tolerance Real The culling tolerance for filtering cross

sections
filter_sections_include_start Integer Whether or not to include the start section (0

or 1)
filter_sections_include_end Integer Whether or not to include the end section (0

or 1)
filter_sections_include_equalitie
s

Integer Whether or not to include equalities (0 or 1)

filter_sections_include_h_tange
nt

Integer Whether or not to include horizontal tangent
sections (0 or 1)

filter_sections_include_v_tange
nt

Integer Whether or not to include vertical tangent
sections (0 or 1)

filter_sections_include_crest_sa
g

Integer Whether or not to include crest/sag sections
(0 or 1)

filter_sections_spc_file Text The optional special chainages file for
filtering cross sections

generate_long_section_plot Integer Whether or not to generate a long section
plot (0 or 1)

long_section_ppf Text The name of the ppf for the long section plot
long_section_plotter_type Text The name of the plotter to plot a long section

with
long_section_plot_stem Text The stem for the long section plot
long_section_plot_clean Integer Whether or not to clean the long section plot

model first (0 or 1)
generate_cross_section_plot Integer Whether or not to generate a cross section

plot (0 or 1)
cross_section_ppf Text The name of the ppf for the cross section plot
cross_section_plotter_type Text The name of the plotter to plot a cross

section with
cross_section_plot_stem Text The stem for the cross section plot
cross_section_plot_clean Integer Whether or not to clean the cross section plot

model first (0 or 1)
create_tadpoles Integer Whether or not to create tadpoles (0 or 1)
tadpole_model Model/Text The model or name of model for tadpoles
tadpole_interval Real The interval at which to create tadpoles
tadpole_search_width Real The search width for creating tadpoles
tadpole_search_side Integer The side on which to create tadpoles

0 - Left and Right
1 - Left
2 - Right

tadpole_count Integer The number of tadpole types to be created
tadpole_N_string_1_name Text The name of string 1 for the Nth tadpole

entry
tadpole_N_string_2_name Text The name of string 2 for the Nth tadpole

entry
tadpole_N_start_ch Real The start chainage for the Nth tadpole entry

(optional)
Page 1188 12d Model Macro_Functions

Chapter
tadpole_N_end_ch Real The end chainage for the Nth tadpole entry
(optional)

tadpole_N_symbol_1_name Text The name of the first tadpole symbol for the
Nth tadpole entry

tadpole_N_symbol_1_colour Text The name of the colour of the first tadpole
symbol for the Nth tadpole entry

tadpole_N_symbol_1_size Real The size of the first tadpole symbol for the
Nth tadpole entry (optional)

tadpole_N_symbol_1_rotation Real The rotation of the first tadpole symbol for
the Nth tadpole entry (optional)

tadpole_N_symbol_1_offset_x Real The x offset of the first tadpole symbol for
the Nth tadpole entry (optional)

tadpole_N_symbol_1_offset_y Real The y ofset of the first tadpole symbol for the
Nth tadpole entry (optional)

tadpole_N_symbol_1_percent Real The percentage modifier for the first symbol
for the Nth tadpole entry (optional)

tadpole_N_symbol_2_name Text The name of the second tadpole symbol for
the Nth tadpole entry

tadpole_N_symbol_2_colour Text The name of the colour of the second tadpole
symbol for the Nth tadpole entry

tadpole_N_symbol_2_size Real The size of the second tadpole symbol for
the Nth tadpole entry (optional)

tadpole_N_symbol_2_rotation Real The rotation of the second tadpole symbol
for the Nth tadpole entry (optional)

tadpole_N_symbol_2_offset_x Real The x offset of the second tadpole symbol
for the Nth tadpole entry (optional)

tadpole_N_symbol_2_offset_y Real The y offset of the second tadpole symbol
for the Nth tadpole entry (optional)

tadpole_N_symbol_2_percent Real The percentage modifier for the second
symbol for the Nth tadpole entry (optional)
Page 118912d Model Macro_Functions

12d Model Programming Language Manual
5.64 Plot Parameters
12d Model plot parameters control the look of the different plots that 12d Model can generate.
The Plot_Parameter_File is a 12d Model Variable that can contain plot parameters and the plot
parameter values for a given plot type.
Plot_Parameter_File Types
The valid Plot_Parameter_File types are:
 section_x_plot
 section_long_plot
 melb_water_sewer_long_plot
 pipeline_long_plot
 drainage_long_plot
 drainage_plan_plot
 plot_frame_plot
 rainfall_methods
 design_parameters

Each type of plot has its own set of valid plot parameters.

When a Plot_Parameter_File, say ppf, is first defined, it starts as an empty structure until it has
its type defined using the Create_XX_parameter calls. The ppf then knows what plot parameters
are valid for that type of plot.
The Plot_Parameter_File ppf is then loaded with particular plot parameters and their values by
making Set_Parameter calls and/or reading in data from a plot parameter file stored already disk
(Read_Parameter_File).

When all the required plot parameters have been set, the Plot_Parameter_File ppf can be used
to create a plot (Plot_parameter_file).
The Plot_Parameter_File ppf can also be written out as a disk file so that it can be used in the
future (Write_parameter_file).

Note: note all the available parameters for a particular plot type need to be set for a
Plot_Parameter_File. For most plot parameters, there is a default value used for plotting and that
is used if the parameter is not given a value by a Set_Parameter call.

Create_parameter_file(Plot_Parameter_File ppf,Text ppf_type)
Name
Integer Create_parameter_file(Plot_Parameter_File ppf,Text ppf_type)

Description
Set the Plot_Parameter_File ppf to be of type ppf_type and clear out any information already
contained in ppf. For the valid types, see Plot_Parameter_File Types.

Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.
ID = 2447

 Create_section_long_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_section_long_plot_parameter_file(Plot_Parameter_File ppf)
Page 1190 Plot Parameters

Chapter
Description
Set the Plot_Parameter_File ppf to be of type section_long_plot, and clear out any information
already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.
 ID = 2448

Create_section_x_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_section_x_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type section_x_plot, and clear out any information
already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.
 ID = 2449

Create_melb_water_sewer_long_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_melb_water_sewer_long_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type melb_water_sewer_long_plot, and clear out any
information already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.

ID = 2450

Create_pipeline_long_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_pipeline_long_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type pipeline_long_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.
 ID = 2451

Create_drainage_long_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_drainage_long_plot_parameter_file(Plot_Parameter_File ppf)

Description
Page 1191Plot Parameters

12d Model Programming Language Manual
Set the Plot_Parameter_File ppf to be of type drainage_long_plot, and clear out any information
already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.

ID = 2452

Create_drainage_plan_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_drainage_plan_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type drainage_plan_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.
ID = 2453

Create_plot_frame_plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_plot_frame_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type plot_frame_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.
ID = 2454

Create_rainfall_methods_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_rainfall_methods_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type rainfall_methods, and clear out any information
already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.
ID = 2455

Create_design_parameters_parameter_file(Plot_Parameter_File ppf)
Name
Integer Create_design_parameters_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type design_parameters, and clear out any information
Page 1192 Plot Parameters

Chapter
already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.

ID = 2456

Create_perspective_plot_parameter_file(Plot_Parameter_File file)
Name
Integer Create_perspective_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type perspective_plot, and clear out any information
already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.

ID = 3375

Create_section_plot_parameter_file(Plot_Parameter_File file)
Name
Integer Create_section_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type section_plot, and clear out any information already
contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.
A function return value of zero indicates the type is successfully set.
ID = 3376

Create_water_node_diagram_plot_parameter_file(Plot_Parameter_File file)
Name
Integer Create_water_node_diagram_plot_parameter_file(Plot_Parameter_File ppf)

Description
Set the Plot_Parameter_File ppf to be of type water_node_diagram_plot, and clear out any
information already contained in ppf.
Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.
ID = 3377

Read_parameter_file(Plot_Parameter_File ppf,Text filename,Integer
expand_includes)
Name
Integer Read_parameter_file(Plot_Parameter_File ppf,Text filename,Integer expand_includes)

Description
Reads from disk a binary plot parameter file of file name filename and load the data into the
Page 1193Plot Parameters

12d Model Programming Language Manual
Plot_Parameter_File ppf. The type of the Plot_Parameter_File is determined by the file extension
of filename.
If expand_includes is no-zero then any Includes listed in filename will be read in.
Any information that is already in ppf is cleared before loading the data from filename.

A function return value of zero indicates the file was successfully read and loaded into ppf.
ID = 2457

Write_parameter_file(Plot_Parameter_File ppf,Text filename)
Name
Integer Write_parameter_file(Plot_Parameter_File ppf,Text filename)

Description
Write out to a file on disk, the information in the Plot_Parameter_File ppf.
The name of the disk file is filename, plus the appropriate extension given by the type of ppf (see
Plot_Parameter_File Types)
A function return value of zero indicates the file was successfully written.

ID = 2458

Set_parameter(Plot_Parameter_File ppf,Text parameter_name, Element
parameter_value)
Name
Integer Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Element parameter_value)

Description
Sets the value of the plot parameter parameter_name in the Plot_Parameter_File ppf to be the
Element parameter_value.
For example, setting the plot parameter string_to_plot to be a selected string. Aside - in the plot
parameter file written to the disk, an element is stored with three things - the string name, the
string id and the model id of the model containing the element.

If the plot parameter does not require an Element, then a non-zero return function return value is
returned.
A function return value of zero indicates the parameter value is successfully set.
ID = 2641

Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Element
¶meter_value)
Name
Integer Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Element ¶meter_value)

Description
Get the value for the plot parameter parameter_name in the Plot_Parameter_File ppf and return
it as the Element parameter_value.

If the value for the plot parameter is not of type Element, then a non-zero return function return
value is returned.
A function return value of zero indicates the parameter value is successfully found.
ID = 2642
Page 1194 Plot Parameters

Chapter
Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Text
parameter_value)
Name
Integer Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Text parameter_value)

Description
Sets the value of the plot parameter parameter_name in the Plot_Parameter_File ppf to be the
Text parameter_value.

For example, setting the plot parameter box_titles_x to have the value 24.5
Note - even though a plot parameter file may be used as a real number or an integer, it is stored
in the Plot_Parameter_File as a Text.

A function return value of zero indicates the parameter value is successfully set.
ID = 2459

Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Text
¶meter_value)
Name
Integer Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Text ¶meter_value)

Description
so get back as text and you need to decode it.
Get the value for the plot parameter parameter_name in the Plot_Parameter_File ppf and return
it as the Text parameter_value.

Note - if the parameter value is to be used as say an Integer, then the returned Text
parameter_value will need to be decoded.
If the value for the plot parameter is not of type Text, then a non-zero return function return value
is returned.
A function return value of zero indicates the parameter value is successfully found.

ID = 2460

Parameter_exists(Plot_Parameter_File ppf,Text parameter_name)
Name
Integer Parameter_exists(Plot_Parameter_File ppf,Text parameter_name)

Description
Check to see if a plot parameter of name parameter_name exists in the Plot_Parameter_File ppf.

returns no-zero if exists
A non-zero function return value indicates that an plot parameter exists.
Warning this is the opposite of most 12dPL function return values.

ID = 2461

Remove_parameter(Plot_Parameter_File ppf,Text parameter_name)
Name
Page 1195Plot Parameters

12d Model Programming Language Manual
Integer Remove_parameter(Plot_Parameter_File ppf,Text parameter_name)

Description
Remove the plot parameter of name parameter_name and its value from the
Plot_Parameter_File ppf.

Note - the Plot_Parameter_File ppf does not necessarily contain values for all the possible plot
parameters that are available for a given Plot_Parameter_File. Many parameters can have
default values which are used if the plot parameter is not set.
A function return value of zero indicates the parameter was successfully removed.
 ID = 2462

Plot_parameter_file(Plot_Parameter_File ppf)
Name
Integer Plot_parameter_file(Plot_Parameter_File ppf)

Description
Plot the Plot_Parameter_File ppf.
Note - ppf needs to contain all the appropriate information on where the plot is plotted to.

A function return value of zero indicates the plot was successfully created
ID = 2463

Plot_parameter_file(Text file)
Name
Integer Plot_parameter_file(Text file)

Description
Plot the plot parameter file in the binary plot parameter disk file name.
Note - the file needs to contain all the appropriate information on where the plot is plotted to.

A function return value of zero indicates the plot was successfully created.
ID = 2464

Plot_ppf_file(Text name)
Name
Integer Plot_ppf_file(Text name)

Description
Plot the plot parameter file in the ascii plot parameter disk file name.
Note - the file needs to contain all the appropriate information on where the plot is plotted to.
A function return value of zero indicates the plot was successfully created.

ID = 652
Page 1196 Plot Parameters

Chapter
5.65 Undos
12d Model has an Undo system which allows operations to be undone (option Edit =>Undo or
using <Ctrl>-Z) and the Undo macro calls gives access to the 12d Model Undo system.
For an operation to be undone, enough information must be stored to allow for the operation to
be reversed.
For example, if an Element elt is created, then the undo of this operation it to delete elt.
Or if an Element original is modified to create a new Element changed, then the original
element and the new element both need to be recorded so that the undo operation can replace
the original Element.

To correctly create items for undos, 12dPL has an Undo structure and calls to create the Undo
structure with the appropriate information for an undo. Creating the Undo also automatically adds
it to the 12d Model Undo system.

Creating an undo for even a simple operation, may need a number of pieces of information
stored.

For example, if you were splitting a string into two pieces and only leaving the two pieces, for an
undo to work, you would need to have a copy of the original string that is being split (since the
macro would delete it after is did the split), plus information about the two strings that are created
by the split. This is because the undo must find and delete the two strings created by the split,
and then bring the original string back.
So the calls needed would be

Undo a = Add_undo_delete("deleted string",original_string,1);
Undo b = Add_undo_add("split 1",split_1);
Undo c = Add_undo_add("split 2",split_2);

where original_string is the string what is split and split_1 and split_2 are the two pieces that are
created by the split (See 5.65.1 Functions to Create Undos for the documentation on each call).

However, each call automatically adds the operation to the 12d Model Undo system so making
the three calls actually places three items on the 12d Model Undo system with the text "Deleted
string", "split 1" and "split 2".

So as it stands, to make the undo happen would need three Edit =>Undo’s, or three <ctrl>-z’s.

To wrap the three items into one item on the 12d Model Undo system, you need to use a 12dPL
Undo_List.
Basically you just add the three items that are to be done as one 12d Model Undo onto a
Undo_List, add the three Undos to the Undo_list, and then add the Undo_List to the 12d Model
Undo system:

Undo_List ul;
Append (a,ul);
Append (b,ul);
Append (c,ul);
Add_undo_list ("split",ul);

Note: Add_undo_list adds the Undo_List with three items to the 12d Model Undo system and
gives it the name "split". At the same time, it removes the three separate Undos a, b, c from the
12d Model Undo system so only the item called "split" is left on the 12d Model Undo system.

Important Note: Leaving the three Undo’s a, b, c without combining them is a great way of
Page 1197Undos

12d Model Programming Language Manual
debugging your creation of an 12d Model Undo. You will see them as three separate items and
they can be undone one at a time to see what is going on.

For information on the Undo function calls:

See 5.65.1 Functions to Create Undos
See 5.65.2 Functions for a 12dPL Undo_List

5.65.1 Functions to Create Undos
Add_undo_add(Text name,Element elt)
Name
Undo Add_undo_add(Text name,Element elt)

Description
Create an Undo from the Element elt and give it the name name.
The Undo is automatically added to the 12d Model Undo system.
Return the created Undo as the function return value.

This is telling the 12d Model Undo system that a new element has been created in 12d Model.
Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

ID = 1563

Add_undo_add(Text name,Dynamic_Element de)
Name
Undo Add_undo_add(Text name,Dynamic_Element de)

Description
Create an Undo from the Dynamic_Element de and give it the name name.
The Undo is automatically added to the 12d Model Undo system.
Return the created Undo as the function return value.

This is telling the Undo system that a list of new element (stored in the Dynamic_Element de)
has been created in 12d Model.
Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

ID = 1564

Add_undo_change(Text name,Element original,Element changed)
Name
Undo Add_undo_change(Text name,Element original,Element changed)

Description
Create an Undo from a copy of the original Element original and the modified Element
changed, and give it the name name.
The Undo is automatically added to the 12d Model Undo system.
Return the created Undo called name as the function return value.
Page 1198 Undos

Chapter
The Element original should not exist in a Model. The Element changed does exist in a Model.

This is telling the Undo system that an Element original has been modified to create the Element
changed. If the Model for original is ever needed then the parent structure of original can be
used to get it.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

Example code

// make a safe copy of the element before updating the content
Element_duplicate(changed, original);

// set model of original to null model
Null(null_model);
Set_model(original, null_model)

// code for updating the content of changed
undo_item = Add_undo_change("my reason for changing", original, changed);

ID = 1565

 Add_undo_delete(Text name,Element original,Integer make_copy)
Name
Undo Add_undo_delete(Text name,Element original,Integer make_copy)

Description
If make_copy is non zero, create a copy of the Element original and transfer the Uid from
original to the copy.

If make_copy is zero, then a reference to original is use. Warning - make_copy = 0 should
never be used because if original is then deleted in 12d Model, the Undo list could be
corrupted.
The Undo is given the name name.
The Undo is automatically added to the 12d Model Undo system.

Return the created Undo called name as the function return value.

This is telling the Undo system that an Element original has been deleted.

Note: name is the text that appears when the Undo is displayed in the 12d Model Uno List.
ID = 1566

Add_undo_range(Text name,Integer id1,Integer id2)
Name
Undo Add_undo_range(Text name,Integer id1,Integer id2)

Description
Create an Undo that consists of the id range form 1d1 to id2.
The Undo is given the name name.
The Undo is automatically added to the 12d Model Undo system.
Page 1199Undos

12d Model Programming Language Manual
Return the created Undo called name as the function return value.

This is telling the Undo system that all the Elements in the id range from Id1 to Id2 have been
created.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.
Important note - Id’s are no longer used in 12d Model and have been replaced by Uids. This
macro has been deprecated (i.e. won’t exist) unless the macro is compiled with a special flag.
This function has been replaced by Undo Add_undo_range(Text name,Uid id1,Uid id2).

ID = 1567

Add_undo_range(Text name,Uid id1,Uid id2)
Name
Undo Add_undo_range(Text name,Uid id1,Uid id2)

Description
Create an Undo that consists of the Uid range form id1 to id2.
The Undo is given the name name.
The Undo is automatically added to the 12d Model Undo system.
Return the created Undo called name as the function return value.

This is telling the Undo system that all the Elements in the Uid id range from Id1 to Id2 have been
created.
Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

ID = 1919

For information on adding/removing Undo’s to an internal 12dPL list and how it interacts with the
12d Model Undo system, go to the next section 5.65.2 Functions for a 12dPL Undo_List

5.65.2 Functions for a 12dPL Undo_List

Get_number_of_items(Undo_List &undo_list,Integer &count)
Name
Integer Get_number_of_items(Undo_List &undo_list,Integer &count)

Description
Get the number of items in the Undo_List undo_list and return the number in count.
A function return value of zero indicates the number was successfully returned.

ID = 1557

Get_item(Undo_List &undo_list,Integer n,Undo &undo)
Name
Page 1200 Undos

Chapter
Integer Get_item(Undo_List &undo_list,Integer n,Undo &undo)

Description
Get the n’th item from the Undo_List undo_list and return the item (which is an Undo) as undo.

A function return value of zero indicates the Undo was successfully returned.
 ID = 1558

Set_item(Undo_List &undo_list,Integer n,Undo undo)
Name
Integer Set_item(Undo_List &undo_list,Integer n,Undo undo)

Description
Set the n’th item in the Undo_List undo_list to be the Undo undo.
A function return value of zero indicates the Undo was successfully set.

ID = 1559

Append(Undo undo,Undo_List &undo_list)
Name
Integer Append(Undo undo,Undo_List &undo_list)

Description
Append the Undo undo to the Undo_List undo_list.
That is, the Undo undo is added to the end of the Undo_List and so the number of items in the
Undo_List is increased by one.
A function return value of zero indicates the Undo was successfully appended.
 ID = 1560

Append(Undo_List list,Undo_List &to_list)
Name
Integer Append(Undo_List from_list,Undo_List &to_list)

Description
Append the Undo_list list to the Undo_List to_list.
A function return value of zero indicates the Undo_List was successfully appended.

 ID = 1561

Null(Undo_List &undo_list)
Name
Integer Null(Undo_List &undo_list)

Description
Removes and nulls all the Undo’s from the Undo_list undo_list and sets the number of items in
undo_list to zero.

That is, all the items on the Undo_List are nulled and the number of items in the Undo_List is set
back to zero.
Page 1201Undos

12d Model Programming Language Manual
A function return value of zero indicates the Undo_List was successfully nulled.
ID = 1562

Add_undo_list(Text name,Undo_List list)
Name
Undo Add_undo_list(Text name,Undo_List list)

Description
Adds the Undo_List list to the 12d Model Undo system and gives it the name name.
At the same time, it automatically removes each of the Undo’s in list from the 12d Model Undo
system. So all the items in list are removed from the 12d Model Undo system and replaced by
the one item called name.
ID = 1568
Page 1202 Undos

Chapter
5.66 ODBC Macro Calls
The ODBC (Open Database Connectivity) macro calls allow a macro to interface with external
data sources via ODBC. These data sources include any ODBC enabled database or
spreadsheets such as Excel. This is particularly useful for custom querying of GIS databases.

Terminology
s A Connection refers to a connection to a known data source.

s A Query refers to an operation against the database (See Query Types for more information)

s A Query Condition is a set of conditions applied against a query to constrain the information being
returned.

s A Transaction refers to an atomic, discrete operation that has a known start and end. Any changes to
your data source will not apply until the transaction is committed.

s A Parameter refers to a known keyword pair for supplied values, which is important for security
purposes

See 5.66.1 Connecting to an external data source
See 5.66.2 Querying against a data source
See 5.66.3 Navigating results with Database_Result
See 5.66.4 Insert Query
See 5.66.5 Update Query
See 5.66.6 Delete Query
See 5.66.7 Manual Query
See 5.66.8 Query Conditions
See 5.66.9 Transactions
See 5.66.10 Parameters

5.66.1 Connecting to an external data source
Before running queries, a connection must be made to the database. It is also good practise to
close the connection when you are finally finished with it.

Create_ODBC_connection()
Name
Connection Create_ODBC_connection()

Description
Creates an ODBC connection object, which may then by used to connect to a database.
ID = 2501

Connect(Connection connection,Text connection_string,Text user,Text password)
Name
Integer Connect(Connection connection,Text connection_string,Text user,Text password)

Description
This call attempts to connect to an external data source, with a username and password. A
connection string must also be supplied. This is data source specific and ODBC driver specific.
For more information on connection strings, see the vendor of the data source or data source
driver.
Page 1203ODBC Macro Calls

12d Model Programming Language Manual
This call returns 0 if successful.
ID = 2502

Connect(Connection connection,Text connection_string)
Name
Integer Connect(Connection connection, Text connection_string)

Description
This call attempts to connect to an external data source. A connection string must also be
supplied. This is data source specific and ODBC driver specific. For more information on
connection strings, see the vendor of the data source or data source driver.
This call returns 0 if successful.
ID = 2503

Close(Connection connection)
Name
Integer Close(Connection connection)

Description
This call determines if there was an error performing an operation against the connection. This
call will return 1 if there was an error.

ID = 2504

Has_error(Connection connection)
Name
Integer Has_error(Connection connection)

Description
This call will check if an error has occurred as the result of an operation. Has_error should
always be called after any operation. If there is an error, Get_last_error can be used to retrieve
the result.

This call will return 0 if there is no error, and 1 if there is.
ID = 2512

Get_last_error(Connection connection,Text &status,Text &message)
Name
Integer Get_last_error(Connection connection,Text &status,Text &message)

Description
This call will get the last error, if there is one, and retrieve the status and message of the error.
This call will return 0 if successful.
ID = 2513

Return to 5.66 ODBC Macro Calls
Page 1204 ODBC Macro Calls

Chapter
5.66.2 Querying against a data source
Once connected, you may query the data source in a number of ways. Queries are typically
implemented in SQL (the Structured Query Language). To make it easier to use, the macro
language provides an interface to building up queries without having to use SQL. There are
several types of query building objects.

The query is not run until the appropriate Execute function is called.

s Select_Query - Used to retrieve information from the data source

s Insert_Query - Used to insert new information into the data source

s Update_Query - Used to update existing information in the data source

s Delete_Query - Used to delete information from a data source

A Manual_Query also exists, if you wish to define the SQL yourself.

Note that a query execution may return as successful even if no data was changed.

Select Query
Select queries are used to retrieve information, with or without constraints, from the data source.
Select queries are defined by tables and columns, from which to retrieve results, and optional
query conditions to constrain them.

Create_select_query()
Name
Select_Query Create_select_query()

Description
Creates and returns a select query object.

ID = 2528

Add_table(Select_Query query,Text table_name)
Name
Integer Add_table(Select_Query query,Text table_name)

Description
This call adds a table of a given name to the supplied query. The query will look at this table
when retrieving data.

This call returns 0 if successful.
ID = 2529

Add_result_column(Select_Query query,Text table,Text column_name)
Name
Integer Add_result_column(Select_Query query,Text table,Text column_name)

Description
Page 1205ODBC Macro Calls

12d Model Programming Language Manual
This call adds a result column that belongs to a given table to the query. Note that the table must
already be added for this to work. The query will retrieve that column from the supplied table
when it runs.
The call returns 0 if successful.
ID = 2531

Add_result_column(Select_Query query,Text table,Text column_name,Text
 return_as)
Name
Integer Add_result_column(Select_Query query,Text table,Text column_name,Text return_as)

Description
This call adds a result column that belongs to a given table to the query. Note that the table must
already be added for this to work. The query will retrieve that column from the supplied table
when it runs, but in the results it will be called by the name you supply.
The call returns 0 if successful.
ID = 2530

Add_order_by(Select_Query query,Text table_name,Text column_name,Integer
 sort_ascending)
Name
Integer Add_order_by(Select_Query query,Text table_name,Text column_name,Integer sort_ascending)

Description
This call will instruct the query to order the results for a column in a table. Set sort_ascending to
1 if you wish the results to be sorted in ascending order.
This call returns 0 if successful.
ID = 2533

Set_limit(Select_Query query,Integer start,Integer number_to_retrieve)
Name
Integer Set_limit(Select_Query query,Integer start,Integer number_to_retrieve)

Description
This call will set an upper limit on the number of results to read, as well as defining the start index
of the returned results. This is useful when you have many results that you wish to return in
discrete sets or pages.
This call returns 0 if successful.

ID = 2534

Add_group_by(Select_Query query,Text table_name,Text column_name)
Name
Integer Add_group_by(Select_Query query,Text table_name,Text column_name)

Description
Page 1206 ODBC Macro Calls

Chapter
This call will group results by a given table and column name. This is useful if your data provider
allows aggregate functions for your queries.
This call returns 0 if successful.
ID = 2532

Add_condition(Select_Query query,Query_Condition condition)
Name
Integer Add_condition(Select_Query query,Query_Condition condition)

Description
This call will add a query condition to a select query. A query condition will allow you to constrain
your results to defined values. See the section 5.66.8 Query Conditions on how to create and
defined Query Conditions.

This call returns 0 if successful.
ID = 2535

 Execute(Connection connection,Select_Query query)
Name
Integer Execute(Connection connection,Select_Query query)

Description
This call will execute a created select query for a scalar value. The return value of the call will be
the result of the query.
 ID = 2505

Execute(Connection connection,Select_Query query,Database_Result &result)
Name
Integer Execute(Connection connection,Select_Query query,Database_Result &result)

Description
This call will execute a created select query and return a set of results in the result argument.
See the section on 5.66.3 Navigating results with Database_Result for more information on the
Database_Result object.
This call will return 0 if successful.
ID = 2506

Return to 5.66 ODBC Macro Calls

5.66.3 Navigating results with Database_Result
If a select or manual query returns results, they will be stored in a Database_Result object. A
Database_Result may be visualised as a table of rows and columns. The Database_Result can
be used to access these results in a sequential fashion, in a forward only direction.

Move_next(Database_Result result)
Page 1207ODBC Macro Calls

12d Model Programming Language Manual
Name
Integer Move_next(Database_Result result)

Description
This call moves a database result to the next row. Depending on your provider, you may need to
call this before reading the first row.
This call will return 0 if the Database_Result was able to move to the next row.
ID = 2514

Close(Database_Result result)
Name
Integer Close(Database_Result result)

Description
This call will close a database result. This is generally good practise as your data provider may
not allow more than one Database_Result to exist at one time.
This call will return 0 if successful.

ID = 2515

Get_result_column(Database_Result result,Integer column,Text &res)
Name
Integer Get_result_column(Database_Result result,Integer column,Text &res)

Description
This call will retrieve a text value from a Database_Result, at the current index as given by
column. The value will be stored in res.
This call will return 0 if successful.
ID = 2516

Get_result_column(Database_Result result,Integer column,Integer &res)
Name
Integer Get_result_column(Database_Result result,Integer column,Integer &res)

Description
This call will retrieve an Integer value from a Database_Result, at the current index as given by
column. The value will be stored in res.
This call will return 0 if successful.

ID = 2517

Get_result_column(Database_Result result,Integer column,Real &res)
Name
Integer Get_result_column(Database_Result result,Integer column,Real &res)

Description
This call will retrieve a Real value from a Database_Result, at the current index as given by
column. The value will be stored in res.
This call will return 0 if successful.
Page 1208 ODBC Macro Calls

Chapter
ID = 2518

Get_time_result_column(Database_Result result,Integer column,Integer &time)
Name
Integer Get_time_result_column(Database_Result result,Integer column,Integer &time)

Description
This call will retrieve a timestamp, as an Integer value, from a Database_Result, at the current
index as given by column. The value will be stored in res.

This call will return 0 if successful.
ID = 2519

Get_result_column(Database_Result result,Text column,Text &res)
Name
Integer Get_result_column(Database_Result result,Text column,Text &res)

Description
This call will retrieve a text value from a Database_Result, from the column named by the
argument column. The value will be stored in res.
This call will return 0 if successful.

ID = 2520

Get_result_column(Database_Result result,Database_Result result,Text column,
 Integer &res)
Name
Integer Get_result_column(Database_Result result,Database_Result result,Text column,Integer &res)

Description
This call will retrieve an Integer value from a Database_Result, from the column named by the
argument column. The value will be stored in res.

This call will return 0 if successful.
ID = 2521

Get_result_column(Database_Result result,Text column,Real &res)
Name
Integer Get_result_column(Database_Result result,Text column,Real &res)

Description
This call will retrieve a Real value from a Database_Result, from the column named by the
argument column. The value will be stored in res.

This call will return 0 if successful.

ID = 2522

 Get_time_result_column(Database_Result result,Text column,Integer &time)
Page 1209ODBC Macro Calls

12d Model Programming Language Manual
Name
Integer Get_time_result_column(Database_Result result,Text column,Integer &time)

Description
This call will retrieve a timestamp value, as an Integer, from a Database_Result, from the
column named by the argument column. The value will be stored in res.
This call will return 0 if successful.
ID = 2523

Return to 5.66 ODBC Macro Calls

5.66.4 Insert Query

An insert query is used to insert new data into a data provider. Typically, this will insert one row of
data into one table at a time.

Create_insert_query(Text table)
Name
Insert_Query Create_insert_query(Text table)

Description
This call creates and returns an insert query object. The insert will be applied against the value
supplied in table.
ID = 2536

Add_data(Insert_Query query,Text column_name,Integer value)
Name
Integer Add_data(Insert_Query query,Text column_name,Integer value)

Description
This call will add Integer data to be inserted to a created Insert_Query when it is executed. The
data will be inserted into the column named by the column_name argument.
This call returns 0 if successful.

ID = 2537

Add_data(Insert_Query query,Text column_name,Text value)
Name
Integer Add_data(Insert_Query query,Text column_name,Text value)

Description
This call will add Text data to be inserted to a created Insert_Query when it is executed. The
data will be inserted into the column named by the column_name argument.

This call returns 0 if successful.
ID = 2538
Page 1210 ODBC Macro Calls

Chapter
Add_data(Insert_Query query,Text column_name,Real value)
Name
Integer Add_data(Insert_Query query,Text column_name,Real value)

Description
This call will add Real data to be inserted to a created Insert_Query when it is executed. The
data will be inserted into the column named by the column_name argument.

This call returns 0 if successful.
ID = 2539

Add_time_data(Insert_Query query,Text column_name,Integer time)
Name
Integer Add_time_data(Insert_Query query,Text column_name,Integer time)

Description
This call will add timestamp data, stored as an Integer value, to be inserted to a created
Insert_Query when it is executed. The data will be inserted into the column named by the
column_name argument.
This call returns 0 if successful.

ID = 2540

Execute(Connection connection,Insert_Query query)
Name
Integer Execute(Connection connection,Insert_Query query)

Description
This call will execute a created Insert_Query against the data provider to insert some new data.

This call will return 0 if successful.
ID = 2507

Return to 5.66 ODBC Macro Calls

5.66.5 Update Query

An update query is used to update existing data in a table in a data provider. One or more rows
may be updated by using query conditions to constrain which rows the update should be applied
against.

Create_update_query(Text table)
Name
Update_Query Create_update_query(Text table)

Description
This call creates and returns an Update_Query. The update query will be applied against the
Page 1211ODBC Macro Calls

12d Model Programming Language Manual
table given by the table argument.
ID = 2541

Add_data(Update_Query query,Text column_name,Integer value)
Name
Integer Add_data(Update_Query query,Text column_name,Integer value)

Description
This call will add Integer data for a column update, when the Update_Query is executed. The
data will be updated for the column named by the column_name argument.

This call returns 0 if successful.
ID = 2542

Add_data(Update_Query query,Text column_name,Text value)
Name
Integer Add_data(Update_Query query,Text column_name,Text value)

Description
This call will add Text data for a column update, when the Update_Query is executed. The data
will be updated for the column named by the column_name argument.
This call returns 0 if successful.

ID = 2543

Add_data(Update_Query query,Text column_name,Real value)
Name
Integer Add_data(Update_Query query,Text column_name,Real value)

Description
This call will add Real data for a column update, when the Update_Query is executed. The data
will be updated for the column named by the column_name argument.

This call returns 0 if successful.
ID = 2544

Add_time_data(Update_Query query,Text column_name,Integer time)
Name
Integer Add_time_data(Update_Query query,Text column_name,Integer time)

Description
This call will add timestamp data, stored as an Integer value, for a column update, when the
Update_Query is executed. The data will be updated for the column named by the
column_name argument.
This call returns 0 if successful.
ID = 2545

Add_condition(Update_Query query,Query_Condition condition)
Name
Page 1212 ODBC Macro Calls

Chapter
Integer Add_condition(Update_Query query,Query_Condition condition)

Description
This call will add a created Query_Condition to an update query. Using a Query_Condition
enables the operation to be constrained to a number of rows, rather than applying to an entire
table.

This call will return 0 if successful.
ID = 2546

Execute(Connection connection,Update_Query query)
Name
Integer Execute(Connection connection,Update_Query query)

Description
This call will execute a created Update_Query against the data provider to update existing data.
This call will return 0 if successful.
ID = 2508

Return to 5.66 ODBC Macro Calls

5.66.6 Delete Query

A delete query will delete data from a table in a data provider. It should always be constrained
using a Query Condition, or you may delete all data from a table.

Create_delete_query(Text table)
Name
Delete_Query Create_delete_query(Text table)

Description
This call will create and return a Delete_Query. When it is executed, it will delete data from the
table named by the table argument.
ID = 2547

Add_condition(Delete_Query query,Query_Condition condition)
Name
Integer Add_condition(Delete_Query query,Query_Condition condition)

Description
This call will add a Query_Condition to a Delete_Query. Adding a Query_Condition will allow
you to constrain which rows of data are deleted from the table.
This call will return 0 if successful.
ID = 2548

Execute(Connection connection,Delete_Query query)
Name
Integer Execute(Connection connection,Delete_Query query)
Page 1213ODBC Macro Calls

12d Model Programming Language Manual
Description
This call will execute a created Delete_Query against the data provider to delete existing data.
This call will return 0 if successful.

ID = 2509

Return to 5.66 ODBC Macro Calls

5.66.7 Manual Query

Using a manual query gives you direct access to the underlying SQL used by most data
providers. If you are familiar with SQL, it may be faster for you to use this method. This also gives
you access to Parameters, for secure and sanitized inputs. See the section on Parameters for
more information.

 Create_manual_query(Text query_text)
Name
Manual_Query Create_manual_query(Text query_text)

Description
This call will create a new Manual_Query. The SQL for the query must be supplied in the
query_text argument.
ID = 2549

Get_parameters(Manual_Query query,Parameter_Collection parameters)
Name
Integer Get_parameters(Manual_Query query,Parameter_Collection parameters)

Description
This call will retrieve the set of Parameters that a Manual Query uses. Parameters are not
required but provide greater security when using user input. See the section on Parameters for
more details.

This call will return 0 if successful.
 ID = 2550

Execute(Connection connection,Manual_Query query)
Name
Integer Execute(Connection connection,Manual_Query query)

Description
This call will execute a created Manual_Query against the data provider to perform a custom
operation.
This call will return 0 if successful.
ID = 2510
Page 1214 ODBC Macro Calls

Chapter
Execute(Connection connection,Manual_Query query,Database_Result &result)
Name
Integer Execute(Connection connection,Manual_Query query,Database_Result &result)

Description
This call will execute a created Manual_Query against the data provider to perform a custom
operation. If the Manual Query returns results, they will be stored in the result argument.

This call will return 0 if successful.
ID = 2511

Return to 5.66 ODBC Macro Calls

5.66.8 Query Conditions

A query condition constrains the results of a select, update or delete query. They are generally
optimised and much more efficient that attempting to cull down a large result set on your own, as
the operation is performed by the data provider. For those familiar with SQL, a Query Condition
helps build up the 'WHERE' clause in an SQL statement.

One or more query conditions can be used to constrain a query.

The following Query Conditions are available:

s A value condition - Constrains by checking if a column value matches a constant, user defined
value

s Column match condition - Performs an 'explicit join'. If you are retrieving results from more than
one table, this can be used to determine which rows from each table are related to one another. Typ-
ically you would match id columns from each table.

s Value in list condition - Checks if a column value is inside a list of values

s Value in sub query - Checks if a column value is inside the result of another select query

s Manual condition - A manual condition, defined by SQL. This gives greater flexibility and pro-
vides access to the Parameter functions, for security and sanitization of inputs.

Value and Column match conditions allow various operators to be used.
These operators are defined below:

Match_Equal = 0
Match_Greater_Than = 1
Match_Less_Than = 2
Match_Greater_Than_Equal = 3
Match_Less_Than_Equal = 4
Match_Not_Equal = 5
Match_Like = 6
Match_Not_Like = 7

Create_value_condition(Text table_name,Text column_name,Integer operator,Text
value)
Name
Page 1215ODBC Macro Calls

12d Model Programming Language Manual
Query_Condition Create_value_condition(Text table_name,Text column_name,Integer operator,Text
value)

Description
This call creates and returns a Value Condition Query Condition for a given table, column,
operation and Text value. See the list of operators for available values of operator.

When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.
ID = 2555

 Create_value_condition(Text table_name,Text column_name,Integer operator,
 Integer value)
Name
Query_Condition Create_value_condition(Text table_name,Text column_name,Integer operator,Integer
value)

Description
This call creates and returns a Value Condition Query Condition for a given table, column,
operation and Integer value. See the list of operators for available values of operator.
When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.
ID = 2556

 Create_value_condition(Text table_name,Text column_name,Integer operator,
 Real value)
Name
Query_Condition Create_value_condition(Text table_name,Text column_name,Integer operator,Real
value)

Description
This call creates and returns a Value Condition Query Condition for a given table, column,
operation and Real value. See the list of operators for available values of operator.

When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.
ID = 2557

 Create_time_value_condition(Text table_name,Text column_name,Integer
operator,Integer value)
Name
Query_Condition Create_time_value_condition(Text table_name,Text column_name,Integer
operator,Integer value)

Description
This call creates and returns a Value Condition Query Condition for a given table, column,
operation and timestamp value, as defined by an Integer. See the list of operators for available
values of operator.
When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.
ID = 2558

Create_column_match_condition(Text left_table,Text left_column,Integer
operator,Text right_table,Text right_column)
Page 1216 ODBC Macro Calls

Chapter
Name
Query_Condition Create_column_match_condition(Text left_table,Text left_column,Integer operator,Text
right_table,Text right_column)

Description
This call will create and return a Column Match Query Condition to match two columns in two
tables against each other, using a supplied operator.
When executed, the data provider will check that the left_column in table left_table matches (as
appropriate for the given operator) against the right_column in table right_table.
ID = 2559

Create_value_in_sub_query_condition(Text table_name,Text column_name,
 Integer not_in,Select_Query sub_query)
Name
Query_Condition Create_value_in_sub_query_condition(Text table_name,Text column_name,Integer
not_in,Select_Query sub_query)

Description
This call will create and return a Value In Sub Query Query_Condition, to match the value of a
column against the results of another query.

When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the results of the Select Query, sub_query.
 ID = 2560

 Create_value_in_list_condition(Text table_name,Text column_name,Integer
 not_in,Dynamic_Integer values)
Name
Query_Condition Create_value_in_list_condition(Text table_name,Text column_name,Integer
not_in,Dynamic_Integer values)

Description
This call will create and return a Value In List Query_Condition, to see if the value of a column is
in a list of integers.
When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the list defined by values.

 ID = 2561

Create_value_in_list_condition(Text table_name,Text column_name,Integer
 not_in,Dynamic_Text values)
Name
Query_Condition Create_value_in_list_condition(Text table_name,Text column_name,Integer
not_in,Dynamic_Text values)

Description
This call will create and return a Value In List Query_Condition, to see if the value of a column is
in a list of Text values.

When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the list defined by values.
 ID = 2562
Page 1217ODBC Macro Calls

12d Model Programming Language Manual
Create_value_in_list_condition(Text table_name,Text column_name,Integer
 not_in,Dynamic_Real values)
Name
Query_Condition Create_value_in_list_condition(Text table_name,Text column_name,Integer
not_in,Dynamic_Real values)

Description
This call will create and return a Value In List Query_Condition, to see if the value of a column is
in a list of Real values.
When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the list defined by values.
ID = 2563

Create_manual_condition(Text sql)
Name
Manual_Condition Create_manual_condition(Text sql)

Description
This call will create a Manual Query_Condition. The operation of the manual condition is totally
defined by the SQL fragment defined in argument sql.
 ID = 2564

 Add_table(Manual_Condition manual,Text table)
Name
Integer Add_table(Manual_Condition manual,Text table)

Description
This call will add a table to be used by a Manual Condition. This is required when using
Parameters.

This call will return 0 if successful.
 ID = 2565

Get_parameters(Manual_Condition manual,Parameter_Collection ¶m)
Name
Integer Get_parameters(Manual_Condition manual,Parameter_Collection ¶m)

Description
This call will add a table to be used by a Manual Condition. This is required when using
Parameters. See the section on Parameters for more information.

This call will return 0 if successful.
ID = 2566

Return to 5.66 ODBC Macro Calls

5.66.9 Transactions
Page 1218 ODBC Macro Calls

Chapter
A transaction is an atomic operation. While a transaction is running against a connection, a
series of queries can be made and executed. Using a transaction, the final result (updates,
deletes, inserts) will not actually be applied until the transaction is committed. This gives the user
the opportunity to rollback the changes a transaction has made if they are no longer required.

To use a transaction, create it using Create_Transaction.
You must then call Begin_Transaction.
Create and execute all your queries.
Finally, choose to either commit it (Commit_transaction) or roll it back (Rollback_transaction)

 Create_transaction(Connection connection)
Name
Transaction Create_transaction(Connection connection)

Description
This call creates and returns a transaction object for a given Connection.

 ID = 2524

Begin_transaction(Transaction transaction)
Name
Integer Begin_transaction(Transaction transaction)

Description
This call begins a new transaction. It will return 0 if successful.
 ID = 2525

Commit_transaction(Transaction transaction)
Name
Integer Commit_transaction(Transaction transaction)

Description
This call will commit the operations performed inside a transaction to the data provider. The call
will return 0 if successful.
ID = 2526

 Rollback_transaction(Transaction transaction)
Name
Integer Rollback_transaction(Transaction transaction)

Description
This call will cancel or rollback the operations performed inside a transaction from the data
provider. The call will return 0 if successful.

ID = 2527

Return to 5.66 ODBC Macro Calls

5.66.10 Parameters
Page 1219ODBC Macro Calls

12d Model Programming Language Manual
Parameters can be used for extra security. When you are working with user input to your queries,
you may wish to consider using parameters to 'sanitize' them. If you are working with untrusted
users, users may be able to use the SQL to perform malicious queries against your data
provider.

To prevent this from happening, it is generally recommended that you use Parameters.
When you are using parameters, instead of specifying column names in your Manual Query or
Manual Query Condition, simply use a ? instead.
You should then add your parameters for those columns in the same order.

To start, you must retrieve the Parameter_Collection using the appropriate Get_Parameters
function for either a Manual_Query or Manual_Condition.

Add_parameter(Parameter_Collection parameters,Integer value)
Name
Integer Add_parameter(Parameter_Collection parameters,Integer value)

Description
This call will add a new Integer parameter to a Parameter_Collection.

This will return 0 if successful.
ID = 2551

Add_parameter(Parameter_Collection parameters,Text value)
Name
Integer Add_parameter(Parameter_Collection parameters,Text value)

Description
This call will add a new Text parameter to a Parameter_Collection.
This will return 0 if successful.

ID = 2552

Add_parameter(Parameter_Collection parameters,Real value)
Name
Integer Add_parameter(Parameter_Collection parameters,Real value)

Description
This call will add a new Real parameter to a Parameter_Collection.

This will return 0 if successful.
ID = 2553

Add_time_parameter(Parameter_Collection parameters,Integer value)
Name
Integer Add_time_parameter(Parameter_Collection parameters,Integer value)

Description
Page 1220 ODBC Macro Calls

Chapter
This call will add a new timestamp parameter, from an Integer value, to a
Parameter_Collection.
This will return 0 if successful.
ID = 2554
Page 1221ODBC Macro Calls

12d Model Programming Language Manual
5.67 12D Synergy Intergation Macro Calls
The 12D Synergy intergation macro calls allow a macro to interface with 12D Synergy data.

Before running most other Synergy intergation calls, a connection must be made to the 12D
Synergy server.

Synergy_connect(Text server, Text &error)
Name
Integer Synergy_connect(Text server, Text &error)

Description
Connect 12D Model to the 12D Synergy server of given name server.
The Text error would be set to the corresponding message if the connection failed.

A function return value of zero indicates the connection was successful.
ID = 3102

Synergy_connect(Text server, Text user, Text password, Text &error)
Name
Integer Synergy_connect(Text server, Text user, Text password, Text &error)

Description
Connect 12D Model to the 12D Synergy server of given name server; and given credential user
(name) and password.
The Text error would be set to the corresponding message if the connection failed.

A function return value of zero indicates the connection was successful.
ID = 3103

Synergy_check_out(Text job,Text path_to_file,Integer perform_download,Text
&error)
Name
Integer Synergy_check_out(Text job,Text path_to_file,Integer perform_download,Text &error)

Description
Check out Synergy file with given job; and path_to_file. If the Integer parameter
perform_download is 1 then 12D Synergy will download the file if it does not exist in the local
folder.
The Text error would be set to the corresponding message if the checkout operation failed.

A function return value of zero indicates the checkout operation was successful.
ID = 3110

Synergy_cancel_checkout(Text job,Text path_to_file,Text &error)
Name
Integer Synergy_cancel_checkout(Text job,Text path_to_file,Text &error)
Page 1222 12D Synergy Intergation Macro Calls

Chapter
Description
Cancel the checkout Synergy file with given job; and path_to_file.
The Text error would be set to the corresponding message if the cancel checkout operation
failed.

A function return value of zero indicates the cancel checkout operation was successful.
ID = 3106

Synergy_get(Text job,Text path_to_file,Text &error)
Name
Integer Synergy_get(Text job,Text path_to_file,Text &error)

Description
Get the latest version of Synergy file with given job; and path_to_file.
The Text error would be set to the corresponding message if the get operation failed.

A function return value of zero indicates the get operation was successful.
ID = 3118

Synergy_get(Text job,Text path_to_file,Integer version,Text &error)
Name
Integer Synergy_get(Text job,Text path_to_file,Integer version,Text &error)

Description
Get a given version revision number of Synergy file with given job; and path_to_file.
The Text error would be set to the corresponding message if the get operation failed.
A function return value of zero indicates the get operation was successful.

ID = 3119

Synergy_build_attribute_string(Text attrib_name,Text attrib_value,Text
&serialized_string,Text &error)
Name
Integer Synergy_build_attribute_string(Text attrib_name,Text attrib_value,Text &serialized_string,Text
&error)

Description
For many Synergy intergation macro call, the parameters Text attribute or Dynamic_Text
attribute require a special (XML like) syntax called serialized_string.
This is a helper call to form the serialized attribute string from given attrib_name and
attrib_value.
The Text error would be set to the corresponding message if the call failed.

A function return value of zero indicates the call was successful.
ID = 3787

Synergy_check_in_entity(Text job,Text path_to_entity,Text
description,Dynamic_Text &file_attribs,Dynamic_Text &change_attribs,Text
Page 122312D Synergy Intergation Macro Calls

12d Model Programming Language Manual
&error)
Name
Integer Synergy_check_in_entity(Text job,Text path_to_entity,Text description,Dynamic_Text
&file_attribs,Dynamic_Text &change_attribs,Text &error)

Description
Check in Synergy entity with given: job; path_to_entity; description; file attributes file_attribs;
and change attributes change_attribs.

The Text error would be set to the corresponding message if the call failed.
A function return value of zero indicates the call was successful.
ID = 3799

Synergy_get_workspace_path(Text job,Text entity_path,Text &path,Text &error)
Name
Integer Synergy_get_workspace_path(Text job,Text entity_path,Text &path,Text &error)

Description
Not yet working, waiting for respond from Synergy team.
The Text error would be set to the corresponding message if the get operation failed.

A function return value of zero indicates the get operation was successful.
ID = 3800
Page 1224 12D Synergy Intergation Macro Calls

Chapter 6 Examples
6 Examples
When using these code examples check the ends of lines for word wrapping.

The file set_ups.h contains constants and values that are used in, or returned by, 12dPL supplied
functions. Before any of the constants or values in set_ups.h can be used, set_ups.h needs to be
included in a 12dPL program by using the command #include "set_ups.h" at the top of the 12dPL
program. For an example see 6.16 Example 11.

For more information on set_ups.h, see A Appendix - Set_ups.h File

Example 1
A macro to select a string and write out how many vertices there are in the string.
See 6.1 Example 1 example using macro console, and goto’s

See 6.2 Example 1a example using macro console, without goto’s
See 6.3 Example 1b example using a panel

Example 2
Macro to select a string and ask if its ok to delete it.
This macro uses the Macro Console.

See 6.4 Example 2 example with goto’s
See 6.5 Example 2a example without goto’s

Example 3
Write four lines of data out to a file.
This macro uses the Macro Console.

See 6.6 Example 3

Example 4
Read a file in and calculate the number of lines and words.
This macro uses the Macro Console.
See 6.7 Example 4

Example 5
Write four lines of data out to a file and then read it back in again.

This macro uses the Macro Console.
See 6.8 Example 5 close and reopen the file

Example 5a
Create a Unicode and an ANSI (Ascii) file.

This macro uses the Macro Console.
Page 1225

12d Model Programming Language Manual
See 6.9 Example 5a ANSI and Unicode files

Example 5b
Create all the Unicode/ANSI file types.
This example has a User Defined Function.
This macro uses the Macro Console.

See 6.10 Example 5b all the ANSI/Unicode file types

Example 6
1. select a pad
2. ask for cut and fill interface slopes
3. ask for a separation between the interface calcs

4. ask if interface is to left or right of pad
5. ask for a tin to interface against

Then
s calculate the interface string
s display the interface on all the views the pad is on
s ·check if the interface is ok to continue processing
s check for intersections in the interface and if so, ask for a good point so loop removal can be done.
s display the cleaned interface
s calculate the tin for the pad and the cleaned interface
s calculate and display the volumes between the original tin and the new tin

The macro includes a called function as well as main.
This macro uses the Macro Console.
See 6.11 Example 6

Example 7
Macro to label each point of a user selected string with the string id and the string point number.

The labels are created as a 4d string.
This macro uses the Macro Console.
See 6.12 Example 7

Example 8
A macro that exercises many of the Text functions

This macro uses the Macro Console.
See 6.13 Example 8.

Example 9
A macro to label the spiral and curve lengths of an Alignment string
This macro uses the Macro Console.

See 6.14 Example 9
Page 1226

Chapter 6 Examples
Example 10
Macro to take the (x,y) position for each point on a string and then produce a text string of the z-
values at each point on the tin

This macro uses the Macro Console.
See 6.15 Example 10

Example 11
Macro to delete a selected empty model or all empty models in a project.
This macro uses a 12d Model Panel.

See 6.16 Example 11

Example 12
Macro to change names of selected strings
See 6.17 Example 12

Example 13
Macro to use the x, y, z of a text string and create a new 3d point string at the same point.

This macro uses a 12d Model Panel.
See 6.18 Example 13

Example 14
This is an example of the 12dPL functions for a dialogue that contains most of the common
widget controls. The text for the widgets and the on/off switch are contained in the function call
go_panel.
This macro uses a 12d Model Panel.

See 6.19 Example 14

Example 15
This is an example of how to create a Macro_Function.
This macro uses a 12d Model Panel.
See 6.20 Example 15
Page 1227

12d Model Programming Language Manual
6.1 Example 1
//--
// Programmer Lee Gregory
// Date 26/5/94
// Description of Macro
// Macro to select a string and write outs out to the console
// how many vertices there are in the string. This is then repeated.
// The macro terminates if cancel is selected from pick ops menu
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in
// any order in the panel.
//--
void main (){
 Element string;
 Integer ret,no_verts;
 Text text;

 Prompt("Select a string"); // write message to prompt message area of console

ask:
 ret = Select_string("Select a string",string); // message goes to 12d Model Output Window
 if(ret == -1) {
 Prompt("Macro finished - cancel selected");
 return;
 } else if (ret == 1) {
 if(Get_points(string,no_verts) !=0) goto ask;
 text = To_text(no_verts);
 text = "There are " + text + " vertices in the string. Select another string";
 Prompt(text);
 goto ask;
 } else {
 Prompt("Invalid pick. Select again");
 goto ask;
 }
}

Page 1228 Example 1

Chapter 6 Examples
6.2 Example 1a
//---
// Programmer Lee Gregory
// Date 24/8/13
// Description of Macro
// Macro to select a string and write outs out to the console
// how many vertices there are in the string. This is then repeated.
// The macro terminates if cancel is selected from pick ops menu.
// This macro is the same as Example 1 but does not use goto.
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in any order in the panel.
//--
void main(){
 Element string;
 Integer ret=0,no_verts;
 Text text;

 Prompt("Select a string");// write message to console

 while (ret != -1) {
 ret = Select_string("Select a string",string); //message to Output Window
 if(ret == -1) Prompt("Macro finished - cancel selected");
 else if (ret == 1) {
 if(Get_points(string,no_verts) !=0) continue;
 text = To_text(no_verts);
 text = "There are " + text + " vertices in the string. Select another string";
 Prompt(text);
 } else Prompt("Invalid pick. Select again");
 }
 return;
}

Page 1229Example 1a

12d Model Programming Language Manual
6.3 Example 1b
//---
// Programmer Lee Gregory
// Date 22/9/13
// Description of Macro
// Macro using a panel to select a string and when a string is
// selected, the number of vertices in the string is written to the message box.
// The macro terminates when the Finish button, or X is selected
//---
#include "set_ups.h"

void main() {
 Panel panel = Create_panel("Number of Vertices Report");
 Message_Box new_msg_box = Create_message_box("");
 New_Select_Box new_select_box = Create_new_select_box("Select string",
 "Select a string",SELECT_STRING,new_msg_box);
 Button finish_button = Create_finish_button("Finish","finish_reply");
 Vertical_Group vgroup = Create_vertical_group(BALANCE_WIDGETS_OVER_HEIGHT);

 Append(new_select_box,vgroup);
 Append(new_msg_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(finish_button,hgroup);
 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;
 while(doit) {
 Integer id; Text cmd,msg;
 Integer ret = Wait_on_widgets(id,cmd,msg);
 switch(id) {
 case Get_id(panel) : {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button) : {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(new_select_box) : {
 Set_data(new_msg_box,"");
Page 1230 Example 1b

Chapter 6 Examples
 if(cmd == "accept select") {
 Element string; Integer ierr,no_verts;
 ierr = Validate(new_select_box,string);
 if(ierr != TRUE) {
 Set_data(new_msg_box,"Invalid pick.");
 } else {
 if(Get_points(string,no_verts)==0) {
 Set_data(new_msg_box,"There are " + To_text(no_verts) + " vertices in the string");
 } else {
 Set_data(new_msg_box,"error in string");
 }
 }
 }
 break;
 }
 }
 }
}

Panel for Exercise 1b
Page 1231Example 1b

12d Model Programming Language Manual
6.4 Example 2
// --
// Programmer Lee Gregory
// Date 26/5/94
// Description of Macro
// Macro to select a string and ask if it is ok to delete it.
// The macro loops round until cancel is selected from the pick ops menu.
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in
// any order in the panel.
// --
void main (){
 Element string;
 Integer ret;
 Text text;

 Prompt("Select a string to delete"); // write message to prompt message area of console
 ask:
 ret = Select_string("Select a string to delete",string);
 if(ret == -1) {
 Prompt("Macro finished - cancel selected");
 return;
 } else if (ret == 1) {
 Prompt("ok to delete the string y or n",text);
 if(text == "y") {
 Element_delete(string);
 Prompt("Sting deleted. Pick another string");
 } else {
 Prompt("No string deleted. Pick another string");
 }
 } else {
 Prompt("Invalid pick. Select again");
 }
 goto ask;
}

Page 1232 Example 2

Chapter 6 Examples
6.5 Example 2a
//---
// Programmer Lee Gregory
// Date 24/8/13
// Description of Macro
// Macro to select a string and ask if it is ok to delete it.
// The macro loops round until cancel is selected from the pick ops menu.
// This macro is the same as Example 2 but does not use goto.
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in any order in the panel.
//--
void main(){
 Element string;
 Integer ret=0;
 Text text;

 Prompt("Select a string to delete");// write message to console

 while (ret != -1) {
 ret = Select_string("Select a string to delete",string); //message to Output Window
 if(ret == -1) Prompt("Macro finished - cancel selected");
 else if (ret == 1) {
 Prompt("ok to delete the string y or n",text);
 if(text == "y") {
 Element_delete(string);
 Prompt("Sting deleted. Pick another string");
 } else {
 Prompt("No string deleted. Pick another string");
 }
 } else Prompt("Invalid pick. Select again");
 }
 return;
}

Page 1233Example 2a

12d Model Programming Language Manual
6.6 Example 3
//---
// Programmer Alan Gray
// Date 27/5/94
// Description of Macro
// Write four lines of data out to a file
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in
// any order in the panel.
//---
void main()
{
 File file;
 File_open("report.rpt","w+"," ",file); // ANSI file - also do UNICODE
 File_write_line(file,"1st line of file");
 File_write_line(file,"2nd line of file");
 File_write_line(file,"3rd line of file");
 File_write_line(file,"4th line of file");
 File_flush(file);
 File_close(file);
}

Page 1234 Example 3

Chapter 6 Examples
6.7 Example 4
//---
// Programmer Alan Gray and Lee Gregory
// Date 3/9/13
// Description of Macro
// Read a file in and calculate the number of lines and words.
// Write to the console the number of lines and words,
// and also the individual words.
// Note - This macro uses a Console.
//---
void main()
{
 Text file_name; File file;

 while (1) {
 File_prompt("Enter the file name","*.rpt",file_name);
 if(!File_exists(file_name)) continue;
 File_open(file_name,"r","ccs=UNICODE",file);
 break;
 }
 Integer eof,count = 0 wordc = 0;
 Text line;

 while(1) {
 if(File_read_line(file,line) != 0) break;
 ++count;

// break line into words
 Dynamic_Text words;
 Integer no_words = From_text(line,words);
 wordc = wordc + no_words; // this could also be writen as wordc += no_words;
 Get_number_of_items(words,no_words);
 for(Integer i=1;i<=no_words;i++) {
 Text t;
 Get_item(words,i,t);
 Print(t); Print();
 }
 }
 File_close(file);

// display the number of lines and words read
 Text out;
 out = To_text(count) + " lines & " + To_text(wordc) + "words read";
 Prompt(out); Print(out);
 Print("\nMacro finished\n"); // write to the Output Window
}

Page 1235Example 4

12d Model Programming Language Manual
6.8 Example 5
//---
// Programmer Alan Gray and Lee Gregory
// Date 2/9/13
// Description of Macro
// Write four lines of data out to a file and close the file.
// Then open the file and then read it back in again.
// Report the number of lines read in.
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in
// any order in the panel.
//---
void main()
{
 File file;
 File_open("report.rpt","w+","",file);
 File_write_line(file,"1st line of file");
 File_write_line(file,"2nd line of file");
 File_write_line(file,"3rd line of file");
 File_write_line(file,"4th line of file");
 File_flush(file);

// Because files may be Unicode with a BOM then
// it is best to close the file and reopen it again for reading.
// File_rewind, w+, r+ can destroy the BOM.

 File_close(file);
 File_open("report.rpt","r","",file);
 Integer count = 0;
 while(1) {
 Text line;
 if(File_read_line(file,line) != 0) break;
 ++count;
 }
 File_close(file);
// display # lines read
 Prompt(To_text(count) + " lines read");
}

Page 1236 Example 5

Chapter 6 Examples
6.9 Example 5a
//---
// Programmer Lee Gregory
// Date 2/9/13
// Description of Macro
// Delete and open a new file as a UNICODE file
// Get the Start position and write it out to the output .
// Write "one line" into the file.
// Repeat this for a ANSI file.
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in
// any order in the panel.
//---
void main()
{
 File file;
 Text file_name, file_type;
 Integer file_start;
 Clear_console();

 file_name = "test_unicode.rpt";
 file_type = "ccs=UNICODE";
 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 Print("File <" + file_name + "> Start pos = " + To_text(file_start) + "\n");
 File_close(file);

 file_name = "test_ansi.rpt";
 file_type = "";
 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 Print("File <" + file_name + "> Start pos = " + To_text(file_start) + "\n");
 File_close(file);

 Print("\nMacro finished\n"); // write to the Output Window
}

Page 1237Example 5a

12d Model Programming Language Manual
6.10 Example 5b
//---
// Programmer Lee Gregory
// Date 2/9/13
// Description of Macro
// This is an example of using a User Defined Function.
// The function create_new_file hsa the Text arugments file_name
// and file type nad creates a new file called file_name
// and with type file_type. It also writes information
// to the Output Window.
//
// The main function calls this function numerous times
// to create filees of type Unicodde, UTF-8, UTF-16LE and ANSI.

// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in
// any order in the panel.
//---
Integer create_new_file(Text file_name,Text file_type)
{
 File file;
 Integer file_start,file_end;

 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 File_tell(file,file_end); // record after writing a line
 Print("File <" + file_name + "> Start pos = " + To_text(file_start) + " End pos = " +
 To_text(file_end) + "\n");
 File_close(file);
 return(0);
}
void main()
{
 Clear_console();
 create_new_file("test_unicode.4dm","ccs=UNICODE");
 create_new_file("test_utf_8.4dm","ccs=UTF-8");
 create_new_file("test_utf_16.4dm","ccs=UTF-16LE");
 create_new_file("test_ansi.4dm","");
 Print("\nMacro finished\n"); // write to the Output Window
}

Page 1238 Example 5b

Chapter 6 Examples
6.11 Example 6
//--
// Programmer Lee Gregory
// Date 26/5/94
//
// Description of Macro
// (a) select a pad
// (b) ask for cut and fill interface slopes
// (c) ask for a separation between the interface calcs
// (d) ask if interface is to left or right of pad
// (d) ask for a tin to interface against
// Then
// (a) calculate the interface string
// (b) display the interface on all the views the pad is on
// (c) check if the interface is ok to continue processing
// (d) check for intersections in the interface and if so, ask
// for a good point so loop removal can be done.
// (e) display the cleaned interface
// (f) calculate the tin for the pad and the cleaned interface
// (g) calculate and display the volumes between the original tin
// and the new tin
// The macro includes some user defined function as well as main.
//
// Note - This macro uses a Console.
// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in
// any order in the panel.
//
// Modifications
// Programmer Lee Gregory
// Date 15/2/2013
//
// Description of Modifications
// Added more error checks, and routines to
// (a) get all the views that a model is on, then delete the model
// and refresh that list of views
// (b) Example of two overloaded function called redraw_views
// redraw_views(Model model) - redraw all views the model is on
// redraw_views(Dynamic_Text dtviews) - redraw all view in in list
//--

// Function to add new_model to all the non-section views that
// old_model is on

void add_to_non_section_views(Model new_model,Model old_model)
{
 Dynamic_Text dtviews;
 Integer no_views;

// get all the views that old_model is on
Page 1239Example 6

12d Model Programming Language Manual
 Model_get_views(old_model,dtviews);

// add new_model to all the views

 Get_number_of_items(dtviews,no_views);
 View view;
 Text view_name,type;
 if(no_views <= 0) return;
 for (Integer i=1;i <= no_views;i++) {
 Get_item(dtviews,i,view_name);
 view = Get_view(view_name);
 Get_type(view,type);
 if(type == "Section") continue;
 View_add_model(view,new_model);
 }
 return;
}

// Function to redraw all the non section views that
// old_model is on

void redraw_views(Model old_model)
{
 Dynamic_Text dtviews;
 Integer no_views;

// get all the views that old_model is on
 Model_get_views(old_model,dtviews);

// redraw all the plan views

 Get_number_of_items(dtviews,no_views);
 View view;
 Text view_name,type;
 if(no_views <= 0) return;

 for (Integer i=1;i<=no_views;i++) {
 Get_item(dtviews,i,view_name);
 view = Get_view(view_name);
 // Get_type(view,type);
 // if(type == "Section") continue;
 View_redraw(view);
 }
 return;
}

// Function to redraw all the non section views
// named in the Dynamic Text dviews

void redraw_views(Dynamic_Text dtviews)
{
 Integer no_views;

// redraw all the non section views
Page 1240 Example 6

Chapter 6 Examples
 Get_number_of_items(dtviews,no_views);
 View view;
 Text view_name,type;
 if(no_views <= 0) return;

 for (Integer i=1;i <= no_views;i++) {
 Get_item(dtviews,i,view_name);
 view = Get_view(view_name);
// Get_type(view,type);
// if(type == "Section") continue;
 View_redraw(view);
 }
 return;
}

// Function that if model model_name exists, get all the views that
// model_name is on, delete model_name and then redraw all the
// views model_name was on.

void delete_model_redraw_views(Text model_name)
{
 Dynamic_Text dtviews;
 Model model;

// if model model_name exists, get all the views that model_name is on
// then delete model_name and redraw all the views that model_name was on.

 if(Model_exists(model_name)) {
 model = Get_model(model_name);
 Model_get_views(model,dtviews);
 Model_delete(model);
 redraw_views(dtviews); // redraw all the views that model_name was on
 }

 return;
}

// Main program to calculate the interface for a pad
// and then do volumes on it

void main ()
{
 Element pad,int_string,clean_string,sgood;
 Point pt;
 Integer ret,side,error,closed;
 Text text,tside,ok;
 Real cut,fill,sep;

 Text combined_model_name = "pad combined";
 Text combined_tin_name = "pad combined";
 Text combined_tin_model_name = "tin pad combined";
 Model combined_model,combined_tin__model,pad_model;
 Tin ground_tin,combined_tin;
Page 1241Example 6

12d Model Programming Language Manual
 Dynamic_Text dtviews;

clean_up:
// Delete the tin combined_tin_name

 Tin_delete(Get_tin(combined_tin_name));

// delete models called combined_model_name and combined_tin_model_name
// and redraw all non-section views they were on.

 delete_model_redraw_views(combined_model_name);
 delete_model_redraw_views(combined_tin_model_name);

// start the option proper

 Prompt("Select a pad"); // write message to prompt message area of console

ask:
 ret = Select_string("Select a pad",pad);
 if(ret == -1) {
 Prompt("Macro finished - cancel selected");
 return;
 } else if (ret != 1) {
 Prompt("bad pick, try selecting a string again");
 goto ask;
 } else { // case of valid pick
// check if pad is closed
 error = String_closed(pad,closed);
 if(closed !=1) {
 Prompt("Pad not a closed string. Select another string");
 goto ask;
 }
 }

// getting here means we have selected a pad

// get cut and fill slopes, side to interface
// and separation between sections

 Integer ierr;

cut:
 ierr = Prompt("Cut slope 1:",cut);
 if(ierr != 0) goto cut;

fill:
 ierr = Prompt("Fill slope 1:",fill);
 if(ierr != 0) goto fill;

sep:
 ierr = Prompt("Separation",sep);
 if(ierr != 0) goto sep;
Page 1242 Example 6

Chapter 6 Examples
lr:
 ierr = Prompt("Left or Right (l or r)",tside);
 if(ierr != 0) goto lr;

 if((tside == "l")||(tside == "L")){
 side = -1;
 } else if((tside == "r")|| (tside == "R")) {
 side = 1;
 } else {
 Prompt("incorrect answer. Try again");
 goto lr;
 }

tin:
 Tin_prompt("Tin name",1,text);
 if(text == "") return;

 if(!Tin_exists(text)) goto tin;
 ground_tin = Get_tin(text);

// calculate the interface

 Interface(ground_tin,pad,cut,fill,sep,1000.0,side,int_string);

// Draw the interface to see if l or r was ok
// Get the model for the selected pad string,
// add the interface string onto the same views
// and check that its ok to continue

 combined_model = Get_model_create(combined_model_name); // create the model called
 // combined_model_name and add int_string

 Set_model(int_string,combined_model);
 Get_model(pad,pad_model);
 add_to_non_section_views(combined_model,pad_model);
 redraw_views(pad_model); // redraw the non section views pad_model is on

 Prompt("OK to continue (y or n)",ok);
 if(ok == "n") {
 Element_delete(int_string);
 goto clean_up; // need to start again
 }

// check if the interface needs cleaning

 Integer no_self;
 String_self_intersects(int_string,no_self);
 if(no_self < 1) {
 clean_string = int_string;
 goto cleaned;
 }

// clean the interface string
Page 1243Example 6

12d Model Programming Language Manual
 Real x,y,z,ch,ht;

good:
 Prompt("Pick a good point"); // write message to prompt message area of console
 ret = Select_string("Pick a good point",sgood,x,y,z,ch,ht);
 Set_x(pt,x);
 Set_y(pt,y);
 Set_z(pt,z);
 Loop_clean(int_string,pt,clean_string);
 String_self_intersects(clean_string,no_self);

 if(no_self < 1) goto cleaned;

// still not a clean interface

 Element_delete(clean_string);
 goto good;

// add the interface string to a new model which is added to the
// same non-section views that the model containing the string was on

cleaned:
 Element duplicate_pad;
 Element_duplicate(pad,duplicate_pad);

 Set_model(duplicate_pad,combined_model); // add duplicate of pad string to combined_model
 Set_model(clean_string,combined_model); // add cleaned interface string to combined model
 Calc_extent(combined_model);

 add_to_non_section_views(combined_model,pad_model); // add combined model to all
 // non sections views that pad_model is on

// triangulate the combined model - pad and interface strings

 Triangulate(combined_model,combined_tin_name,1,1,1,combined_tin);

 Model combined_tin_model = Get_model_create(combined_tin_model_name); // create model
 // called combined_tin_model
 Set_model(combined_tin,combined_tin_model); // add combined_tin to model
 // combined_tin_model
 Calc_extent(combined_tin_model);

// add combined_tin_model to all non section views that pad_model is on

 add_to_non_section_views(combined_tin_model,pad_model);
 //
// do volumes between the ground tin and the combined_tin with interface string as polygon

 Real cut_vol,fill_vol,bal_vol;
 Volume_exact(ground_tin,combined_tin,clean_string,cut_vol,fill_vol,bal_vol);

// display the volumes
Page 1244 Example 6

Chapter 6 Examples
 Text ret_text;
 Text out_text,cut_text,fill_text,bal_text;
 cut_text = To_text(cut_vol,3);
 fill_text = To_text(fill_vol,3);
 bal_text = To_text(bal_vol,3);
 out_text = "cut " + cut_text + " fill " + fill_text + " bal " + bal_text + " <enter> to exit";
 Prompt(out_text,ret_text);

 return;
}

Page 1245Example 6

12d Model Programming Language Manual
6.12 Example 7
//--
// Programmer Andre Mazzone
// Date 3rd June 1994

// Description of Macro
// Macro to label each point of a user selected string with
// the string id and the string point number.

// The labels are created as a 4d string.
// Note - This macro uses a Console.
// There are very few Console macros since most people

// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in

// any order in the panel.
//--
void Gen_get(Element string,Real& x,Real& y,Real& z,Integer i)

// a function that extracts the x, y, and z for the ith point in
// any string (this routine reused from drape line

// point sexample)
// in: string,i
// out: x,y,z

{
 Text type;
 Element result;

 // get the type
 Get_type(string, type);
 if(type == "2d") {

 // 2d strings have only one z value
 // (this is not needed for this example
 // and is only here for completeness)

 Get_2d_data(string, i, x, y);
 Get_2d_data(string, z);
 } else if(type == "3d") {

 // 3d strings have all the information
 Get_3d_data(string, i, x, y, z);
 } else if(type == "4d") {

 // 4d strings have too much information
 // so any text is thrown away
 Text tmp;

 Get_4d_data(string, i, x, y, z, tmp);
Page 1246 Example 7

Chapter 6 Examples
 } else if(type == "Interface") {
 // interface strings have too much information
 // so the flags are thrown away

 Integer tmp;
 Get_interface_data(string, i, x, y, z, tmp);
 }

}
Element create_label_string(Element string)
// create a 4d string with labels for string id and point num

// in: string
// out: return value

{
 Integer npts, i, id;
 Real x[200], y[200], z[200];

 Text t[200], buf;
 Element str4d;
 // get number of points

 Get_points(string, npts);
 // get the id
 Get_id(string, id);

 // convert id to text
 buf = To_text (id) + "-";
 // loop through all points

 for (i = 1; i <= npts; i++) {
 // get x, y, z data
 Gen_get(string, x[i], y[i], z[i], i);

 // create text message with id-pt no
 t [i] = buf + To_text (i);
 }

 // create the string and return it
 return Create_4d(x, y, z, t, npts);
}

void main ()
// Asks for a model to use plus a string to be picked.
// The program then creates a label string and adds

// it to the model.
{
 Integer ret;

 Element poly;
 // get the model to use

 Text model_name;
Page 1247Example 7

12d Model Programming Language Manual
 ret = Prompt ("model to store labels", model_name);
 while (ret != 0) {
 // loop until there are no errors in input

 Text x;
 Prompt ("error in input, press return", x);
 ret = Prompt ("model to store labels", model_name);

 }
 // get a handle to a new or existing model
 Model model = Get_model_create (model_name);

 // get the polyline from user
 Text select_msg = "Id_string: string to label";
 Prompt ("Select a polygon from a view");

 ret = Select_string (select_msg, poly);
 // loop until success or cancel
 Integer done = 0;

 while ((ret != -1) && (ret !=1) && (!done)) {
 if (ret == 0) {
 // this means the select failed, so try again

 Prompt ("select failed, please try again");
 Prompt ("Select a polygon from a view");

 ret = Select_string (select_msg, poly);
 } else if (!Element_exists (poly)) {
 // this means that there were no selections, so try again

 Prompt ("no polygon selected, please try again");
 ret = Select_string (select_msg, poly);
 }

 }
 // if user chooses cancel from the select box then end
 if (ret == -1) {

 Prompt ("action cancelled");
 return;
 }

 // create string
 Element labels = create_label_string(poly);
 // add to model

 Set_model (labels, model);
 // finished processing
 Prompt("Finished labelling");

}

Page 1248 Example 7

Chapter 6 Examples
6.13 Example 8
//---
// Programmer Alan Gray
// Date 14/7/94

// Description of Macro
// A macro which exercises many of the Text functions
//---

void main()
{

 Text t1 = " A very very long string with lots of simple words";
 Integer l1 = Text_length(t1);
 Print("<"); Print(t1); Print(">\n");

 Text t2 = Get_subtext(t1,1,10);
 Integer l2 = Text_length(t2);
 Print("<"); Print(t2); Print(">\n");

 Text t3 = Text_justify(t1);
 Integer l3 = Text_length(t3);
 Print("<"); Print(t3); Print(">\n");

 Text t4 = Text_upper(t1);
 Integer l4 = Text_length(t4);
 Print("<"); Print(t4); Print(">\n");

 Text t5 = Text_lower(t1);
 Integer l5 = Text_length(t5);
 Print("<"); Print(t5); Print(">\n");

 Integer p = Find_text(t1,"words");
 Print("p=<"); Print(p); Print(">\n");
 Text t6 = t1; Set_subtext(t6,p,"mindless words");

 Integer l6 = Text_length(t6);
 Print("<"); Print(t6); Print(">\n");
 Text t7 = t1; Set_subtext(t7,10,"[mindless words]");

 Integer l7 = Text_length(t7);
 Print("<"); Print(t7); Print(">\n");
 Text t8 = t1; Insert_text(t8,p,"mindless ");

 Integer l8 = Text_length(t8);
 Print("<"); Print(t8); Print(">\n");
// formatting

 Integer l = 1234567;
 Real r = 987654.321;

 Text b = To_text(l,"l = %8ld") + " "+ To_text(r,"r = %12.4lf") + " :";
 Print("<"); Print(b); Print(">\n");
Page 1249Example 8

12d Model Programming Language Manual
// decoding
 Integer ll;
 From_text(Get_subtext(b,Find_text(b,"l = "),9999),ll,"l = %ld");

 Print("ll = "); Print(ll); Print("\n");
 Real rr;
 From_text((Get_subtext(b,Find_text(b,"r = "),9999),rr,"r = %lf");

 Print("rr = "); Print(rr); Print("\n");
}

Page 1250 Example 8

Chapter 6 Examples
6.14 Example 9
//---
// Programmer Lee Gregory
// Date 30/9/94

// Description of Macro
// A macro to label the spiral and curve lengths of
// an Alignment string (not for a Super Alignment)

// Note - This macro uses a Console.
// There are very few Console macros since most people

// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since
// they are not sequential, but things can be filled in in

// any order in the panel.
//---
void get_hip_info(Element align,Integer hip,Integer &type,

 Real xval[],Real yval[],Real lengths[])
// --

// Get the horizontal info for an horizontal ip
// - the co-ordinates of the special points
// - the curve radius and curve length

// - the left and right spiral lengths
//
// Type of HIP is returned as type where

// type = 0 HIP only
// 1 Curve only
// 2 LH Spiral only

// 3 LH spiral and curve
// 4 RH spiral only
// 5 curve, RH spiral

// 6 LH spiral, RH spiral

// 7 LH spiral, curve, RH spiral

// Co-ordinates of special points returned in
// xval[1...6],yval[1...6]
// where the array position gives

// position 1 LH tangent, TS or TC
// 2 RH tangent, ST or CT

// 3 curve centre
// 4 SC
Page 1251Example 9

12d Model Programming Language Manual
// 5 CS
// 6 HIP
// NOTE -

// If the IP is an HIP only, 1-5 are all given the HIP co-ords.

// If the IP has a curve and no spirals, 1 is set equal

// to 4 (TC=SC), and 2 is set equal to 5 (CT=CS).
// The curve radius, curve and spiral lengths are returned in
// the array lengths[1...4]

// position 1 circle radius
// 2 circle length
// 3 left spiral length

// 4 right spiral length
//
// --

{
 Text hip_type;
 Integer ret;

 ret = Get_hip_type(align,hip,hip_type);
// Get the co-ordinates of the special points for the HIP

 if(hip_type == "IP") {
// case of HIP only with no curve or spiral
 Real xip,yip; ret = Get_hip_geom(align,hip,0,xip,yip);

 xval[6] = xip; yval[6] = yip;
 type = 0;
// fill in other array positions - set them all to the HIP

// position
 xval[1] = xip; yval[1] = yip;
 xval[2] = xip; yval[2] = yip;

 xval[3] = xip; yval[3] = yip;
 xval[4] = xip; yval[4] = yip;
 xval[5] = xip; yval[5] = yip;

 } else if(hip_type == "Curve") {
// case of HIP with and curve and no spirals
 Real xip,yip; ret = Get_hip_geom(align,hip,0,xip,yip);

 Real xtc,ytc; ret = Get_hip_geom(align,hip,1,xtc,ytc);
 Real xct,yct; ret = Get_hip_geom(align,hip,2,xct,yct);
 Real xcc,ycc; ret = Get_hip_geom(align,hip,3,xcc,ycc);

 xval[1] = xtc; yval[1] = ytc;
 xval[2] = xct; yval[2] = yct;
 xval[3] = xcc; yval[3] = ycc;
Page 1252 Example 9

Chapter 6 Examples
 xval[6] = xip; yval[6] = yip;
 type = 2;
// fill in the other array positions

 xval[4] = xtc; yval[4] = ytc;
 xval[5] = xct; yval[5] = yct;
 } else if(hip_type == "Spiral") {

 Real xip,yip; ret = Get_hip_geom(align,hip,0,xip,yip);
 Real xts,yts; ret = Get_hip_geom(align,hip,1,xts,yts);
 Real xsc,ysc; ret = Get_hip_geom(align,hip,4,xsc,ysc);

 Real xcs,ycs; ret = Get_hip_geom(align,hip,5,xcs,ycs);
 Real xst,yst; ret = Get_hip_geom(align,hip,2,xst,yst);

 Real xcc,ycc; ret = Get_hip_geom(align,hip,3,xcc,ycc);
 Integer left_spiral = ((xts != xsc) || (yts != ysc)) ? 1 : 0;
 Integer right_spiral= ((xst != xcs) || (yst != ycs)) ? 1 : 0;

 Integer curve = ((xsc != xcs) || (ysc != ycs)) ? 1 : 0;
 xval[1] = xts; yval[1] = yts;
 xval[2] = xst; yval[2] = yst;

 xval[3] = xcc; yval[3] = ycc;
 xval[4] = xsc; yval[4] = ysc;
 xval[5] = xcs; yval[5] = ycs;

 xval[6] = xip; yval[6] = yip;
 type = 2*curve + 2*left_spiral + 2*right_spiral;
 }

// Get the curve radius, curve and spiral lengths
 Real x,y,radius,left_spiral,right_spiral;
 Get_hip_data(align,hip,x,y,radius,left_spiral,right_spiral);

 Real ch1,ch2,xf,yf,zf,dir,off; // to get curve length
 if(radius != 0) {
 Drop_point(align,xval[4],yval[4],0.0,xf,yf,zf,ch1,dir,off);

 Drop_point(align,xval[5],yval[5],0.0,xf,yf,zf,ch2,dir,off);
 lengths[2] = ch2 - ch1;
 } else {

 lengths[2] = 0.0;
 }
 lengths[1] = radius;

 lengths[3] = left_spiral;
 lengths[4] = right_spiral;
 return;

}
Element position_text(Text text,Real size,Integer colour,Real x1,Real y1,Real x2,Real y2)

// --
Page 1253Example 9

12d Model Programming Language Manual
// Routine to position text
// At the moment it centres it between (x1,y1) and (x2,y2)
// with (bottom,centre) justification

// ---
{
 Real xpos,ypos,angle;

 xpos = 0.5 * (x1 + x2);
 ypos = 0.5 * (y1 + y2);
 angle = Atan2(y2 - y1,x2 - x1);

 Element elt = Create_text(text,xpos,ypos,size,colour,angle,4,1);
 return (elt);
}

void main()
// ---
// Select an alignment string and then label it in plan with

// spiral lengths, curve radii and tangent length.
//
// The positions of the labels is midway between the

// two critical points.
// This should be changed to whatever is required

// ---
{

 Integer ret;
 Element cl;
 Real text_size;

 Integer colour;
 Text colour_name,model_name;
 Model model;

 Real x_prev_tangent,y_prev_tangent;
// Get model for text
model :

 Model_prompt("Model name for text ? ",model_name);
 if(!Model_exists(model_name)) goto model;
 model = Get_model(model_name);

// Get text size
text_size :
 if(Prompt("Text size ? ",text_size) != 0) goto text_size;

// Get text colour
text_colour:
Page 1254 Example 9

Chapter 6 Examples
 Colour_prompt("Colour for text ? ",colour_name);
 if(!Colour_exists(colour_name)) goto text_colour;
 if(Convert_colour(colour_name,colour) != 0) goto text_colour;

// Get alignment string
 Prompt("Select alignment string");
align:

 ret = Select_string("Select alignment string",cl);
 if(ret == -1) {
 Prompt("Finished");

 return;
 } else if(ret != 1) {

 Prompt("Try again ");
 goto align;
 }

 Text type_name; Get_type(cl,type_name);
 if(type_name != "Alignment") {
 Prompt("not an alignment string - try again");

 goto align;
 }
// query all alignment info

 Integer no_hip;
 Get_hip_points(cl,no_hip);
 if(no_hip <= 1) {

 Prompt("<= 1 HIP point");
 return;
 }

// label the alignment
 for(Integer i=1;i<= no_hip;i++) {
 Integer type;

 Real xval[6],yval[6],lengths[4];
 get_hip_info(cl,i,type,xval,yval,lengths);

// label the spiral lengths and curve radius
 Real xpos,ypos,angle;
 Text text;

 Element elt;
 Integer curve = (lengths[1] == 0) ? 0 : 1;
 Integer left_spiral = (lengths[3] == 0) ? 0 : 1;

 Integer right_spiral = (lengths[4] == 0) ? 0 : 1;
// label the left spiral length

 if(left_spiral) {
Page 1255Example 9

12d Model Programming Language Manual
 text = "spiral length = " + To_text(lengths[3],1) + "m";
 elt = position_text(text,text_size,colour,xval[1],yval[1],xval[4],yval[4]);
 Set_model(elt,model);

 }
// label the curve radius
 if(curve) {

 text = "Radius = " + To_text(lengths[1],1) + "m";
 elt = position_text(text,text_size,colour,xval[4],yval[4],xval[5],yval[5]);
 Set_model(elt,model);

 }
// label the right spiral length
 if(right_spiral) {

 text = "spiral length = " + To_text(lengths[4],1) + "m";
 elt = position_text(text,text_size,colour,xval[5],yval[5],xval[2],yval[2]);
 Set_model(elt,model);

 }
// label the tangent
 if(i==1) {

 x_prev_tangent = xval[6];
 y_prev_tangent = yval[6];

 } else {
 Real xx,yy,tangent;
 xx = xval[1] - x_prev_tangent;

 yy = yval[1] - y_prev_tangent;
 tangent = Sqrt(xx*xx+ yy*yy);
 text = "tangent length = " + To_text(tangent,1) + "m";

 elt = position_text(text,text_size,colour,x_prev_tangent,y_prev_tangent,xval[1],yval[1]);
 Set_model(elt,model);
 x_prev_tangent = xval[2];

 y_prev_tangent = yval[2];
 }
 }

 Prompt ("Finished");
}

Page 1256 Example 9

Chapter 6 Examples
6.15 Example 10
//--
// Programmer Andre Mazzone
// Date 3rd September 1994

// Description of Macro
// Macro to take the (x,y) position for each point on a
// string and then produce a text string of the z-values

// at each point on the tin
// Note - This macro uses a Console.

// There are very few Console macros since most people
// prefer to use full Panels as in 12d Model itself.
// However Panel macros are more difficult to write since

// they are not sequential, but things can be filled in in
// any order in the panel.
//--

void process_elt(Tin tin,Element elt,Model model,Real size,Integer colour,Real angle,Real
offset,Integer decimals)

// --

// Find the z-value on the tin for each point in elt.
// Only process 2d, 3d strings.
// --

{
 Text type,number;
 Integer i,no_pts,justif;

 Real x,y,z,height,rise;
 Element text_elt;
 Get_type(elt,type);

 Get_points(elt,no_pts);
 justif = 1;
 rise = 0.0;

 if(!(type =="2d" || type == "3d")) return;
 for (i=1;i<=no_pts;i++) {

 if(type == "2d") {
 Get_2d_data(elt,i,x,y);
 } else if (type == "3d") {

 Get_3d_data(elt,i,x,y,z);
 }

// get value on the tin at (x,y)
Page 1257Example 10

12d Model Programming Language Manual
 if(Tin_height(tin,x,y,height) != 0) continue;
 number = To_text(height,decimals);
 text_elt = Create_text(number,x,y,size,colour,angle,justif,1,offset,rise);

 Set_model(text_elt,model);
 }
 return;

}
void main ()
// --

// Macro to take the (x,y) position for each point on a
// string and then produce a text string of the z-values

// at each point on the tin
// --
{

 Text tin_name,model_name,text_model_name,colour_name;
 Tin tin;
 Model model,text_model;

 Real text_size,offset,angle,radians;
 Integer colour,decimals;

// Get the name of the tin
get_tin:
 Tin_prompt("Give the name of the tin :",tin_name);

 if(!Tin_exists(tin_name)) goto get_tin;
 tin = Get_tin(tin_name);

// Get model for text
model1 :
 Model_prompt("Model to drape :",model_name);

 if(!Model_exists(model_name)) goto model1;
 model = Get_model(model_name);
// Get model for text

model2 :
 Model_prompt("Model for text :",text_model_name);
 text_model = Get_model_create(text_model_name);

 if(!Model_exists(text_model)) goto model2;
// Get text size

text_size :
 if(Prompt("Text size :",text_size) != 0) goto text_size;
// Get text colour
Page 1258 Example 10

Chapter 6 Examples
text_colour:
 Colour_prompt("Colour for text :",colour_name);
 if(!Colour_exists(colour_name)) goto text_colour;

 if(Convert_colour(colour_name,colour) != 0)
 goto text_colour;

angle:

 if(Prompt("Angle for text(degrees) :",angle) != 0)
goto angle;

 Degrees_to_radians(angle,radians);

offset:
 if(Prompt("Offset for text :",offset) != 0) goto offset;

decimals:
 if(Prompt("No. decimal places for text :",decimals) != 0)

 goto decimals;
 decimals = Absolute(decimals);
// Get all the strings in the model and drop their nodes

// onto the tin
 Dynamic_Element strings;
 Integer no_strings,i;

 Element elt;
 Prompt("Processing");
 Get_elements(model,strings,no_strings);

 for (i=1;i<=no_strings;i++) {
 Get_item(strings,i,elt);
 process_elt(tin,elt,text_model,text_size,colour,radians,offset,decimals);

 }
 Prompt("Finished");

}

Page 1259Example 10

12d Model Programming Language Manual
6.16 Example 11
//---
// Programmer Van Hanh Cao
// Date 14/07/99
// 12d Model V4.0
// Version 1.0
// Macro Name Del_empty_model_panel
// Description
// Delete a selected empty model or all empty models in a project.
//
// Note - this example uses a full 12d Model Panel rather than
// a simple console that the examples 1 to 10 used
//---
// Update/Modification
// (C) Copyright 1990-2003 by 12D Solutions Pty Ltd. All Rights Reserved
// This macro, or parts thereof, may not be reproduced in any form
// without permission of 12D Solutions Pty Ltd
//---
#include "set_ups.H"
// function to delete the model called model_name if it is empty

Integer delete_model(Text model_name,Integer &no_deleted)
{
 Model model = Get_model(model_name);

 Integer no_elts;
 Get_number_of_items(model,no_elts);
 if(!Model_exists(model)) return(-1);

// if model empty then delete it

 if(no_elts == 0) {

 Model_delete(model);
 no_deleted++;
 }

 return(0);
}

// function to delete all the emaply models in a project
Integer delete_all_model(Integer &no_deleted)
{

 Integer no_models;
 Dynamic_Text project_models;
 Get_project_models (project_models);

 Get_number_of_items(project_models,no_models);
Page 1260 Example 11

Chapter 6 Examples
 no_deleted = 0;
 for(Integer i;i<=no_models;i++) {
 Text model_name;

 Model model;
 Integer no_elts;
 Get_item(project_models,i,model_name);

 delete_model(model_name,no_deleted);
 }
 return(0);

}
// function to make a list for a CHoice_Box of all empty models

Integer update_list(Choice_Box &model_list)
{
 Integer no_models;

 Dynamic_Text project_models;
 Get_project_models (project_models);
 Get_number_of_items(project_models,no_models);

 if(no_models == 0) return(-1);
 Dynamic_Text empty_models; // a list to contain the names of all empty models
 for(Integer i=1;i<=no_models;i++) {

// validate model
 Text model_name;
 Get_item(project_models,i,model_name);

 Model model = Get_model(model_name);

 if(!Model_exists(model)) continue;

 Integer no_elts;
 Get_number_of_items(model,no_elts);
 if(no_elts == 0) Append(model_name,empty_models);

 }
 Integer no_empty = 0;
 Get_number_of_items(empty_models,no_empty);

// add to choice box
 Text list[no_empty];
 for(Integer j=1;j<=no_empty;j++) Get_item(empty_models,j,list[j]);

 Set_data(model_list,no_empty,list);
 return(0);
}

void manage_a_panel()
{

// create the panel
Page 1261Example 11

12d Model Programming Language Manual
 Panel panel = Create_panel("Delete Empty Models");
 Message_Box message = Create_message_box(" ");
 Choice_Box model_list = Create_choice_box("Empty models",message);

 update_list(model_list);
// have buttons Delete, Delete All and Finish in a Horiziontal_Group
 Horizontal_Group bgroup = Create_button_group();

 Button delete = Create_button("&Delete","delete");
 Button delete_all = Create_button("Delete &All","delete all");
 Button finish = Create_button("&Finish" ,"finish");

 Append(delete,bgroup);
 Append(delete_all,bgroup);
 Append(finish,bgroup);

// add Widgets to the Panel
 Append(model_list,panel); // add the Choice_Box with list of empty models

 Append(message,panel); // add the Message_Box
 Append(bgroup,panel); // add the Horizontal_Groups of buttons

// Display the panel on the screen
 Show_widget(panel);

 Integer doit = 1;
 Integer no_deleted = 0;
 while(doit) {

 Integer id;
 Text cmd;
 Text msg;

// Process events from any of the Widgets on the panel
 Integer ret = Wait_on_widgets(id,cmd,msg);

 if(cmd == "keystroke") continue;
 switch(id) {
 case Get_id(panel) : {

 if(cmd == "Panel Quit") doit = 0;
 break;
 }

 case Get_id(finish) : {
 if(cmd == "finish") doit = 0;
 break;

 }
 case Get_id(model_list) : {
 update_list(model_list);
Page 1262 Example 11

Chapter 6 Examples
 Set_data(message,"Update");
 break;
 }

// delete the selected model
 case Get_id(delete) : {
 Integer ierr;

 Text model_name;
 ierr = Validate(model_list,model_name);
 if(ierr != TRUE) break;

 delete_model(model_name,no_deleted);
 Set_data(message,"empty model \"" + model_name + "\" deleted");

 update_list(model_list);
 Set_data(model_list,"");
 break;

 }
// delete all empty models
 case Get_id(delete_all): {

 delete_all_model(no_deleted);
 Set_data(message,To_text(no_deleted) + " empty model(s) deleted");
 update_list(model_list);

 Set_data(model_list,"");
 break;
 }

 }
 }
}

void main()
{
 manage_a_panel();

}

Page 1263Example 11

12d Model Programming Language Manual
6.17 Example 12
//---
// Programmer Van Hanh Cao
// Date 14 Jul 2003

// 12d Model V4.0
// Version 1.0
// Macro Name Newname_panel
// Description
// routine to change names of selected strings
// Note - this example uses a full 12d Model Panel rather than

// a simple console that the examples 1 to 10 used
//---
#include "set_ups.H"

void set_names(Element string,Text stem,Integer &number)
{
 Text new_name = stem + To_text(number);

 Set_name(string,new_name);
 number++;

}
void set_names(Model model,Text stem,Integer &number)
{

 Integer no_items;
 Dynamic_Element items;

 Get_elements(model,items,no_items);
 for(Integer i=1;i<=no_items;i++) {
 Element elt;

 Get_item(items,i,elt);
 set_names(elt,stem,number);
 }

}
void set_names(View view,Text stem,Integer &number)
{

 Integer no_items;
 Dynamic_Text items;
 View_get_models (view,items);

 Get_number_of_items (items,no_items);
 for(Integer i=1;i<=no_items;i++) {
 Text model_name;

 Get_item(items,i,model_name);
Page 1264 Example 12

Chapter 6 Examples
 Model model = Get_model(model_name);

 if(!Model_exists(model)) continue;

 set_names(model,stem,number);
 }
}

void manage_a_panel()
// --
{

// create the panel
 Panel panel = Create_panel("Set new string name(s)");

 Vertical_Group vgroup = Create_vertical_group(0);
 Message_Box message = Create_message_box(" ");
 Integer no_choices = 3;

 Text choices[5];
 choices[1] = "String";
 choices[2] = "Model";

 choices[3] = "View";
 Choice_Box pages_box = Create_choice_box("Data source",message);

 Set_data(pages_box,no_choices,choices);
 Set_data(pages_box,choices[2]);
 Append(pages_box,vgroup);

// create 3 vertical groups for each page of widgets
 Horizontal_Group g1 = Create_button_group(); Set_border(g1,0,0);
 Vertical_Group g2 = Create_vertical_group(-1); Set_border(g2,0,0);

 Vertical_Group g3 = Create_vertical_group(-1); Set_border(g3,0,0);
// add these groups to the pages widget

 Widget_Pages pages = Create_widget_pages();
 Append(g1,pages);
 Append(g2,pages);

 Append(g3,pages);
// page 1
 Select_Box select_box = Create_select_box("&Pick a string","Pick a string", SELECT_STRING,

message);

 Append(select_box,g1);

// page 2
Page 1265Example 12

12d Model Programming Language Manual
 Model_Box model_box =
Create_model_box("Model",message,CHECK_MODEL_MUST_EXIST);

 Append(model_box,g2);

// page 3
 View_Box view_box = Create_view_box ("View",message,CHECK_VIEW_MUST_EXIST);

 Append(view_box,g3);

// top of panel

 Append(pages_box,vgroup);
 Append(pages ,vgroup);

// setting
 Vertical_Group ogroup = Create_vertical_group(0);
 Name_Box name_box = Create_name_box("Name stem" ,message);
 Integer_Box integer_box = Create_integer_box("Next number",message);

// Default values

 Set_data(name_box,"new name");
 Set_data(integer_box ,1);

 Append(name_box ,ogroup);
 Append(integer_box,ogroup);

// buttons along the bottom
 Horizontal_Group bgroup = Create_button_group();
 Button process = Create_button("&Process","count");

 Button finish = Create_button("&Finish" ,"finish");
 Append(process,bgroup);
 Append(finish ,bgroup);

 Append(vgroup ,panel);
 Append(ogroup ,panel);
 Append(message,panel);

 Append(bgroup ,panel);

// set page 2 active

 Integer page = 2;
 Set_page(pages,page);
 Show_widget(panel);

 Integer doit = 1;
 while(doit) {
Page 1266 Example 12

Chapter 6 Examples
 Integer id;
 Text cmd;
 Text msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);
 if(cmd == "keystroke") continue;
 switch(id) {

 case Get_id(panel) : {
 if(cmd == "Panel Quit") doit = 0;
 break;

 }
 case Get_id(finish) : {

 if(cmd == "finish") doit = 0;
 break;
 }

 case Get_id(pages_box) : {
 Text page_text;
 Integer ierr = Validate(pages_box,page_text);

 if(ierr != TRUE) break;
 if(page_text == choices[1]) {
 page = 1;

 } else if(page_text == choices[2]) {
 page = 2;
 } else if(page_text == choices[3]) {

 page = 3;
 } else {
 page = 0;

 }
 Set_page(pages,page);
 break;

 }
 case Get_id(select_box) : {
 Integer ierr;

 if(cmd == "accept select") {

// validate name and text size

 Integer next;
 ierr = Validate(integer_box,next);
 if(ierr != TRUE) break;

 Text name;
 ierr = Validate(name_box,name);

 if(ierr != TRUE) break;
Page 1267Example 12

12d Model Programming Language Manual
 Element string;
 ierr = Validate(select_box,string);
 if(ierr != TRUE) break;

// set the new name
 set_names(string,name,next);

// restart select
 Select_start(select_box);

 Set_data(integer_box,next);
 Set_data(message,"new name \"" + name + To_text(next-1) + "\" ok");
 }

 break;
 }
 case Get_id(process) : {

 Integer ierr;

// validate name and text size

 Integer next;
 ierr = Validate(integer_box,next);

 if(ierr != TRUE) break;
 Text name;
 ierr = Validate(name_box,name);

 if(ierr != TRUE) break;

// validate model

 if(page == 1) {
 Element string;
 ierr = Validate(select_box,string);

 if(ierr != TRUE) break;
 set_names(string,name,next);
 Set_data(message,"new name \"" + name + To_text(next-1) + "\" ok");

 } else if(page == 2) {
 Model model;
 ierr = Validate(model_box,GET_MODEL_ERROR,model);

 if(ierr != MODEL_EXISTS) break;
 Integer no_strings = next;

 set_names(model,name,next);
 no_strings = next - no_strings;
 Set_data(message, To_text(no_strings) + " new name(s) were set");
Page 1268 Example 12

Chapter 6 Examples
 } else if(page == 3) {
 View view;
 ierr = Validate(view_box,GET_VIEW_ERROR,view);

 if(ierr != VIEW_EXISTS) break;
 Integer no_strings = next;
 set_names(view,name,next);

 no_strings = next - no_strings;
 Set_data(message, To_text(no_strings) + " new name(s) were set");
 }

 Set_data(integer_box,next);

// display data
 break;
 }

 }
 }
}

void main()

//---

{
 manage_a_panel();
}

Page 1269Example 12

12d Model Programming Language Manual
6.18 Example 13
//---
// Programmer Van Hanh Cao
// Date 16/07/99
// 12d Model V4.0
// Version 1.0
// Macro Name Textto3d_panel
// Description
// User is asked to select view, model or a text string that contains
// the text strings. The macro will create a 3d point string at those text
// positions, and then put this string in a user selected model.If there
// is no user specified model, the default model "0", will be created
// and used.
// Note - this example uses a full 12d Model Panel rather than
// a simple console that the examples 1 to 10 used
//---
// Update/Modification
// (C) Copyright 1990-2011 by 12d Solutions Pty Ltd. All Rights Reserved
// This macro, or parts thereof, may not be reproduced in any form without
// permission of 12d Solutions Pty Ltd
//---
#include "set_ups.H"

#define MAX_NO_POINTS 1000
Integer get_text_points(Model model,Dynamic_Element &strings)
{

 Dynamic_Element elts;
 Integer no_elts;
 Get_elements(model,elts,no_elts);

 for(Integer i=1;i<=no_elts;i++) {
 Element string;
 Get_item(elts,i,string);

 Text string_type;
 Get_type(string,string_type);
 if(string_type == "Text") Append(string,strings);

 }
 return(0);
}

Integer get_text_points(View view,Dynamic_Element &strings)

{

 Dynamic_Text models;
 Integer no_models;
 View_get_models(view,models);

 Get_number_of_items(models,no_models);
 for(Integer i=1;i<=no_models;i++) {
Page 1270 Example 13

Chapter 6 Examples
 Text model_name;
 Get_item(models,i,model_name);
 Model model;

 Get_model(model_name);
 if(!Model_exists(model)) continue;
 get_text_points(model,strings);

 }
 return(0);
}

Integer make_string(Model &tmodel,Dynamic_Element &strings,Real dx,
 Real dy,Real maxz,Real minz)

//---
// Create a 4d string with point numbers for each point in the strings

// from setout_model.
// Begin the point numbers at start_no and leave start_no as the next
// point number.

//---
{
 Integer no_strings;

 Get_number_of_items(strings,no_strings);
 if(no_strings == 0) return(-1);
 Integer count = 1;

 Real x[MAX_NO_POINTS],y[MAX_NO_POINTS],z[MAX_NO_POINTS];

 for (Integer i=1;i<=no_strings;i++) {

 Text string_type;
 Element string;
 Get_item(strings,i,string);

 Get_type(string,string_type);
 if(string_type == "Text") {
 Text t_z;

 Get_text_value(string, t_z);
 Dynamic_Text dtext;

 From_text(t_z,dtext);
 Integer no_text;
 Get_number_of_items(dtext,no_text);

 if(no_text != 1) continue;
 Real temp;

 if (From_text(t_z,temp) == 0) {
Page 1271Example 13

12d Model Programming Language Manual
 z[count] = temp;
 if(z[count]<maxz && z[count]>minz) {
 Get_text_xy(string,x[count],y[count]);

 x[count] += dx;
 y[count] += dy;
 count++;

 }
 }
 }

 }
 count--;

 Element new_string;
 new_string = Create_3d(x,y,z,count);
 Set_model(new_string, tmodel);

 Set_breakline(new_string, 0);
 Calc_extent(tmodel);
 return(0);

}
void manage_a_panel()

// --
{
 Panel panel = Create_panel("Convert text strings to 3d string");

 Vertical_Group vgroup = Create_vertical_group(0);
 Message_Box message = Create_message_box(" ");
 Integer no_choices = 2;

 Text choices[5];
 choices[1] = "Model";
 choices[2] = "View";

 Choice_Box pages_box = Create_choice_box("Data source",message);
 Set_data(pages_box,no_choices,choices);
 Set_data(pages_box,choices[1]);

 Append(pages_box,vgroup);

// create 3 vertical groups for each page of widgets

 Vertical_Group g1 = Create_vertical_group(-1); Set_border(g1,0,0);
 Vertical_Group g2 = Create_vertical_group(-1); Set_border(g2,0,0);
// add these groups to the pages widget

 Widget_Pages pages = Create_widget_pages();
 Append(g1,pages);
 Append(g2,pages);
Page 1272 Example 13

Chapter 6 Examples
// page 1
 Model_Box model_box = Create_model_box("Model containing text", message,
CHECK_MODEL_MUST_EXIST);

 Append(model_box,g1);

// page 2

 View_Box view_box = Create_view_box("View name", message, CHECK_VIEW_MUST_EXIST);
 Append(view_box,g2);
 Model_Box model_box2 = Create_model_box("Model for 3d points" , message,

 CHECK_MODEL_CREATE);
 Real_Box dx_box = Create_real_box ("Horizontal offset (dx)" ,message);

 Real_Box dy_box = Create_real_box("Vertical offset (dy)" ,message);
 Real_Box maxz_box = Create_real_box("Max z value" ,message);
 Real_Box minz_box = Create_real_box("Min z value" ,message);

 Set_optional(maxz_box,1);
 Set_optional(minz_box,1);

// default data
 Set_data(dx_box ,0.0);
 Set_data(dy_box ,0.0);

 Append(pages_box ,vgroup);
 Append(pages ,vgroup);
 Append(model_box2,vgroup);

 Append(dx_box ,vgroup);
 Append(dy_box ,vgroup);
 Append(maxz_box ,vgroup);

 Append(minz_box ,vgroup);
 Append(message ,vgroup);

// buttons along the bottom
 Horizontal_Group bgroup = Create_button_group();
 Button process = Create_button("&Process" ,"count");

 Button finish = Create_button("&Finish" ,"finish");
 Append(process ,bgroup);
 Append(finish ,bgroup);

 Append(vgroup ,panel);
 Append(bgroup ,panel);

// set page 1 active
Page 1273Example 13

12d Model Programming Language Manual
 Integer page = 1;
 Set_page(pages,page);
 Show_widget(panel);

 Integer doit = 1;
 while(doit) {
 Integer id;

 Text cmd;
 Text msg;
 Integer ret = Wait_on_widgets(id,cmd,msg);

 if(cmd == "keystroke") continue;
 Dynamic_Element strings;
 switch(id) {

 case Get_id(panel) : {
 if(cmd == "Panel Quit") doit = 0;
 break;

 }
 case Get_id(finish) : {
 if(cmd == "finish") doit = 0;

 break;
 }

 case Get_id(pages_box) : {
 Text page_text;
 Integer ierr = Validate(pages_box,page_text);

 if(ierr != TRUE) {
 Set_data(message,"bad page");
 break;

 }
 if(page_text == choices[1]) {
 page = 1;

 } else if(page_text == choices[2]) {
 page = 2;
 } else {

 page = 0;
 }
 Set_page(pages,page);

 break;
 }
 case Get_id(process) : {

 Integer ierr;
// validate model box
 Model tmodel;
Page 1274 Example 13

Chapter 6 Examples
 ierr = Validate(model_box2,GET_MODEL_CREATE,tmodel);
 if(ierr != MODEL_EXISTS) break;
 Real dx,dy;

 ierr = Validate(dx_box,dx);
 if(ierr != TRUE) break;
 ierr = Validate(dy_box,dy);

 if(ierr != TRUE) break;
 Real maxz = 9999.9, minz = -9999.9;
 Text temp_max,temp_min;

 Get_data(maxz_box,temp_max);
 if(temp_max != "") {

 Real temp;
 ierr = Validate(maxz_box,temp);
 if(ierr != TRUE) break;

 maxz = temp;
 }
 Get_data(minz_box,temp_min);

 if(temp_min != "") {
 Real temp;
 ierr = Validate(minz_box,temp);

 if(ierr != TRUE) break;
 minz = temp;
 }

 if(minz >= maxz) {
 Set_data(message,"max z must be greater than min z");
 break;

 }
 if(page == 1) {
 Model model;

 ierr = Validate(model_box,GET_MODEL_ERROR,model);
 if(ierr != MODEL_EXISTS) break;
 get_text_points(model,strings);

 } else if(page == 2) {
 View view;
 ierr = Validate(view_box,GET_VIEW_ERROR,view);

 if(ierr != VIEW_EXISTS) break;
 get_text_points(view,strings);
 } else {

 Set_data(message,"bad choice");
 break;

 }
Page 1275Example 13

12d Model Programming Language Manual
 make_string(tmodel,strings,dx,dy,maxz,minz);
 Text tmodel_name;
 Get_name(tmodel,tmodel_name);

 Set_data(message,"model " + tmodel_name + " created");
 Null(strings);
 break;

 }
 }
 }

}

void main()

//---
{
 manage_a_panel();

}

Page 1276 Example 13

Chapter 6 Examples
6.19 Example 14
#include "set_ups.H"

Integer my_function(Model model1_model, File file1_file ,Tin tin1_tin,Real real1_value,
 View view1_view ,Text input1_text,Integer colour1_value,Integer tick1_value,
 Text select1_text,Real select1_x,Real select1_y ,Real select1_z ,
 Real select1_prof_chainage ,Real select1_prof_z ,Element select1_string,
 Integer xyz1_value)
{
 return 0;
}
Integer go_panel(
 Text panel_title , Text panel_help , Text file_default ,
 Integer draw1_on ,Text draw1_name , Integer draw1_box_width, Integer draw1_box_height,
 Integer choice1_on ,Text choice1_title , Text choice1_name , Text choice1_help, Text
choice1_title_default , Text choice1[] , Integer no_choice1,
 Integer model1_on ,Text model1_title , Text model1_name , Text model1_help , Text
model1_title_default , Text model1_ceme ,
 Integer file1_on ,Text file1_title , Text file1_name , Text file1_help , Text file1_title_default ,
Text file1_rw , Text file1_ext ,
 Integer tin1_on ,Text tin1_title , Text tin1_name , Text tin1_help , Text tin1_title_default ,
Integer tin1_supertin ,
 Integer real1_on ,Text real1_title , Real real1_value , Text real1_help , Text
real1_title_default , Text real1_check , Real real1_low , Real real1_high ,
 Integer view1_on ,Text view1_title , Text view1_name , Text view1_help , Text
view1_title_default ,
 Integer input1_on ,Text input1_title , Text input1_text , Text input1_help , Text
input1_title_default , Text input1_not_blank ,
 Integer colour1_on ,Text colour1_title , Text colour1_text , Text colour1_help, Text
colour1_title_default ,
 Integer select1_on ,Text select1_title , Text select1_text , Text select1_help, Text
select1_title_default , Text select1_type,Text select1_go,
 Integer tick1_on ,Text tick1_title , Integer tick1_value , Text tick1_help , Text tick1_title_default
,
 Integer xyz1_on ,Text xyz1_title , Integer xyz1_value , Text xyz1_help , Text
xyz1_title_default ,
 Integer process_on, Text process_title , Text process_finish_help)
{
 // ===
 // get defaults at the start of a routine and set up the panel

 Integer ok=0;

 //--
 // CREATE THE PANEL
 //--
 Panel panel = Create_panel(panel_title);
 Vertical_Group vgroup = Create_vertical_group(0);
 Message_Box message_box = Create_message_box("");
 //--
 // draw1_box
 //--

 Horizontal_Group hgroup_box = Create_horizontal_group(0);
 Draw_Box draw1_box = Create_draw_box(draw1_box_width,draw1_box_height,0);
Page 1277Example 14

12d Model Programming Language Manual
 if (draw1_on) Append(draw1_box,hgroup_box);
 // ----------------- choice1_ name ---

 Choice_Box choice1_box = Create_choice_box(choice1_title,message_box);
 Set_data(choice1_box,no_choice1,choice1);
 ok += Set_help(choice1_box,choice1_help);
 if (choice1_on) Append(choice1_box,vgroup);

 // ----------------- model1_ name ---
 // model1_name
 Model_Box model1_box;
 switch (model1_ceme) {
 case "c" : {
 model1_box = Create_model_box(model1_title,message_box,CHECK_MODEL_CREATE);
 break;
 }
 case "e" : {
 model1_box = Create_model_box(model1_title,message_box,CHECK_MODEL_EXISTS);
 break;
 }
 case "me" : {
 model1_box = Create_model_box(model1_title,message_box,CHECK_MODEL_MUST_EXIST);
 break;
 }
 }
 ok += Set_help(model1_box,model1_help);
 if (model1_on) Append(model1_box,vgroup);

 // ----------------- file1_ name ---
 File_Box file1_box;
 switch (file1_rw) {
 case "c" : {
 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_CREATE,file1_ext);
 break;
 }
 case "w" : {
 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_WRITE,file1_ext);
 break;
 }
 case "n" : {
 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_NEW,file1_ext);
 break;
 }
 case "r" : {
 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_MUST_EXIST,file1_ext);
 break;
 }
 case "a" : {
 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_APPEND,file1_ext);
 break;
 }
 }
 ok += Set_help(file1_box,file1_help);
 if (file1_on) Append(file1_box,vgroup);

 // ----------------- tin1_ ---
 Tin_Box tin1_box = Create_tin_box(tin1_title,message_box,CHECK_TIN_MUST_EXIST);
 ok += Set_supertin(tin1_box,tin1_supertin);
Page 1278 Example 14

Chapter 6 Examples
 ok += Set_help(tin1_box,tin1_help);
 if (tin1_on) Append(tin1_box,vgroup);

 // ----------------- real1_ data ---
 Real_Box real1_box = Create_real_box(real1_title,message_box);
 ok += Set_help(real1_box,real1_help);
 if (real1_on) Append(real1_box,vgroup);

 // ----------------- view1_ data ---
 View_Box view1_box = Create_view_box(view1_title,message_box,CHECK_VIEW_MUST_EXIST);
 ok += Set_help(view1_box,view1_help);
 if (view1_on) Append(view1_box,vgroup);

 // ----------------- input1_ ---
 Input_Box input1_box = Create_input_box(input1_title,message_box);
 ok += Set_help(input1_box,input1_help);
 ok += Set_optional(input1_box,(input1_not_blank != "not blank"));
 if (input1_on) Append(input1_box,vgroup);

 // ----------------- colour1_ ---
 Colour_Box colour1_box = Create_colour_box(colour1_title,message_box);
 ok += Set_help(colour1_box,colour1_help);
 if (colour1_on) Append(colour1_box,vgroup);

 // ----------------- select1_ ---
 Element select1_string;
 Real select1_x,select1_y,select1_z,select1_prof_chainage,select1_prof_z;
 Select_Button select1_button =
Create_select_button(select1_title,SELECT_STRING,message_box);
 ok += Set_help(select1_button,select1_help);
 if(select1_type != "") ok += Set_select_type(select1_button,select1_type);
 if (select1_on) Append(select1_button,vgroup);

 // ----------------- tick1_ ---
 Named_Tick_Box tick1_box = Create_named_tick_box(tick1_title,tick1_value,"");
 ok += Set_help(tick1_box,tick1_help);
 if (tick1_on) Append(tick1_box,vgroup);

 // ----------------- xyz1_ ---
 Real xyz1_xvalue,xyz1_yvalue,xyz1_zvalue;
 XYZ_Box xyz1_box = Create_xyz_box(xyz1_title,message_box);
 ok += Set_help(xyz1_box,xyz1_help);
 if (xyz1_on) Append(xyz1_box,vgroup);

// ----------------- message area ---
 Append(message_box,vgroup);

 // ----------------- bottom of panel buttons ---
 Horizontal_Group button_group = Create_button_group();
 Button process_button = Create_button(process_title,"process");
 ok += Set_help(process_button,process_finish_help);
 if(process_on) Append(process_button,button_group);
 Button finish_button = Create_button("Finish","finish");
 ok += Set_help(finish_button,process_finish_help);
 Append(finish_button,button_group);
 Append(button_group,vgroup);
 Append(vgroup,hgroup_box);
 Append(hgroup_box,panel);
Page 1279Example 14

12d Model Programming Language Manual
 // ----------------- display the panel ---
 Integer wx = 100,wy = 100;
 Show_widget(panel,wx,wy);

 //--
 // draw bit map
 //--
 if (draw1_on) {
 Get_size(draw1_box,draw1_box_width,draw1_box_height);
 Start_batch_draw(draw1_box);
 //// the following RGB values match my screen setup
 //// set it to Clear(draw_box,-1,0,0) to see if you can get the window default
 //// or if that doesn't work set it to your RGB values
 Clear(draw1_box,192,192,192);
 Draw_transparent_BMP(draw1_box,draw1_name,0,draw1_box_height);
 End_batch_draw(draw1_box);
 }
 // --
 // GET AND VALIDATE DATA
 // --
 Integer done = 0;
 while (1) {
 Integer id,ierr;
 Text cmd,msg;
 Wait_on_widgets(id,cmd,msg);
 #if DEBUG
 Print(" id <"+To_text(id));
 Print("> cmd <"+cmd);
 Print("> msg <"+msg+">\n");
 #endif

//--
// first process the command that are common to all wigits or are rarely processed by the wigit ID
//--
 switch(cmd) {
 case "keystroke" : {
 continue;
 break;
 }
 case "set_focus" :
 case "kill_focus" : {
 continue;
 break;
 }
 case "Help" : {
 Winhelp(panel,"12d.hlp",'a',msg);
 continue;
 break;
 }
 }

//--
// process each event by the wigit id
// most wigits do not need to be processed until the PROCESS button is pressed
// only the ones that change the appearance of the panel need to be processed in this loop
//--
 switch(id) {
Page 1280 Example 14

Chapter 6 Examples
 case Get_id(panel) :{
 if(cmd == "Panel Quit") return 1;
 if(cmd == "Panel About") continue;
 break;
 }
 case Get_id(finish_button) : {
 Print("Normal Exit\n");
 return(0);
 break;
 }
 case Get_id(select1_button) : {
 switch (cmd) {
 case "accept select" : {
 if(Get_subtext(select1_go,1,2) != "go") continue;
 break;
 }
/*
// other select cmds
 case "cancel select" : {
 continue;
 break;
 }
*/
 }
 continue;
 break;
 }
 case Get_id(process_button) : {
//--
// verify / retrieve all the data in the panel
//--
//--
// select box
//--
 Validate(select1_button,select1_string);
 Get_select_coordinate(select1_button,select1_x,select1_y,select1_z,select1_prof_chainage,
 select1_prof_z);
 // create the file handle
//--
// MODEL CHECK
//--
 Model model1_model;
 if(model1_on) {
 switch (model1_ceme) {
 case "c" : {
 if(Validate(model1_box,GET_MODEL_CREATE,model1_model) != MODEL_EXISTS)
 continue;
 break;
 }
 case "e" : {
 if(Validate(model1_box,GET_MODEL,model1_model) != MODEL_EXISTS) continue;
 break;
 }
 case "me" : {
 if(Validate(model1_box,GET_MODEL_ERROR,model1_model) != MODEL_EXISTS) continue;
 break;
 }
 }
Page 1281Example 14

12d Model Programming Language Manual
 }
 Tin tin1_tin;
 if(tin1_on) {
 if(Validate(tin1_box,CHECK_TIN_MUST_EXIST,tin1_tin) != TIN_EXISTS) continue;
 ok += Get_data(tin1_box,tin1_name);
 }
 View view1_view;
 if(view1_on) {
 if(Validate(view1_box,CHECK_VIEW_MUST_EXIST,view1_view) != VIEW_EXISTS) continue;
 ok += Get_data(view1_box,view1_name);
 }
 if(real1_on) {
 if(Validate(real1_box,real1_value) == !OK) continue;
 }
 if(input1_on) {
 input1_text = "*******";
 if(!Validate(input1_box,input1_text)) continue;
 if ((input1_text == "") && (input1_not_blank == "not blank")) {
 Set_data(message_box,"Text must be entered");
 continue;
 }
 }
 Integer colour1_value;
 if(colour1_on) {
 if(!Validate(colour1_box,colour1_value)) continue;
 Get_data(colour1_box,colour1_text);
 }
// save the file checks for last
//--
// FILE CHECK BEFORE PROCESSING
//--
// if the file already exists
// Error_prompt(To_text(Validate(file1_box,GET_FILE_CREATE,file1_name)));
// replace y/n n=NO_FILE_ACCESS y = NO_FILE
// Error_prompt(To_text(Validate(file1_box,GET_FILE_WRITE,file1_name)));
// append y/n n= NO_FILE y = FILE_EXISTS
// Error_prompt(To_text(Validate(file1_box,GET_FILE_NEW,file1_name)));
// new error_message = FILE_EXISTS
// Error_prompt(To_text(Validate(file1_box,GET_FILE_MUST_EXIST,file1_name)));
 // must exist ok message = FILE_EXISTS
 //Error_prompt(To_text(Validate(file1_box,GET_FILE_APPEND,file1_name)));
 // append y/n n = NO_FILE y = FILE_EXISTS

 // if the file does not exist
 //Error_prompt(To_text(Validate(file1_box,GET_FILE_CREATE,file1_name)));
 // message will be created = NO_FILE
 //Error_prompt(To_text(Validate(file1_box,GET_FILE_WRITE,file1_name)));
 // message will be created = NO_FILE
 //Error_prompt(To_text(Validate(file1_box,GET_FILE_NEW,file1_name)));
 // message will be created = NO_FILE
 //Error_prompt(To_text(Validate(file1_box,GET_FILE_MUST_EXIST,file1_name)));
 // error message = NO_FILE
 //Error_prompt(To_text(Validate(file1_box,GET_FILE_APPEND,file1_name)));
 // message will be created = NO_FILE

 File file1_file;
 if(file1_on) {
 switch (file1_rw) {
Page 1282 Example 14

Chapter 6 Examples
 case "c" : {
 if(Validate(file1_box,GET_FILE_CREATE,file1_name) == NO_FILE_ACCESS) continue;
 break;
 }
 case "w" : {
 if(Validate(file1_box,GET_FILE_WRITE,file1_name) == NO_FILE_ACCESS) continue;
 break;
 }
 case "n" : {
 if(Validate(file1_box,GET_FILE_NEW,file1_name) != NO_FILE) continue;
 break;
 }
 case "r" : {
 if(Validate(file1_box,GET_FILE_MUST_EXIST,file1_name) != FILE_EXISTS) continue;
 break;
 }
 case "a" : {
 if(Validate(file1_box,GET_FILE_APPEND,file1_name) == NO_FILE_ACCESS) continue;
 break;
 }
 }
 ok += File_open(file1_name,file1_rw,file1_file);
 } // if file1_on
//--
// this is the function call to your program
//--
 my_function(model1_model ,file1_file ,tin1_tin ,real1_value,
 view1_view ,input1_text ,colour1_value ,tick1_value,
 select1_text ,select1_x ,select1_y ,select1_z,
 select1_prof_chainage ,select1_prof_z ,select1_string,
 xyz1_value);

 if(select1_on && (select1_go == "go again")) {
 Set_data(message_box,"select another "+select1_type+" string: <RB> to cancel");
 Select_start(select1_button);
 continue;
 } else Set_data(message_box,"Processing complete");
 } break; // process
 default : {
 continue;
 }
 } // switch id
 } // while !done
 return ok;
}

void main() {
 Clear_console();
 Text macro_help = "help";
 //--
 // Example call
 //--
 Integer no_choice1 = 3;
 Text choice1[no_choice1];
 choice1[1] = "choice 1";
 choice1[2] = "choice 2";
 choice1[3] = "choice 3";
Page 1283Example 14

12d Model Programming Language Manual
// wigit label , default data , help assoc key , default data name , check data
 go_panel(
 "Sample Panel" , macro_help , "sample.mdf" ,
 1,"12dlogo2.bmp" , 180, 180,
 1,"Choice1_title" , choice1[1] , macro_help , "choice1" , choice1, no_choice1,
 1,"Model_title" , "" , macro_help , "model1" , "c" ,
 1,"Input file" , "" , macro_help , "file1" , "r" , "*.txt" ,
 1,"tin1_title" , "tin name xx" , macro_help , "tin1" , 1,
 1,"real1_title" , 99.9 , macro_help , "real1" , "check data", 0.0 , 100.0 ,
 1,"view1_title" , "1" , macro_help , "view1" ,
 1,"input1_title" , "input text" , macro_help , "input1" , "not blank" ,
 1,"Section colour" , "red" , macro_help , "colour1" ,
 1,"select1_title" , "" , macro_help , "select1" ,"" ,"no go again",
 1,"tick title" , 0 , macro_help , "tick1" ,
 1,"xyz1_title" , 0 , macro_help , "xyz1" ,
 1,"Process", macro_help);
// Select codes
 // go executes the process command automatically after an accept
 // go again start another select immediately after the last accept
// Model codes
 // c message it exists or a create message if it does not exist
 // e message it exists or a message that it does not exist
 // me message it exists or a error message if the model does not exist
//File codes
 // n create a new file and will not overwrite an existing file
 // c asks if you want to overwrite
 // w asks if you want to append (overwrites if you say no)
 // a asks if you want to append
 // r the file must exist
}

Page 1284 Example 14

Chapter 6 Examples
6.20 Example 15

// --
// Macro: macro_function.4dm
// Author: alg
// Organization: 12d Solutions Pty Ltd
// Date: Tue Sep 15 19:02:19 1998
// Modified ljg
// Date 11 August 2011
// --
// Brief description
// Macro_Function to parallel a string between two chainages.
// --
// Description
// Macro_Function to parallel a string between two chainages.
// A strinng is selected and then two chainages to offset between.
// An offset value is given and optionally a new name, colour and model
// for the created string. If name, colour or model is blank,
// then the property is taken from the selected string.
//
// Note - this example uses a full 12d Model Panel rather than
// a simple console that the examples 1 to 10 used
// --
// Update/Modification
//
//
// (C) Copyright 1990-2011 by 12d Solutions Pty Ltd. All Rights Reserved
//
// This macro, or parts thereof, may not be reproduced in any form without
// permission of 12d Solutions Pty Ltd
// --
//
// Macro_Function Dependencies
//
// "string" Element
//
// Macro_Function attributes
//
// "offset" Real
// "start point" Text
// "end point" Text
// "new name" Text
// "new model" Text
// "new colour" Text
// "functype" Text
//
// "model" Uid
// "element" Uid
// --

#include "Set_ups.H"

Integer get_chainage_value(Element string,Text mode,Text ch_text,Real &chainage)
// --
// Convert the text to chainage and check that it is on the string.
// Blank text means use string start/end chainage.
Page 1285Example 15

12d Model Programming Language Manual
// --
{
 Integer ierr;
 Real start,end;

 ierr = Get_chainage(string,start);
 if (ierr != 0) return(1);

 ierr = Get_end_chainage(string,end);
 if (ierr != 0) return(1);

 if(mode == "start") { // if text is blank then use string start chainage
 if(ch_text == "") {
 chainage = start;
 return(0);
 } else {
 ierr = From_text(ch_text,chainage);
 if (ierr != 0) return(1);
 }

 } else if(mode == "end") {
 if(ch_text == "") {
 chainage = end;
 return(0);
 } else {
 ierr = From_text(ch_text,chainage);
 if(ierr != 0) return(1);
 }

 } else {
 return (1); // invalid mode
 }

// check if chainage is on the string

 if(chainage > end) return(1);
 if(chainage < start) return(1);
 return(0);
}
void set_error(Macro_Function macro_function,Text error)
// --
// If there is a non blank error message than store it as the function attribute
// if the error message is blank, remove the error message attribute
// --
{
 if(error != "") {
 Set_function_attribute(macro_function,"error message",error);
 } else {
 Function_attribute_delete(macro_function,"error message");
 }
}
Integer recalc_macro(Text function_name)
// --
// Do the processing for the macro.
//
// recalc_macro is used to do the recalcs where all the panel answers are recorded
// as function depecencies and attributes.
//
Page 1286 Example 15

Chapter 6 Examples
// recalc_macro is also used to do the processing for the first run of the panel,
// and for the Edit case where the panel and answers are displayed and can be modified.
//
// In the first run and Edit case , the panel information has been loaded into
// function dependecies and function attributes so the information
// is all there in the function just like it is for a Recalc.
//
// The only major difference is that for the first run, there are no strings etc
// created from a previous run that need to be deleted.
//
// In all cases, all panel answers must be checked before continuing to calculations
// since there is no guarentee that something hasn't been deleted since the
// last Recalc.
//
// For example, in this macro, the string to be paralleled may have been deleted.
//
// NOTE: Before any processing takes place, any strings that were created in
// in a previous run and are to be deleted, must first be checked that they
// can be deleted. For example, that they are not locked.
// If they can't be deleted then the macro terminates with an error message.
// --
{
 Integer ierr;

 Macro_Function macro_function;
 Get_macro_function(function_name,macro_function);

 Element string;
 Get_dependancy_element(macro_function,"string",string);

 Real offset;
 Get_function_attribute(macro_function,"offset",offset);

 Text start_pt;
 Get_function_attribute(macro_function,"start point",start_pt);

 Text end_pt;
 Get_function_attribute(macro_function,"end point",end_pt);

 Text name_txt,name;
 Get_function_attribute(macro_function,"new name",name_txt);
 if(name == "") {
 Get_name(string,name); // name is existing string name
 } else {
 name = name_txt;
 }

 Text model_txt;
 Model model;
 Uid mid;
 Integer model_exists = 0;

 Get_function_attribute(macro_function,"new model",model_txt);
 if(model_txt == "") {
 ierr = Get_model(string,model);// model name is blank so use strings model
 model_exists = 1;
 } else if(Model_exists(model_txt)) {
 model = Get_model(model_txt);
Page 1287Example 15

12d Model Programming Language Manual
 ierr = Get_id(model,mid);
 model_exists = 1;
 }

 if(model_exists) {
 ierr = Get_id(model,mid);
 if(Is_global(mid)) { // check if model is shared from another project
 set_error(macro_function,"new model is write protected");
 return(-1);
 }
 }

// haven't created a new model if needed as yet. Wait to all validation is complete

 Text colour_txt;
 Integer colour;
 Get_function_attribute(macro_function,"new colour",colour_txt);
 if(colour_txt == "") {
 Get_colour(string,colour); // colour is existing string colour
 } else {
 Convert_colour(colour_txt,colour);
 }

// are start and end chainages valid

 Real start_ch;
 if(get_chainage_value(string,"start",start_pt,start_ch) != 0) {
 set_error(macro_function,"start chainage is bad");
 return(-1);
 }

 Real end_ch;
 if(get_chainage_value(string,"end",end_pt,end_ch) != 0) {
 set_error(macro_function,"end chainage is bad");
 return(-1);
 }

// get the parallel elt from a previous run

 Integer first_time = 0;

 Uid eid;
 if(Get_function_attribute(macro_function,"model" ,mid) != 0) first_time = 1;
 if(Get_function_attribute(macro_function,"element",eid) != 0) first_time = 1;

 Element elt;
 if(Get_element(mid,eid,elt) != 0) first_time = 1; // can't find elt by mid and eid

 if(first_time == 0) { // not the first time and previous created elt has been found by mid and eid
 // check elt is not locked since it is going to be modified
 Integer locks;
 Get_write_locks(elt,locks);

 if(locks > 0) {
 set_error(macro_function,"paralled string is locked");
 return(-1);
 }
 }
Page 1288 Example 15

Chapter 6 Examples
// compute new string

 Element left_str,mid_str,right_str;

// get partial string

 if(Clip_string(string,start_ch,end_ch,left_str,mid_str,right_str) != 0) {

 set_error(macro_function,"cannot get string between clip points");
 return(-1);
 }

// parallel the string between the two chainages

 Element elt_new;
 ierr = Parallel(mid_str,offset,elt_new);

// clean up clipping bits

 Element_delete(left_str);
 Element_delete(mid_str);
 Element_delete(right_str);

// did parallel work ?

 if(ierr != 0) {

 set_error(macro_function,"parallel failed");
 return(-1);
 }

// we can replace string

 Element_draw(elt,0); // draw elt as blank

 if(!model_exists) model = Create_model(model_txt); // model doesn't exist so create it

 if(first_time) {

 Set_model(elt_new,model); // put string in model
 elt = elt_new;

// store details of the created string in function attributes

 Get_id(model,mid);
 Get_id(elt ,eid);

 Set_function_attribute(macro_function,"model" ,mid);
 Set_function_attribute(macro_function,"element",eid);

 } else {

// replace contents of string - so eid will stay the same
// copy switch attributes !

 Text sw1; Integer a1 = Get_attribute(elt,"start switch",sw1);
 Text sw2; Integer a2 = Get_attribute(elt,"end switch" ,sw2);
Page 1289Example 15

12d Model Programming Language Manual
 String_replace(elt_new,elt);

 if(a1 == 0) Set_attribute(elt,"start switch",sw1);
 if(a2 == 0) Set_attribute(elt,"end switch" ,sw2);

// store details of the created string in function attributes
// the string has same Uid. The model Uid may have cdhanged

 Get_id(model,mid);
 Set_function_attribute(macro_function,"model" ,mid);

// clean up

 Element_delete(elt_new);
 }

// set name, model and colour details

 Set_name (elt,name);
 Set_model (elt,model);
 Set_colour(elt,colour);

// parallel finished

 Element_draw(elt);

// tell element what function it belongs to

 Uid fid; Get_id(macro_function,fid);

 Set_function_id(elt,fid);

// finished

 return(0);
}

Integer show_panel(Text function_name,Integer edit)
// --
// --
{
 Macro_Function macro_function;
 Get_macro_function(function_name,macro_function);

 Panel panel = Create_panel("Parallel String Section");
 Vertical_Group vgroup = Create_vertical_group(0);
 Message_Box message = Create_message_box(" ");

// function

 Function_Box function_box = Create_function_box("Function name", message,
 CHECK_FUNCTION_CREATE,RUN_MACRO_T);

 Set_type(function_box,"parallel_part"); // set the unique type for the Macro_Function

 Append(function_box,vgroup);
Page 1290 Example 15

Chapter 6 Examples
 if(edit) Set_data(function_box,function_name);

// string

 New_Select_Box select_box = Create_new_select_box("String to parallel","Select
string",SELECT_STRING,message);

 Append(select_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run

 Element string;
 Get_dependancy_element(macro_function,"string",string);

// check the model is not shared from another project.
// If it is then the model can't be used for the new string.

 Set_data(select_box,string);
 }

// offset distance

 Real_Box value_box = Create_real_box("Offset",message);
 Append(value_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run
 Real offset;
 Get_function_attribute(macro_function,"offset",offset);
 Set_data(value_box,offset);
 }

// chainage of start point - optional. If not filled in then use string start

 Chainage_Box start_box = Create_chainage_box("Start chainage",message);
 Set_optional(start_box,1);
 Append(start_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run
 Text start_value;
 Get_function_attribute(macro_function,"start point",start_value);
 Set_data(start_box,start_value);
 }

// chainage of end point - optional. If not filled in then use string end

 Chainage_Box end_box = Create_chainage_box("End chainage",message);
 Set_optional(end_box,1);
 Append(end_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run
 Text end_value;
 Get_function_attribute(macro_function,"end point",end_value);
 Set_data(end_box,end_value);
Page 1291Example 15

12d Model Programming Language Manual
 }

// details about new string

 Name_Box name_box = Create_name_box("New name",message);
 Set_optional(name_box,1);
 Append(name_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run

 Text name;
 Get_function_attribute(macro_function,"New name",name);
 Set_data(name_box,name);
 }

 Model_Box model_box = Create_model_box("New model",message,CHECK_MODEL_CREATE);
 Set_optional(model_box,1);
 Append(model_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run

 Text model_txt;
 Get_function_attribute(macro_function,"new model",model_txt);
 Set_data(model_box,model_txt);
 }

 Colour_Box colour_box = Create_colour_box("New colour",message);
 Set_optional(colour_box,1);
 Append(colour_box,vgroup);

 if(edit) { // this is when -function_edit is found
 // get the panel data from the last run
 Integer colour;
 Text colour_txt;
 Get_function_attribute(macro_function,"new colour",colour_txt);
 Set_data(colour_box,colour_txt);
 }

// message box

 Append(message,vgroup);

 Horizontal_Group bgroup = Create_button_group();

 Button compute = Create_button ("Parallel","compute");
 Button finish = Create_finish_button("Finish" ,"Finish");

 Append(compute,bgroup);
 Append(finish ,bgroup);

 Append(bgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);

// reset edit
Page 1292 Example 15

Chapter 6 Examples
 edit = 0;

// was there an error message !

 if(Function_attribute_exists(macro_function,"error message")) {

 Text error;
 Get_function_attribute(macro_function,"error message",error);

 Set_data(message,"last error was: " + error);
 }

// now wait on events

 Integer doit = 1;

 while(doit) {

 Integer id;
 Text cmd;
 Text msg;
 Integer ret = Wait_on_widgets(id,cmd,msg); // this processes standard messages first ?

 if(cmd == "keystroke") continue;

 switch(id) {

 case Get_id(panel) : {

 if(cmd == "Panel Quit") { // X on panel top right hand corner clicked
 doit = 0;
 }
 break;
 }

 case Get_id(finish) : { // finish button clicked

 doit = 0;

 break;
 }

 case Get_id(function_box) : { // a function of this type has been selected. So the
 // information from that function needs to be put in the panel

 Function func;
 if(Validate(function_box,CHECK_FUNCTION_EXISTS,func) != FUNCTION_EXISTS) break;

 Get_data(function_box,function_name);
 if(Get_macro_function(function_name,macro_function) == 0) {

// load string

 Element string;
 Get_dependancy_element(macro_function,"string",string);

 Set_data(select_box,string);
Page 1293Example 15

12d Model Programming Language Manual
// load offset

 Real offset;
 Get_function_attribute(macro_function,"offset",offset);

 Set_data(value_box,offset);

// start chainage

 Text start_val;
 Get_function_attribute(macro_function,"start point",start_val);

 Set_data(start_box,start_val);

// end chainage

 Text end_val;
 Get_function_attribute(macro_function,"end point",end_val);

 Set_data(end_box,end_val);

// new string details

 Text name;
 Get_function_attribute(macro_function,"new name",name);
 Set_data(name_box,name);

 Text model_txt;
 Get_function_attribute(macro_function,"new model",model_txt);
 Set_data(model_box,model_txt);

 Text colour_txt;
 Get_function_attribute(macro_function,"new colour",colour_txt);
 Set_data(colour_box,colour_txt);

// data retrieved

 if(Function_attribute_exists(macro_function,"error message")) {

 Text error;
 Get_function_attribute(macro_function,"error message",error);
 Set_data(message,"function retrieved - last error was: " + error);
 } else {
 Set_data(message,"function retrieved");
 }
 }
 break;
 }

 case Get_id(compute) : {

// for now - the only safe way to create a macro function is by
// using Create_macro_function , NOT by Validate(Function,....)

 Get_data(function_box,function_name);
 if(Get_macro_function(function_name,macro_function) != 0) {
Page 1294 Example 15

Chapter 6 Examples
// create the function

 if(Create_macro_function(function_name,macro_function) != 0) {

 Error_prompt("failed to create function");
 break;
 }
 } else {

// stop other function type now!!!

 Function func;
 if(Validate(function_box,CHECK_FUNCTION_EXISTS,func) != FUNCTION_EXISTS) break;
 }
 Text type;

// validate string

 Element string;
 if(Validate(select_box,string) != TRUE) {

 Set_data(message,"string not valid");
 break;
 }

// validate offset

 Real offset;
 if(Validate(value_box,offset) != TRUE) break;

// start point

 Text start;
 Get_data(start_box,start);

 Real start_ch;
 if(get_chainage_value(string,"start",start,start_ch) != 0) {
 Set_error_message(start_box,"start chainage not valid");
 break;
 }

// end point

 Text end;
 Get_data(end_box,end);

 Real end_ch;
 if(get_chainage_value(string,"end", end,end_ch) != 0) {
 Set_error_message(end_box,"end chainage not valid");
 break;
 }

// new string details

 Text name;
 Integer val = Validate(name_box,name);
 if(val == 0) break; // validation error in mame box

Page 1295Example 15

12d Model Programming Language Manual
 Model model;
Text model_txt;
Uid mid;
Integer ierr;

Get_data(model_box,model_txt);

if(model_txt == "") { // model name is blank so use selected strings model.
 // Need to check model is not shared from another project

 ierr = Get_model(string,model);
 ierr = Get_id(model,mid);
 if(Is_global(mid)) break; // validation error in model box
} else if(Model_exists(model_txt)) {
 model = Get_model(model_txt);
 ierr = Get_id(model,mid);
 if(Is_global(mid)) break; // can't add data to shared model
 // validation error in model box

 }

 Integer colour;
 Text colour_txt;
 val = Validate(colour_box,colour);
 if(val == 0) break; // validation error in colour box

 if(val == NO_NAME) {
 colour_txt = "";
 } else {
 Convert_colour(colour,colour_txt);
 }

// Store the panel information in the Macro_Function

 Delete_all_dependancies(macro_function);

 Set_function_attribute(macro_function,"functype" ,"parallel_part");

 Add_dependancy_element(macro_function,"string" ,string);

 Set_function_attribute(macro_function,"offset" ,offset);
 Set_function_attribute(macro_function,"start point" ,start);
 Set_function_attribute(macro_function,"end point" ,end);
 Set_function_attribute(macro_function,"new name" ,name);
 Set_function_attribute(macro_function,"new model" ,model_txt);
 Set_function_attribute(macro_function,"new colour" ,colour_txt);

// Now do the processing

 Integer res = recalc_macro(function_name);

 Text error;
 if(Get_function_attribute(macro_function,"error message",error) != 0) error = "ok";

 Set_data(message,error);

 if(res == 0) Set_finish_button(panel,1);
 break;
 }
 }
Page 1296 Example 15

Chapter 6 Examples
 }
 return(-1);
}
void main()
// --
// this is where the macro starts
// --
{
 Integer argc = Get_number_of_command_arguments();
 if(argc > 0) {

 Text arg;
 Get_command_argument(1,arg);

 if(arg == "-function_recalc") {

 Text function_name;
 Get_command_argument(2,function_name);

 recalc_macro(function_name);

 } else if(arg == "-function_edit") {

 Text function_name;
 Get_command_argument(2,function_name);

 show_panel(function_name,1);

 } else if(arg == "-function_delete") {

// not implimented yet

 Text function_name;
 Get_command_argument(2,function_name);

 Error_prompt("function_delete not implimented");

 } else if(arg == "-function_popup") {

// not implimented yet

 Text function_name;
 Get_command_argument(2,function_name);

 Error_prompt("function_popup not implimented");

 } else {

// normal processing ?

 Error_prompt("huh ? say what");
 }
 } else {

 show_panel("",0);
 }
}

Page 1297Example 15

12d Model Programming Language Manual
Page 1298 Example 15

Chapter A Appendix - Set_ups.h File
A Appendix - Set_ups.h File
The file set_ups.h contains constants and values that are used in, or returned by, 12dPL supplied
functions.
Before any of the constants or values in set_ups.h can be used, set_ups. h needs to be included
in a 12dPL program by using the command #include "set_ups.h" at the top of the 12dPL
program. For an example see Example 11 .
The following sections describe in detail what some of the values in the set_ups.h file are used
for. For a full listing of set_ups.h, see Set Ups.h at the end of this Appendix.

See General Constants
See Model Mode
See File Mode
See View Mode
See Tin Mode
See Template Mode
See Project Mode
See Directory Mode
See Function Mode
See Function Type
See Linestyle Mode
See Symbol Mode
See Snap Mode
See Super String Use Modes
See Select Mode
See Widgets Mode
See Text Alignment Modes for Draw_Box
See Set Ups.h
Page 1299

12d Model Programming Language Manual
General Constants
TRUE = 1
OK = 1
FALSE = 0
Page 1300 General Constants

Chapter A Appendix - Set_ups.h File
Model Mode
The Model modes are used in two ways.
(a) When a Model_Box is created with Create_model_box(Text title_text,Message_Box

message,Integer mode), mode determines the behaviour when information is entered into the
Model_Box.
If information is typed and then an <enter> pressed in the Model_Box, or if a model is
selected from the model pop-up list, automatic validation is performed by the Model_Box
according to mode. What the validation is, what messages are written to Message_Box,
and what actions automatically occur, depend on the value of mode.

(b) A mode is also used with the Validate(Model_Box box,Integer mode,Model &model) call.
Again mode will determine what validation occurs, what messages are written to the
Message_Box, what actions are taken and what the function return value is.

There are CHECK modes which never create models and GET modes which may create
models.

CHECK_MODEL_EXISTS = 3
If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:
(a) If the model exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "does not exist"
(c) If field is blank and not optional, message says "no model specified"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(model_box,mode,model):
(a) If the model exists, for Validate the message says "exists" and the return code is

MODEL_EXISTS. The model is returned as the argument model.
(b) If the model doesn’t exist and the field is not blank, for Validate the message says "does not

exist" and the return code is NO_MODEL and no model is returned as the argument model.
(c) If field is blank and not optional, for Validate the message says "no model specified" and the

return code of NO_NAME and no model is returned as the argument model.
(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the

return code is NO_NAME and no model is returned as the argument model.

CHECK_MODEL_MUST_EXIST = 7
If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:
(a) If the model exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "ERROR does not

exist"
(c) If field is blank and not optional, message says "ERROR no model specified"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(model_box,mode,model):
(a) If the model exists, for Validate the message says "exists" and the return code is

MODEL_EXISTS. The model is returned as the argument model.
(b) If the model doesn’t exist and the field is not blank, for Validate the messages says "ERROR

does not exist" and the return code is NO_MODEL and no model is returned as the
Page 1301Model Mode

12d Model Programming Language Manual
argument model.
(c) If field is blank and not optional, for Validate the message says "ERROR no model specified"

and the return code of NO_NAME and no model is returned as the argument model.
(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the

return code is NO_NAME and no model is returned as the argument model.

CHECK_MODEL_CREATE = 4
If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:
(a) If the model exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "will be created"
(c) If field is blank and not optional, message says "no model specified"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(model_box,mode,model):
(a) If the model exists, for Validate the message says "exists" and the return code is

MODEL_EXISTS. The model is returned as the argument model.
(b) If the model doesn’t exist and the field is not blank, for Validate the messages says "will be

created" and the return code is NO_MODEL and no model is returned as the argument
model. Yes it is a confusing message but this mode should not be used with Validate.

(c) If field is blank and not optional, for Validate the message says "no model specified" and the
return code of NO_NAME and no model is returned as the argument model.

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME and no model is returned as the argument model.

CHECK_MODEL_MUST_NOT_EXIST = 60

If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:

(a) If the model exists, the message says "ERROR exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "does not exist".
(c) If field is blank and not optional, message says "no model specified"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(model_box,mode,model):

(a) If the model exists, for Validate the message says "ERROR exists" and the return code is
MODEL_EXISTS. The model is returned as the argument model.

(b) If the model doesn’t exist and the field is not blank, for Validate the messages says "does
not exist" and the return code is NO_MODEL and no model is returned as the argument
model.

(c) If field is blank and not optional, for Validate the message says "no model specified" and the
return code of NO_NAME and no model is returned as the argument model.

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME and no model is returned as the argument model.

CHECK_DISK_MODEL_MUST_EXIST = 33

CHECK_EITHER_MODEL_EXISTS = 38
Page 1302 Model Mode

Chapter A Appendix - Set_ups.h File
GET_MODEL = 10
If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:

(a) If the model exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "ERROR does not

exist"
(c) If field is blank and not optional, there is no message
(d) If field is blank and optional, there is no message.

For Validate(model_box,mode,model):

(a) If the model exists, for Validate the message says "exists" and the return code is
MODEL_EXISTS. The model is returned as the argument model.

(b) If the model doesn’t exist and the field is not blank, for Validate the message says "ERROR
does not exist" and the return code is NO_MODEL and no model is returned as the
argument model.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME and no model is returned as the argument model.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no model is returned as the argument model.

GET_MODEL_CREATE = 5
If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:

(a) If the model exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "created" and the

model is created.
(c) If field is blank and not optional, the message says "ERROR no model specified"
(d) If field is blank and optional, there is no message.

For Validate(model_box,mode,model):

(a) If the model exists, for Validate the message says "exists" and the return code is
MODEL_EXISTS. The model is returned as the argument model.

(b) If the model doesn’t exist and the field is not blank, for Validate the message says "created"
and the model is created. The return code is MODEL_EXISTS and the model is returned as
the argument model.

(c) If field is blank and not optional, for Validate the message says "ERROR no model specified"
and the return code is NO_MODEL and no model is returned as the argument model.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no model is returned as the argument model.

GET_MODEL_ERROR = 13
If information is typed and then an <enter> pressed in the Model_Box, or if a model is selected
from the model pop-up list:
(a) If the model exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "ERROR does not

exist".
(c) If field is blank and not optional, the message says "ERROR no model specified"
Page 1303Model Mode

12d Model Programming Language Manual
(d) If field is blank and optional, there is no message.

For Validate(model_box,mode,model):

(a) If the model exists, for Validate the message says "exists" and the return code is
MODEL_EXISTS. The model is returned as the argument model.

(b) If the model doesn’t exist and the field is not blank, for Validate the message says "ERROR
does not exist" and the return code is NO_MODEL and no model is returned as the
argument model.

(c) If field is blank and not optional, for Validate the message says "ERROR no model specified"
and the return code is NO_MODEL and no model is returned as the argument model.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no model is returned as the argument model.

GET_DISK_MODEL_ERROR = 34

MODEL FUNCTION RETURN CODES
NO_MODEL = 1

MODEL_EXISTS = 2
DISK_MODEL_EXISTS = 19
NEW_MODEL = 3

NO_NAME = 10 // when no name is entered (i.e. blank)

NO_CASE = 8
Page 1304 Model Mode

Chapter A Appendix - Set_ups.h File
File Mode
The File modes are used in two ways.
(a) When a File_Box is created with Create_file_box(Text title_text,Message_Box message,Integer

mode), mode determines the behaviour when information is entered into the File_Box.
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected
from the file pop-up list, automatic validation is performed by the File_Box according to
mode. What the validation is, what messages are written to Message_Box, and what
actions automatically occur, depend on the value of mode.

(b) A mode is also used with the Validate(File_Box box,Integer mode,Text &result) call. Again
mode will determine what validation occurs, what messages are written to the
Message_Box, what actions are taken and what the function return value is.

Because of many different ways files can be opened, files are never created by the
Create_file_box(Text title_text,Message_Box message,Integer mode) or Validate(File_Box box,Integer
mode,Text &result) calls.

Regardless of the modes, the text typed into the File_Box is returned as result in the Validate
Validate(File_Box box,Integer mode,Text &result) call.

CHECK_FILE_MUST_EXIST = 1

If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "ERROR ... does not

exist"
(c) If field is blank and not optional, message says "ERROR File must specify a file name"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.

The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the message says "ERROR ...

does not exist" and the return code is NO_FILE. The text in the File_Box is returned in the
argument result.

(c) If field is blank and not optional, for Validate the message says "ERROR File must specify a
file name" and the return code of NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME. result is returned as ""

CHECK_FILE_CREATE = 14
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "will be created"
(c) If field is blank and not optional, message says "ERROR must specify a file name"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(File_Box box,Integer mode,Text &result):

(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.
Page 1305File Mode

12d Model Programming Language Manual
The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the messages says "will be

created" and the return code is NO_FILE. The text in the File_Box is returned in the
argument result. Yes it is a confusing message but this mode should not be used with
Validate.

(c) If field is blank and not optional, for Validate the message says "ERROR must specify a file
name" and the return code of NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME. result is returned as "".

CHECK_FILE = 22
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "ERROR File must

specify an existing file"
(c) If field is blank and not optional, message says "ERROR File must specify an existing file"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.

The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the messages says "ERROR

File must specify an existing file" and the return code is NO_FILE. The text in the File_Box is
returned in the argument result.

(c) If field is blank and not optional, for Validate the message says "ERROR File must specify
an existing file" and the return code of NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME. result is returned as "".

CHECK_FILE_NEW = 20

If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "ERROR ... exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "File ... will be

created".
(c) If field is blank and not optional, message says "ERROR File must specify a file name"
(d) If field is blank and optional, message says "ok - field is optional".

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "ERROR ... exists" and the return code is

FILE_EXISTS. The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the messages says "File ... will

be created" and the return code is NO_FILE. The text in the File_Box is returned in the
argument result.

(c) If field is blank and not optional, for Validate the message says "ERROR File must specify a
file name" and the return code of NO_FILE. result is returned as "".

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_FILE. result is returned as ""
Page 1306 File Mode

Chapter A Appendix - Set_ups.h File
CHECK_FILE_APPEND = 21
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "will be created"
(c) If field is blank and not optional, message says "ERROR must specify a file"
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.

The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the messages says "will be

created" and the return code is NO_FILE. The text in the File_Box is returned in the
argument result. Yes it is a confusing message but this mode should not be used with
Validate.

(c) If field is blank and not optional, for Validate the message says "ERROR must specify a file"
and the return code of NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME. result is returned as "".

CHECK_FILE_WRITE = 23
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "will be created"
(c) If field is blank and not optional, message says
(d) If field is blank and optional, message says "ok - field is optional"

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.

The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the messages says "will be

created" and the return code is NO_FILE. The text in the File_Box is returned in the
argument result. Yes it is a confusing message but this mode should not be used with
Validate.

(c) If field is blank and not optional, for Validate the message says and the return code of
NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate the message says "ok - field is optional" and the
return code is NO_NAME. result is returned as "".

GET_FILE = 16
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:

(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "ERROR File must

specify an existing file"
(c) If field is blank and not optional, there is no message
Page 1307File Mode

12d Model Programming Language Manual
(d) If field is blank and optional, there is no message.

For Validate(File_Box box,Integer mode,Text &result):

(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.
The text in the File_Box is returned in the argument result.

(b) If the file doesn’t exist and the field is not blank, for Validate the message says "ERROR File
must specify an existing file" and the return code is NO_FILE. The text in the File_Box is
returned in the argument result.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

GET_FILE_MUST_EXIST = 7

If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists".
(b) If the file doesn’t exist and the field is not blank, the messages says "ERROR File file ...

does not exist".
(c) If field is blank and not optional, the message says "ERROR File must specify a file name"
(d) If field is blank and optional, there is no message.

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and the return code is FILE_EXISTS.

The text in the File_Box is returned in the argument result.
(b) If the file doesn’t exist and the field is not blank, for Validate the message says "ERROR File

file ... does not exist" and the return code is NO_FILE. The text in the File_Box is returned in
the argument result.

(c) If field is blank and not optional, for Validate the message says "ERROR File must specify a
file name" and the return code is NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

GET_FILE_CREATE = 15
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists", and a "File_Box Not Optional" panel comes up

and asks if you would like to Replace or Cancel. If Replace if selected, the file is deleted. If
Cancel is Selected, the file is not deleted and "overwrite aborted by user".

(b) If the file doesn’t exist and the field is not blank, the messages says "File ... will be created"
but no file is created.

(c) If field is blank and not optional, there is no message.
(d) If field is blank and optional, there is no message.

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and a "File_Box Not Optional" panel

comes up and asks if you would like to Replace or Cancel. If Replace if selected, the file is
deleted and the return code is NO_FILE. If Cancel is Selected, the file is not deleted and
"overwrite aborted by user" and the return code is NO_FILE_ACCESS. In both bases, the
text in the File_Box is returned in the argument result.
Page 1308 File Mode

Chapter A Appendix - Set_ups.h File
Hence when the file already exist, the user is asked to Replace or Cancel and the return
code differentiates between the two possibilities:
 NO_FILE indicates that Replace was chosen (and the file is automatically deleted).
 NO_FILE_ACCESS indicates that Cancel was chosen and so the file is not to be used.

(b) If the file doesn’t exist and the field is not blank, for Validate the message says "will be
created" but no file is created. The return code is NO_FILE. The text in the File_Box is
returned in the argument result.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

GET_FILE_NEW = 18
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "ERROR File ... exists". The file is not deleted.
(b) If the file doesn’t exist and the field is not blank, the messages says "File ... will be created"

but no file is created.
(c) If field is blank and not optional, the message says "ERROR File must specify a file name".
(d) If field is blank and optional, there is no message.

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "ERROR File ... exists" and the return code is

FILE_EXISTS. The file is not deleted.T he text in the File_Box is returned in the argument
result.

(b) If the file doesn’t exist and the field is not blank, for Validate the message says "will be
created" but no file is created. The return code is NO_FILE. The text in the File_Box is
returned in the argument result.

(c) If field is blank and not optional, for Validate the message says "ERROR File must specify a
file name" and the return code is NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

GET_FILE_APPEND = 19
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:

(a) If the file exists, the message says "exists", and a "File_Box Not Optional" panel comes up
and asks if you would like to Append, Replace or Cancel. If Append is selected nothing is
done, if Replace if selected, the file is deleted. If Cancel is Selected, the file is not deleted
and "overwrite aborted by user".

(b) If the file doesn’t exist and the field is not blank, the messages says "File ... will be created"
but no file is created.

(c) If field is blank and not optional, there is no message.
(d) If field is blank and optional, there is no message.

For Validate(File_Box box,Integer mode,Text &result):

(a) If the file exists, for Validate the message says "exists" and a "File_Box Not Optional" panel
comes up and asks if you would like to Append, Replace or Cancel. If Append is selected
nothing is done to the file and the return code is FILE_EXISTS, If Replace if selected, the
file is deleted and the return code is NO_FILE. If Cancel is Selected, the file is not deleted
Page 1309File Mode

12d Model Programming Language Manual
and "overwrite aborted by user" and the return code is NO_FILE_ACCESS. In both bases,
the text in the File_Box is returned in the argument result.
Hence when the file already exist, the user is asked to Append, Replace or Cancel and the
return code differentiates between the three possibilities:

 FILE_EXISTS indicates that Append was chosen.
 NO_FILE indicates that Replace was chosen (and the file is automatically deleted).
 NO_FILE_ACCESS indicates that Cancel was chosen and so the file is not to be used.

(b) If the file doesn’t exist and the field is not blank, for Validate the message says "will be
created" but no file is created. The return code is NO_FILE. The text in the File_Box is
returned in the argument result.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

GET_FILE_WRITE = 24
If information is typed and then an <enter> pressed in the File_Box, or if a file is selected from
the file pop-up list:
(a) If the file exists, the message says "exists", and a "File_Box Not Optional" panel comes up

and asks if you would like to Append, Replace or Cancel. If Append is selected ?, if Replace
if selected, the file is deleted. If Cancel is Selected, the file is not deleted and "overwrite
aborted by user".

(b) If the file doesn’t exist and the field is not blank, the messages says "File ... will be created"
but no file is created.

(c) If field is blank and not optional, there is no message.
(d) If field is blank and optional, there is no message.

For Validate(File_Box box,Integer mode,Text &result):
(a) If the file exists, for Validate the message says "exists" and a "File_Box Not Optional" panel

comes up and asks if you would like to Append, Replace or Cancel. If Append is selected ?
and the return code is FILE_EXISTS, If Replace if selected, the file is deleted and the return
code is NO_FILE. If Cancel is Selected, the file is not deleted and "overwrite aborted by
user" and the return code is NO_FILE_ACCESS. In both bases, the text in the File_Box is
returned in the argument result.

(b) If the file doesn’t exist and the field is not blank, for Validate the message says "will be
created" but no file is created. The return code is NO_FILE. The text in the File_Box is
returned in the argument result.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME. result is returned as "".

FILE RETURN CODES
NO_FILE = 4
FILE_EXISTS = 5

NO_FILE_ACCESS = 6
Page 1310 File Mode

Chapter A Appendix - Set_ups.h File
NO_NAME = 10 // when no name is entered (i.e. blank)
NO_CASE = 8
Page 1311File Mode

12d Model Programming Language Manual
View Mode
The View modes are used in two ways.
(a) When a View_Box is created with Create_view_box(Text title_text,Message_Box message,Integer

mode), mode determines the behaviour when information is entered into the View_Box.
If information is typed and then an <enter> pressed in the View_Box, or if a view is selected
from the view pop-up list, automatic validation is performed by the View_Box according to
mode. What the validation is, what messages are written to Message_Box, and what
actions automatically occur, depend on the value of mode.

(b) A mode is also used with the Validate(View_Box box,Integer mode,View &view) call. Again
mode will determine what validation occurs, what messages are written to the
Message_Box, what actions are taken and what the function return value is.

CHECK_VIEW_MUST_EXIST = 2

If information is typed and then an <enter> pressed in the View_Box, or if a view is selected from
the view pop-up list:
(a) If the view exists, the message says "exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "ERROR does not

exist"
(c) If field is blank and not optional, message says "ERROR no view specified"
(d) If field is blank and optional, message says "ok"

For Validate(view_box,mode,view):
(a) If the model exists, for Validate the message says "exists" and the return code is

VIEW_EXISTS. The view is returned as the argument view.
(b) If the view doesn’t exist and the field is not blank, for Validate the messages says "ERROR

does not exist" and the return code is NO_VIEW and no view is returned as the argument
view.

(c) If field is blank and not optional, for Validate the message says "ERROR no view specified"
and the return code of NO_NAME and no view is returned as the argument view.

(d) If field is blank and optional, for Validate the message says "ok" and the return code is
NO_NAME and no view is returned as the argument view.

CHECK_VIEW_MUST_NOT_EXIST = 25

If information is typed and then an <enter> pressed in the View_Box, or if a view is selected from
the view pop-up list:
(a) If the view exists, the message says "ERROR exists".
(b) If the model doesn’t exist and the field is not blank, the messages says "will be created".
(c) If field is blank and not optional, message says "ERROR no view specified"
(d) If field is blank and optional, message says "ok"

For Validate(view_box,mode,view):
(a) If the view exists, for Validate the message says "ERROR exists" and the return code is

VIEW_EXISTS. The view is returned as the argument view.
(b) If the view doesn’t exist and the field is not blank, for Validate the messages says "will be

created" and the return code is NO_VIEW and no view is returned as the argument model.
(c) If field is blank and not optional, for Validate the message says "no view specified" and the

return code of NO_NAME and no view is returned as the argument view.
Page 1312 View Mode

Chapter A Appendix - Set_ups.h File
(d) If field is blank and optional, for Validate the message says "ok" and the return code is
NO_NAME and no view is returned as the argument view.

GET_VIEW = 11
If information is typed and then an <enter> pressed in the View_Box, or if a view is selected from
the view pop-up list:
(a) If the view exists, the message says "exists".
(b) If the view doesn’t exist and the field is not blank, the messages says "ERROR does not

exist"
(c) If field is blank and not optional, there is no message
(d) If field is blank and optional, there is no message.

For Validate(view_box,mode,view):

(a) If the view exists, for Validate the message says "exists" and the return code is
VIEW_EXISTS. The view is returned as the argument view.

(b) If the view doesn’t exist and the field is not blank, for Validate the message says "ERROR
does not exist" and the return code is NO_VIEW and no view is returned as the argument
view.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME and no view is returned as the argument view.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no view is returned as the argument view.

GET_VIEW_ERROR = 6
If information is typed and then an <enter> pressed in the View_Box, or if a view is selected from
the view pop-up list:
(a) If the view exists, the message says "exists".
(b) If the view doesn’t exist and the field is not blank, the messages says "ERROR does not

exist".
(c) If field is blank and not optional, the message says "ERROR no view specified"
(d) If field is blank and optional, there is no message.

For Validate(view_box,mode,view):
(a) If the view exists, for Validate the message says "exists" and the return code is

VIEW_EXISTS. The model is returned as the argument view.
(b) If the view doesn’t exist and the field is not blank, for Validate the message says "ERROR

does not exist" and the return code is NO_VIEW and no view is returned as the argument
view.

(c) If field is blank and not optional, for Validate the message says "ERROR no view specified"
and the return code is NO_NAME and no view is returned as the argument view.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no view is returned as the argument view.

VIEW RETURN CODES
NO_VIEW = 6
VIEW_EXISTS = 7
Page 1313View Mode

12d Model Programming Language Manual
NO_NAME = 10
NO_CASE = 8
Page 1314 View Mode

Chapter A Appendix - Set_ups.h File
Tin Mode
The Tin modes are used in two ways.
(a) When a Tin_Box is created with Create_tin_box(Text title_text,Message_Box message,Integer

mode), mode determines the behaviour when information is entered into the Tin_Box.
If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected
from the tin pop-up list, automatic validation is performed by the Tin_Box according to
mode. What the validation is, what messages are written to Message_Box, and what
actions automatically occur, depend on the value of mode.

(b) A mode is also used with the Validate(Tin_Box box,Integer mode,Tin &tin) call. Again mode
will determine what validation occurs, what messages are written to the Message_Box, what
actions are taken and what the function return value is.

There are CHECK modes which never create tins and GET modes which may create tins.

CHECK_TIN_MUST_EXIST = 8

If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:

(a) If the tin exists, the message says "exists".
(b) If the tin doesn’t exist and the field is not blank, the messages says "ERROR does not exist"
(c) If field is blank and not optional, message says "ERROR no tin specified"
(d) If field is blank and optional, message says "ok"

For Validate(tin_box,mode,tin):

(a) If the tin exists, for Validate the message says "exists" and the return code is TIN_EXISTS.
The tin is returned as the argument tin.

(b) If the tin doesn’t exist and the field is not blank, for Validate the messages says "ERROR
does not exist" and the return code is NO_TIN and no tin is returned as the argument tin.

(c) If field is blank and not optional, for Validate the message says "ERROR no tin specified"
and the return code of NO_NAME and no tin is returned as the argument tin.

(d) If field is blank and optional, for Validate the message says "ok" and the return code is
NO_NAME and no tin is returned as the argument tin.

CHECK_TIN_EXISTS = 61

If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:

(a) If the tin exists, the message says "exists".
(b) If the tin doesn’t exist and the field is not blank, the messages says "does not exist"
(c) If field is blank and not optional, message says "no tin specified"
(d) If field is blank and optional, message says "ok"

For Validate(tin_box,mode,tin):

(a) If the tin exists, for Validate the message says "exists" and the return code is TIN_EXISTS.
The tin is returned as the argument tin.

(b) If the tin doesn’t exist and the field is not blank, for Validate the message says "does not
exist" and the return code is NO_TIN and no tin is returned as the argument tin.

(c) If field is blank and not optional, for Validate the message says "no tin specified" and the
return code of NO_NAME and no tin is returned as the argument tin.
Page 1315Tin Mode

12d Model Programming Language Manual
(d) If field is blank and optional, for Validate the message says "ok" and the return code is
NO_NAME and no tin is returned as the argument tin.

CHECK_EITHER_TIN_EXISTS = 39

CHECK_TIN_NEW = 12

If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:

(a) If the tin exists, the message says "ERROR must not exist".
(b) If the tin doesn’t exist and the field is not blank, the messages says "ok - no Tin exists"
(c) If field is blank and not optional, message says "ERROR no tin specified"
(d) If field is blank and optional, message says "ok"

For Validate(tin_box,mode,tin):

(a) If the tin exists, for Validate the message says "ERROR must not exist" and the return code
is TIN_EXISTS. The tin is returned as the argument tin.

(b) If the tin doesn’t exist and the field is not blank, for Validate the messages says "ok - no Tin
exists" and the return code is NO_TIN and no tin is returned as the argument tin.

(c) If field is blank and not optional, for Validate the message says "ERROR no tin specified"
and the return code of NO_NAME and no tin is returned as the argument tin.

(d) If field is blank and optional, for Validate the message says "ok" and the return code is
NO_NAME and no tin is returned as the argument tin.

CHECK_TIN_MUST_NOT_EXIST = 91

If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:
(a) If the tin exists, the message says "ERROR exists".
(b) If the tin doesn’t exist and the field is not blank, the messages says "does not exist".
(c) If field is blank and not optional, message says "ERROR tin not specified"
(d) If field is blank and optional, message says "ok"

For Validate(tin_box,mode,tin):
(a) If the tin exists, for Validate the message says "ERROR exists" and the return code is

TIN_EXISTS. The tin is returned as the argument tin.
(b) If the tin doesn’t exist and the field is not blank, for Validate the messages says "does not

exist" and the return code is NO_TIN and no tin is returned as the argument tin.
(c) If field is blank and not optional, for Validate the message says "ERROR no tin specified"

and the return code of NO_NAME and no tin is returned as the argument tin.
(d) If field is blank and optional, for Validate the message says "ok" and the return code is

NO_NAME and no tin is returned as the argument tin.

CHECK_DISK_TIN_MUST_EXIST = 16

GET_TIN = 10
If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:
Page 1316 Tin Mode

Chapter A Appendix - Set_ups.h File
(a) If the tin exists, the message says "exists".
(b) If the tin doesn’t exist and the field is not blank, the messages says "ERROR does not exist"
(c) If field is blank and not optional, there is no message
(d) If field is blank and optional, there is no message.

For Validate(tin_box,mode,tin):

(a) If the tin exists, for Validate the message says "exists" and the return code is TIN_EXISTS.
The tin is returned as the argument tin.

(b) If the tin doesn’t exist and the field is not blank, for Validate the message says "ERROR
does not exist" and the return code is NO_TIN and no tin is returned as the argument tin.

(c) If field is blank and not optional, for Validate there is no message and the return code is
NO_NAME and no tin is returned as the argument model.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no tin is returned as the argument model.

GET_TIN_ERROR = 9
If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:
(a) If the tin exists, the message says "exists".
(b) If the tin doesn’t exist and the field is not blank, the messages says "ERROR does not

exist".
(c) If field is blank and not optional, the message says "ERROR no tin specified"
(d) If field is blank and optional, there is no message.

For Validate(tin_box,mode,tin):
(a) If the tin exists, for Validate the message says "exists" and the return code is TIN_EXISTS.

The tin is returned as the argument tin.
(b) If the tin doesn’t exist and the field is not blank, for Validate the message says "ERROR

does not exist" and the return code is NO_TIN and no tin is returned as the argument tin.
(c) If field is blank and not optional, for Validate the message says "ERROR no tin specified"

and the return code is NO_NAME and no tin is returned as the argument tin.
(d) If field is blank and optional, for Validate there is no message and the return code is

NO_NAME and no tin is returned as the argument tin.

GET_TIN_CREATE = 24
If information is typed and then an <enter> pressed in the Tin_Box, or if a tin is selected from the
tin pop-up list:
(a) If the tin exists, the message says "exists".
(b) If the tin doesn’t exist and the field is not blank, the messages says "created" and the tin is

created.
(c) If field is blank and not optional, the message says "ERROR no tin specified"
(d) If field is blank and optional, there is no message.

For Validate(tin_box,mode,tin):
(a) If the tin exists, for Validate the message says "exists" and the return code is TIN_EXISTS.

The tin is returned as the argument tin.
(b) If the tin doesn’t exist and the field is not blank, for Validate the message says "created" and

the tin is created. The return code is TIN_EXISTS and the tin is returned as the argument
tin.
Page 1317Tin Mode

12d Model Programming Language Manual
(c) If field is blank and not optional, for Validate the message says "ERROR no tin specified"
and the return code is NO_NAME and no tin is returned as the argument tin.

(d) If field is blank and optional, for Validate there is no message and the return code is
NO_NAME and no tin is returned as the argument tin.

GET_DISK_TIN_ERROR = 35

TIN RETURN CODES
NO_TIN = 9

TIN_EXISTS = 11
DISK_TIN_EXISTS = 12

NO_NAME = 10 // when no name is entered (i.e. blank)
NO_CASE = 8
Page 1318 Tin Mode

Chapter A Appendix - Set_ups.h File
Template Mode
MODE MODE NUMBER
CHECK_TEMPLATE_EXISTS1 7
CHECK_TEMPLATE_CREATE 18

CHECK_TEMPLATE_NEW 19
CHECK_TEMPLATE_MUST_EXIST 20
CHECK_TEMPLATE_MUST_NOT_EXIST 59

CHECK_DISK_TEMPLATE_MUST_EXIST 48
CHECK_EITHER_TEMPLATE_EXISTS 49

GET_TEMPLATE 21

GET_TEMPLATE_CREATE 22
GET_TEMPLATE_ERROR 23
GET_DISK_TEMPLATE_ERROR 40

TEMPLATE RETURN CODES VALUE
NO_TEMPLATE 13

TEMPLATE_EXISTS 14
DISK_TEMPLATE_EXISTS 20
NEW_TEMPLATE 15

NO_NAME 10
NO_CASE 8
Page 1319Template Mode

12d Model Programming Language Manual
Project Mode
MODE MODE NUMBER
CHECK_PROJECT_EXISTS 26
CHECK_PROJECT_CREATE 27

CHECK_PROJECT_NEW 28
CHECK_PROJECT_MUST_EXIST 29
CHECK_DISK_PROJECT_MUST_EXIST 36

GET_PROJECT 30
GET_PROJECT_CREATE 31

GET_PROJECT_ERROR 32
GET_DISK_PROJECT_ERROR 37

PROJECT RETURN CODES VALUE
NO_PROJECT 16
PROJECT_EXISTS 17

NEW_PROJECT 18

NO_NAME 10
NO_CASE 8
Page 1320 Project Mode

Chapter A Appendix - Set_ups.h File
Directory Mode
MODE MODE NUMBER
CHECK_DIRECTORY_EXISTS 41
CHECK_DIRECTORY_CREATE 42

CHECK_DIRECTORY_NEW 43
CHECK_DIRECTORY_MUST_EXIST 44

GET_DIRECTORY 45
GET_DIRECTORY_CREATE 46

GET_DIRECTORY_ERROR 47

DIRECTORY RETURN CODES VALUE
NO_DIRECTORY 21
DIRECTORY_EXISTS 22
NEW_DIRECTORY 23

NO_NAME 10

NO_CASE 8
Page 1321Directory Mode

12d Model Programming Language Manual
Function Mode
MODE MODE NUMBER
CHECK_FUNCTION_MUST_EXIST 50
CHECK_FUNCTION_EXISTS 51

CHECK_FUNCTION_CREATE 52
CHECK_DISK_FUNCTION_MUST_EXIST 53
CHECK_EITHER_FUNCTION_EXISTS 54

CHECK_FUNCTION_MUST_NOT_EXIST 90

GET_FUNCTION 55

GET_FUNCTION_CREATE 56
GET_FUNCTION_ERROR 57
GET_DISK_FUNCTION_ERROR 58

FUNCTION RETURN CODES VALUE
NO_FUNCTION 24

FUNCTION_EXISTS 25
DISK_FUNCTION_EXISTS 26

NEW_FUNCTION 27

NO_NAME 10
NO_CASE 8
Page 1322 Function Mode

Chapter A Appendix - Set_ups.h File
Function Type
TYPE TYPE NUMBER
APPLY_TEMPLATE_MACRO 4100
APPLY_TEMPLATES_MACRO 4102

INTERFACE_MACRO 4103
KERB_RETURN_MACRO 4105
RETRIANGULATE_MACRO 4106

STRING_MODIFIERS_MACRO 4108
SURVEY_DATA_REDUCTION_MACRO 4109

SIMPLE_MACRO 4110
CREATE_ROADS_MACRO 4111
SLF_MACRO 4112

FDO_MACRO 4113
VEHICLE_PATH_MACRO 4114
COMPONENT_MACRO 4115

CREATE_ROADS_NEW_MACRO 4116
CUTS_CALC_MACRO 4117
Page 1323Function Type

12d Model Programming Language Manual
Linestyle Mode
MODE MODE NUMBER
CHECK_LINESTYLE_MUST_EXIST 82
CHECK_LINESTYLE_MUST_NOT_EXIST 83

GET_LINESTYLE 84
GET_LINESTYLE_ERROR 85

LINESTYLE RETURN CODES VALUE
LINESTYLE_EXISTS 80

NO_LINESTYLE 81

NO_NAME 10

NO_CASE 8

The same modes are also used for symbol calls.
Page 1324 Linestyle Mode

Chapter A Appendix - Set_ups.h File
Symbol Mode
See Linestyle Mode
MODE MODE NUMBER
Page 1325Symbol Mode

12d Model Programming Language Manual
Snap Mode
MODE MODE NUMBER
Ignore_Snap 0
User_Snap 1

Program_Snap 2
Failed_Snap -1
No_Snap 0

Point_Snap 1
Line_Snap 2
Grid_Snap 3

Intersection_Snap 4
Cursor_Snap 5
Name_Snap 6

Tin_Snap 7
Model_Snap 8
Height_Snap 9
Page 1326 Snap Mode

Chapter A Appendix - Set_ups.h File
Super String Use Modes
MODE MODE NUMBER
Att_ZCoord_Value 1
Att_ZCoord_Array 2

Att_Radius_Array 3
Att_Major_Array 4
Att_Diameter_Value 5

Att_Diameter_Array 6
Att_Text_Array 7

Att_Colour_Value 8
Att_Colour_Array 9
Att_Point_Array 11

Att_Visible_Array 12
Att_Contour_Array 13
Att_Annotate_Value 14

Att_Annotate_Array 15
Att_Attribute_Array 16
Att_Symbol_Value 17

Att_Symbol_Array 18
Att_Segment_Attribute_Array 19
Att_Segment_Annotate_Value 20

Att_Segment_Annotate_Array 21
Att_Segment_Text_Value 22
Att_Pipe_Justify 23

Att_Culvert_Value 24
Att_Culvert_Array 25
Att_Hole_Value 26

Att_Hatch_Value 27
Att_Solid_Value 28
Att_Bitmap_Value 29

Att_World_Annotate 30
Att_Annotate_Type 31
Att_XCoord_Array 32

Att_YCoord_Array 33
Att_Pattern_Value 33 ?
Att_Vertex_UID_Array 35

Att_Segment_UID_Array 36
Att_Vertex_Tinable_Value 37

Att_Vertex_Tinable_Array 38
Att_Segment_Tinable_Value 39
Page 1327Super String Use Modes

12d Model Programming Language Manual
Att_Segment_Tinable_Array 40
Att_Vertex_Visible_Value 41
Att_Vertex_Visible_Array 42

Att_Segment_Visible_Value 43
Att_Segment_Visible_Array 44
Att_Vertex_Paper_Annotate 45

Att_Segment_Paper_Annotate 46
Att_Database_Point_Array 47
Att_Extrude_Value 48

Att_Interval_Value 50
Att_Vertex_Image_Value 51

Att_Vertex_Image_Array 52
Att_Matrix_Value 53
Att_Autocad_Pattern_Value 54

 Att_Null_Levels_Value 55
Page 1328 Super String Use Modes

Chapter A Appendix - Set_ups.h File
Select Mode
MODE MODE NUMBER
SELECT_STRING 5509
SELECT_STRINGS 5510

NO_NAME 10
NO_CASE 8

TRUE 1

OK 1
FALSE 0
Page 1329Select Mode

12d Model Programming Language Manual
Target Box Flags
A Target Box contains many choices for the target. A subset of choices is mapped to an integer
flag which is the bitwise sum of numbers from the set:

FLAG NUMBER
Target_Box_Nop 0
Target_Box_Move_To_Original_Model 1
Target_Box_Move_To_One_Model 2

Target_Box_Move_To_Many_Models 4
Target_Box_Copy_To_Original_Model 8
Target_Box_Copy_To_One_Model 16

Target_Box_Copy_To_Many_Models 32

To include all choices

Target_Box_Move_Copy_All 255
Page 1330 Target Box Flags

Chapter A Appendix - Set_ups.h File
Widgets Mode
HORIZONTAL GROUP MODE NUMBER
BALANCE_WIDGETS_OVER_WIDTH 1
ALL_WIDGETS_OWN_WIDTH 2

COMPRESS_WIDGETS_OVER_WIDTH 4
-1 is also allowed

VERTICAL GROUP MODE NUMBER
BALANCE_WIDGETS_OVER_HEIGHT 1

ALL_WIDGETS_OWN_HEIGHT 2
COMPRESS_WIDGETS_OVER_HEIGHT 4
-1 is also allowed
Page 1331Widgets Mode

12d Model Programming Language Manual
Text Alignment Modes for Draw_Box
The text drawn in the Draw_Box uses the Text Alignments as given by the Microsoft SetTextAlign
Function.
The text is drawn on a baseline and has a bounding box that surrounds the text.
The default values are TA_LEFT, TA_TOP and TA_NOUPDATECP.

MODE MODE NUMBER
TA_NOUPDATECP 0

The current position is not updated after each text output call. The reference point is passed
to the next text output function.

TA_UPDATECP 1
The current position is updated after each text output call. The current position is used as the
reference point.

TA_LEFT 0
The reference point will be on the left edge of the bounding rectangle.

TA_RIGHT 2
The reference point will be on the right edge of the bounding rectangle.

TA_CENTER 6
The reference point will be aligned horizontally with the centre of the bounding rectangle.

TA_TOP 0
The reference point will be on the top edge of the bounding rectangle.

TA_BOTTOM 8

The reference point will be on the bottom edge of the bounding rectangle.
TA_BASELINE 24

The reference point will be on the base line of the text.

TA_RTLREADING 256
Middle East language edition of Windows: The text is laid out in right to left reading order, as
opposed to the default left to right order. This applies only when the font selected into the
device context is either Hebrew or Arabic. reference point will be on the base line of the text.

TA_MASK (TA_BASELINE+TA_CENTER+TA_UPDATECP+TA_RTLREADING)

 VTA_BASELINE TA_BASELINE
 VTA_LEFT TA_BOTTOM
VTA_RIGHT TA_TOP

VTA_CENTER TA_CENTER
 VTA_BOTTOM TA_RIGHT
VTA_TOP TA_LEFT
Page 1332 Text Alignment Modes for Draw_Box

Chapter A Appendix - Set_ups.h File
Set Ups.h
#ifndef set_ups_included
#define set_ups_included

// --
// colour conversion stuff
// --

Integer create_rgb(Integer r,Integer g,Integer b)
// --
// --
{
 return((1 << 31) | (r << 16) | (g << 8) | b);
}
Integer is_rgb(Integer colour)
// --
// --
{
 return((colour & (1 << 31)) ? 1 : 0);
}
Integer get_rgb(Integer colour,Integer &r,Integer &g,Integer &b)
// --
// --
{
 if(colour & (1 << 31)) {

// a direct colour defined !

 r = (colour & 16711680) >> 16;
 g = (colour & 65280) >> 8;
 b = (colour & 255);

 return(1);
 }
 return(0);
}

#define VIEW_COLOUR 0x7fffffff
#define NO_COLOUR -1

//--
// SETUPS
//--

#define CHECK_MODEL_MUST_EXIST 7
#define CHECK_MODEL_EXISTS 3
#define CHECK_MODEL_CREATE 4
#define CHECK_DISK_MODEL_MUST_EXIST 33
#define CHECK_EITHER_MODEL_EXISTS 38
#define GET_MODEL 10
#define GET_MODEL_CREATE 5
#define GET_MODEL_ERROR 13
#define GET_DISK_MODEL_ERROR 34
#define CHECK_MODEL_MUST_NOT_EXIST 60

#define CHECK_FILE_MUST_EXIST 1
Page 1333Set Ups.h

12d Model Programming Language Manual
#define CHECK_FILE_CREATE 14
#define CHECK_FILE 22
#define CHECK_FILE_CREATE 14
#define CHECK_FILE_NEW 20
#define CHECK_FILE_APPEND 21
#define CHECK_FILE_WRITE 23
#define GET_FILE 16
#define GET_FILE_MUST_EXIST 17
#define GET_FILE_CREATE 15
#define GET_FILE_NEW 18
#define GET_FILE_APPEND 19
#define GET_FILE_WRITE 24

#define GET_TIN 10

#define CHECK_VIEW_MUST_EXIST 2
#define CHECK_VIEW_MUST_NOT_EXIST 25
#define GET_VIEW 11
#define GET_VIEW_ERROR 6

#define CHECK_TIN_MUST_EXIST 8
#define CHECK_TIN_EXISTS 61
#define CHECK_EITHER_TIN_EXISTS 39
#define CHECK_TIN_NEW 12
#define GET_TIN_ERROR 9
#define CHECK_DISK_TIN_MUST_EXIST 16
#define GET_TIN_CREATE 24
#define GET_DISK_TIN_ERROR 35
#define CHECK_TIN_MUST_NOT_EXIST 91

#define CHECK_TEMPLATE_EXISTS 17
#define CHECK_TEMPLATE_CREATE 18
#define CHECK_TEMPLATE_NEW 19
#define CHECK_TEMPLATE_MUST_EXIST 20
#define CHECK_TEMPLATE_MUST_NOT_EXIST 59
#define GET_TEMPLATE 21
#define GET_TEMPLATE_CREATE 22
#define GET_TEMPLATE_ERROR 23
#define GET_DISK_TEMPLATE_ERROR 40
#define CHECK_DISK_TEMPLATE_MUST_EXIST 48
#define CHECK_EITHER_TEMPLATE_EXISTS 49

#define CHECK_PROJECT_EXISTS 26
#define CHECK_PROJECT_CREATE 27
#define CHECK_PROJECT_NEW 28
#define CHECK_PROJECT_MUST_EXIST 29
#define CHECK_DISK_PROJECT_MUST_EXIST 36
#define GET_PROJECT 30
#define GET_PROJECT_CREATE 31
#define GET_PROJECT_ERROR 32
#define GET_DISK_PROJECT_ERROR 37

#define CHECK_DIRECTORY_EXISTS 41
#define CHECK_DIRECTORY_CREATE 42
#define CHECK_DIRECTORY_NEW 43
#define CHECK_DIRECTORY_MUST_EXIST 44
#define GET_DIRECTORY 45
Page 1334 Set Ups.h

Chapter A Appendix - Set_ups.h File
#define GET_DIRECTORY_CREATE 46
#define GET_DIRECTORY_ERROR 47

#define CHECK_FUNCTION_MUST_EXIST 50
#define CHECK_FUNCTION_EXISTS 51
#define CHECK_FUNCTION_CREATE 52
#define CHECK_DISK_FUNCTION_MUST_EXIST 53
#define CHECK_EITHER_FUNCTION_EXISTS 54
#define GET_FUNCTION 55
#define GET_FUNCTION_CREATE 56
#define GET_FUNCTION_ERROR 57
#define GET_DISK_FUNCTION_ERROR 58
#define CHECK_FUNCTION_MUST_NOT_EXIST 90

#define CHECK_LINESTYLE_MUST_EXIST 82
#define CHECK_LINESTYLE_MUST_NOT_EXIST 83
#define GET_LINESTYLE 84
#define GET_LINESTYLE_ERROR 85

// return codes

#define NO_NAME 10

#define NO_MODEL 1
#define MODEL_EXISTS 2
#define DISK_MODEL_EXISTS 19
#define NEW_MODEL 3

#define NO_FILE 4
#define FILE_EXISTS 5
#define NO_FILE_ACCESS 6

#define NO_VIEW 6
#define VIEW_EXISTS 7

#define NO_CASE 8

#define NO_TIN 9
#define TIN_EXISTS 11
#define DISK_TIN_EXISTS 12

#define NO_TEMPLATE 13
#define TEMPLATE_EXISTS 14
#define DISK_TEMPLATE_EXISTS 20
#define NEW_TEMPLATE 15

#define NO_PROJECT 16
#define PROJECT_EXISTS 17
#define NEW_PROJECT 18

#define NO_DIRECTORY 21
#define DIRECTORY_EXISTS 22
#define NEW_DIRECTORY 23

#define NO_FUNCTION 24
#define FUNCTION_EXISTS 25
#define DISK_FUNCTION_EXISTS 26
#define NEW_FUNCTION 27
Page 1335Set Ups.h

12d Model Programming Language Manual
#define LINESTYLE_EXISTS 80
#define NO_LINESTYLE 81

#define SELECT_STRING 5509
#define SELECT_STRINGS 5510

// teststyle data constants

#define Textstyle_Data_Textstyle 0x001
#define Textstyle_Data_Colour 0x002
#define Textstyle_Data_Type 0x004
#define Textstyle_Data_Size 0x008
#define Textstyle_Data_Offset 0x010
#define Textstyle_Data_Raise 0x020
#define Textstyle_Data_Justify_X 0x040
#define Textstyle_Data_Justify_Y 0x080
#define Textstyle_Data_Angle 0x100
#define Textstyle_Data_Slant 0x200
#define Textstyle_Data_X_Factor 0x400
#define Textstyle_Data_Name 0x800
#define Textstyle_Data_All 0xfff

// textstyle data box constants - V9 compatible - for V10 and beyond see below

#define Show_favorites_box 0x00000001
#define Show_textstyle_box 0x00000002
#define Show_colour_box 0x00000004
#define Show_type_box 0x00000008
#define Show_size_box 0x00000010
#define Show_offset_box 0x00000020
#define Show_raise_box 0x00000040
#define Show_justify_box 0x00000080
#define Show_angle_box 0x00000100
#define Show_slant_box 0x00000200
#define Show_x_factor_box 0x00000400
#define Show_name_box 0x00000800
#define Show_draw_box 0x00001000
#define Show_underline_box 0x00002000
#define Show_strikeout_box 0x00004000
#define Show_italic_box 0x00008000
#define Show_weight_box 0x00010000
#define Show_all_boxes 0x0001ffff
#define Show_std_boxes 0x0001f7ff

#define Optional_textstyle_box 0x00020000
#define Optional_colour_box 0x00040000
#define Optional_type_box 0x00080000
#define Optional_size_box 0x00100000
#define Optional_offset_box 0x00200000
#define Optional_raise_box 0x00400000
#define Optional_justify_box 0x00800000
#define Optional_angle_box 0x01000000
#define Optional_slant_box 0x02000000
#define Optional_x_factor_box 0x04000000
#define Optional_name_box 0x08000000
#define Optional_underline_box 0x10000000
#define Optional_strikeout_box 0x20000000
Page 1336 Set Ups.h

Chapter A Appendix - Set_ups.h File
#define Optional_italic_box 0x40000000
#define Optional_weight_box 0x80000000
#define Optional_all_boxes 0xfffe0000
#define Optional_std_boxes 0xf7fe0000

// V10 textstyle data box constants - only to be used with
// Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags,
// Integer optionals)
// this is the only way to correctly access the additional fields introduced in V10 (whiteout, border,outline)

#define V10_Show_favorites_box 0x00000001
#define V10_Show_textstyle_box 0x00000002
#define V10_Show_colour_box 0x00000004
#define V10_Show_type_box 0x00000008
#define V10_Show_size_box 0x00000010
#define V10_Show_offset_box 0x00000020
#define V10_Show_raise_box 0x00000040
#define V10_Show_justify_box 0x00000080
#define V10_Show_angle_box 0x00000100
#define V10_Show_slant_box 0x00000200
#define V10_Show_x_factor_box 0x00000400
#define V10_Show_name_box 0x00000800
#define V10_Show_draw_box 0x00001000
#define V10_Show_underline_box 0x00002000
#define V10_Show_strikeout_box 0x00004000
#define V10_Show_italic_box 0x00008000
#define V10_Show_weight_box 0x00010000
#define V10_Show_whiteout_box 0x00020000
#define V10_Show_border_box 0x00040000
#define V10_Show_outline_box 0x00080000
#define V10_Show_all_boxes 0x000fffff

#define V10_Optional_textstyle_box 0x00000002
#define V10_Optional_colour_box 0x00000004
#define V10_Optional_type_box 0x00000008
#define V10_Optional_size_box 0x00000010
#define V10_Optional_offset_box 0x00000020
#define V10_Optional_raise_box 0x00000040
#define V10_Optional_justify_box 0x00000080
#define V10_Optional_angle_box 0x00000100
#define V10_Optional_slant_box 0x00000200
#define V10_Optional_x_factor_box 0x00000400
#define V10_Optional_name_box 0x00000800
#define V10_Optional_underline_box 0x00001000
#define V10_Optional_strikeout_box 0x00002000
#define V10_Optional_italic_box 0x00004000
#define V10_Optional_weight_box 0x00008000
#define V10_Optional_whiteout_box 0x00010000
#define V10_Optional_border_box 0x00020000
#define V10_Optional_outline_box 0x00040000
#define V10_Optional_all_boxes 0x0007fffe

#define V10_Show_std_boxes 0x0001f7ff ,
 V10_Optional_whiteout_box | V10_Optional_border_box | V10_Optional_outline_box
#define V10_Optional_std_boxes 0xf7fe0000

// note the critical placement of the , in V10_Show_std_boxes
// since the flags and optionals are now split into 2 separate words, the call to
Page 1337Set Ups.h

12d Model Programming Language Manual
// Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,
// Integer flags,Integer optionals)
// requires two arguments, so if
//
// Textstyle_Data_Box my_box = Create_textstyle_data_box("Contour label",messages,
// V10_Show_std_boxes)
//
// is going the same as
//
// Textstyle_Data_Box my_box = Create_textstyle_data_box("Contour label",messages,
// V10_Show_all_boxes & ~V10_Show_name_box,
// V10_Optional_whiteout_box | V10_Optional_border_box | V10_Optional_outline_box)
//

// source box constants

#define Source_Box_Model 0x001
#define Source_Box_View 0x002
#define Source_Box_String 0x004
#define Source_Box_Rectangle 0x008
#define Source_Box_Trapezoid 0x010
#define Source_Box_Polygon 0x020
#define Source_Box_Lasso 0x040
#define Source_Box_Filter 0x080
#define Source_Box_Models 0x100
#define Source_Box_Favorites 0x200
#define Source_Box_All 0xfff
#define Source_Box_Fence_Inside 0x01000
#define Source_Box_Fence_Cross 0x02000
#define Source_Box_Fence_Outside 0x04000
#define Source_Box_Fence_String 0x08000
#define Source_Box_Fence_Points 0x10000
#define Source_Box_Fence_All 0xff000
#define Source_Box_Standard Source_Box_All | Source_Box_Fence_Inside |
Source_Box_Fence_Outside | Source_Box_Fence_Cross | Source_Box_Fence_String

// target box constants

#define Target_Box_Move_To_Original_Model 0x0001 /* change/replace data */
#define Target_Box_Move_To_One_Model 0x0002 /* move/delete original data */
#define Target_Box_Move_To_Many_Models 0x0004 /* move/delete original data */
#define Target_Box_Copy_To_Original_Model 0x0008 /* copy data */
#define Target_Box_Copy_To_One_Model 0x0010 /* copy data */
#define Target_Box_Copy_To_Many_Models 0x0020 /* copy data */
#define Target_Box_Move_Copy_All 0x00ff
#define Target_Box_Delete 0x1000 /* delete data (exclusive of all others ?) */

// more constants

#define TRUE 1
#define FALSE 0

#define OK 1

// modes for Horizontal_Group (note -1 is also allowed)

#define BALANCE_WIDGETS_OVER_WIDTH 1
#define ALL_WIDGETS_OWN_WIDTH 2
Page 1338 Set Ups.h

Chapter A Appendix - Set_ups.h File
#define COMPRESS_WIDGETS_OVER_WIDTH 4

// modes for Vertical_Group (note -1 is also allowed)

#define BALANCE_WIDGETS_OVER_HEIGHT 1
#define ALL_WIDGETS_OWN_HEIGHT 2
#define ALL_WIDGETS_OWN_LENGTH 4

// snap controls

#define Ignore_Snap 0
#define User_Snap 1
#define Program_Snap 2

// snap modes

#define Failed_Snap -1
#define No_Snap 0
#define Point_Snap 1
#define Line_Snap 2
#define Grid_Snap 3
#define Intersection_Snap 4
#define Cursor_Snap 5
#define Name_Snap 6
#define Tin_Snap 7
#define Model_Snap 8
#define Height_Snap 9
#define Segment_Snap 11
#define Text_Snap 12
#define Fast_Snap 13
#define Fast_Accept 14

// super string dimensions

#define Att_ZCoord_Value 1
#define Att_ZCoord_Array 2
#define Att_Radius_Array 3
#define Att_Major_Array 4
#define Att_Diameter_Value 5
#define Att_Diameter_Array 6
#define Att_Vertex_Text_Array 7
#define Att_Segment_Text_Array 8
#define Att_Colour_Array 9
#define Att_Vertex_Text_Value 10
#define Att_Point_Array 11
#define Att_Visible_Array 12
#define Att_Contour_Array 13
#define Att_Vertex_Annotate_Value 14
#define Att_Vertex_Annotate_Array 15
#define Att_Vertex_Attribute_Array 16
#define Att_Symbol_Value 17
#define Att_Symbol_Array 18
#define Att_Segment_Attribute_Array 19
#define Att_Segment_Annotate_Value 20
#define Att_Segment_Annotate_Array 21
#define Att_Segment_Text_Value 22
#define Att_Pipe_Justify 23
#define Att_Culvert_Value 24
Page 1339Set Ups.h

12d Model Programming Language Manual
#define Att_Culvert_Array 25
#define Att_Hole_Value 26
#define Att_Hatch_Value 27
#define Att_Solid_Value 28
#define Att_Bitmap_Value 29
#define Att_Vertex_World_Annotate 30
#define Att_Segment_World_Annotate 31

#define Att_Geom_Array 32
#define Att_Pattern_Value 33

#define Att_Vertex_UID_Array 35
#define Att_Segment_UID_Array 36
#define Att_Vertex_Tinable_Value 37
#define Att_Vertex_Tinable_Array 38
#define Att_Segment_Tinable_Value 39
#define Att_Segment_Tinable_Array 40
#define Att_Vertex_Visible_Value 41
#define Att_Vertex_Visible_Array 42
#define Att_Segment_Visible_Value 43
#define Att_Segment_Visible_Array 44
#define Att_Vertex_Paper_Annotate 45
#define Att_Segment_Paper_Annotate 46
#define Att_Database_Point_Array 47
#define Att_Extrude_Value 48
#define Att_Interval_Value 50

#define concat(a,b) a##b
#define String_Super_Bit(n) (1 << concat(Att_,n))

#define All_String_Super_Bits 65535

// function identifiers

#define APPLY_TEMPLATE_MACRO_T 4100
#define APPLY_TEMPLATES_MACRO_T 4102
#define INTERFACE_MACRO_T 4103
#define TURKEY_NEST_MACRO_T 4104
#define KERB_RETURN_MACRO_T 4105
#define RETRIANGULATE_MACRO_T 4106
#define RUN_MACRO_T 4107
#define STRING_MODIFIERS_MACRO_T 4108
#define SURVEY_DATA_REDUCTION_MACRO_T 4109
#define SIMPLE_MACRO_T 4110
#define CREATE_ROADS_MACRO_T 4111
#define SLF_MACRO_T 4112

// constants for Create_select_box mode

#define SELECT_STRING 5509
#define SELECT_STRINGS 5510

#define SELECT_SUB_STRING 5515
#define SELECT_SUB_STRINGS 5516

// values for special characters

#define Degrees_character 176
Page 1340 Set Ups.h

Chapter A Appendix - Set_ups.h File
#define Squared_character 178
#define Cubed_character 179
#define Middle_dot_character 183
#define Diameter_large_character 216
#define Diameter_small_character 248

#define Degrees_text "°"
#define Squared_text "²"
#define Cubed_text "³"
#define Middle_dot_text "·"
#define Diameter_small_text "ø"
#define Diameter_large_text "Ø"

// definitions for last parameter of Shell_execute

#define SW_HIDE 0
#define SW_SHOWNORMAL 1
#define SW_NORMAL 1
#define SW_SHOWMINIMIZED 2
#define SW_SHOWMAXIMIZED 3
#define SW_MAXIMIZE 3
#define SW_SHOWNOACTIVATE 4
#define SW_SHOW 5
#define SW_MINIMIZE 6
#define SW_SHOWMINNOACTIVE 7
#define SW_SHOWNA 8
#define SW_RESTORE 9
#define SW_SHOWDEFAULT 10
#define SW_FORCEMINIMIZE 11
#define SW_MAX 11

// **
// transparency
// **

#define TRANSPARENT 1
#define OPAQUE 2

// **
// Text Alignment Options
// **

#define TA_NOUPDATECP 0
#define TA_UPDATECP 1

#define TA_LEFT 0
#define TA_RIGHT 2
#define TA_CENTER 6

#define TA_TOP 0
#define TA_BOTTOM 8
#define TA_BASELINE 24

#define TA_RTLREADING 256

#define TA_MASK (TA_BASELINE+TA_CENTER+TA_UPDATECP+TA_RTLREADING)

#define VTA_BASELINE TA_BASELINE
Page 1341Set Ups.h

12d Model Programming Language Manual
#define VTA_LEFT TA_BOTTOM
#define VTA_RIGHT TA_TOP
#define VTA_CENTER TA_CENTER
#define VTA_BOTTOM TA_RIGHT
#define VTA_TOP TA_LEFT

// **
// font types
// **

#define FW_DONTCARE 0
#define FW_THIN 100
#define FW_EXTRALIGHT 200
#define FW_LIGHT 300
#define FW_NORMAL 400
#define FW_MEDIUM 500
#define FW_SEMIBOLD 600
#define FW_BOLD 700
#define FW_EXTRABOLD 800
#define FW_HEAVY 900

#define FW_ULTRALIGHT FW_EXTRALIGHT
#define FW_REGULAR FW_NORMAL
#define FW_DEMIBOLD FW_SEMIBOLD
#define FW_ULTRABOLD FW_EXTRABOLD
#define FW_BLACK FW_HEAVY

// **
// raster op codes
// **

#define R2_BLACK 1 /* 0 */
#define R2_NOTMERGEPEN 2 /* DPon */
#define R2_MASKNOTPEN 3 /* DPna */
#define R2_NOTCOPYPEN 4 /* PN */
#define R2_MASKPENNOT 5 /* PDna */
#define R2_NOT 6 /* Dn */
#define R2_XORPEN 7 /* DPx */
#define R2_NOTMASKPEN 8 /* DPan */
#define R2_MASKPEN 9 /* DPa */
#define R2_NOTXORPEN 10 /* DPxn */
#define R2_NOP 11 /* D */
#define R2_MERGENOTPEN 12 /* DPno */
#define R2_COPYPEN 13 /* P */
#define R2_MERGEPENNOT 14 /* PDno */
#define R2_MERGEPEN 15 /* DPo */
#define R2_WHITE 16 /* 1 */
#define R2_LAST 16

// **
// Ternary raster operations
// **

#define SRCCOPY 0x00CC0020 /* dest = source */
#define SRCPAINT 0x00EE0086 /* dest = source OR dest */
#define SRCAND 0x008800C6 /* dest = source AND dest */
#define SRCINVERT 0x00660046 /* dest = source XOR dest */
#define SRCERASE 0x00440328 /* dest = source AND (NOT dest) */
Page 1342 Set Ups.h

Chapter A Appendix - Set_ups.h File
#define NOTSRCCOPY 0x00330008 /* dest = (NOT source) */
#define NOTSRCERASE 0x001100A6 /* dest = (NOT src) AND (NOT dest) */
#define MERGECOPY 0x00C000CA /* dest = (source AND pattern) */
#define MERGEPAINT 0x00BB0226 /* dest = (NOT source) OR dest */
#define PATCOPY 0x00F00021 /* dest = pattern */
#define PATPAINT 0x00FB0A09 /* dest = DPSnoo */
#define PATINVERT 0x005A0049 /* dest = pattern XOR dest */
#define DSTINVERT 0x00550009 /* dest = (NOT dest) */
#define BLACKNESS 0x00000042 /* dest = BLACK */
#define WHITENESS 0x00FF0062 /* dest = WHITE */

// Quaternary raster codes

#define MAKEROP4(fore,back) (DWORD)((((back) << 8) & 0xFF000000) | (fore))

// Colour Message Box

#define MESSAGE_LEVEL_GENERAL 1
#define MESSAGE_LEVEL_WARNING 2
#define MESSAGE_LEVEL_ERROR 3
#define MESSAGE_LEVEL_GOOD 4

#endif
Page 1343Set Ups.h

12d Model Programming Language Manual
B Appendix - Ascii, Ansi and Unicode
From 12d Model 10 onwards, text is stored in the 12d Model database as Unicode (UTF-16
Unicode) and the default format for all output files produced by 12d Model is for them to be
Unicode files.
But what does that mean?

Computers can only understands numbers (only zeros and ones actually) so a common code is
needed for the numerical representation of characters such as ’a’ or ’1’ or some action such as
TAB and a number of common codes have evolved over time.
The common code is not only needed for text in a file or text on a Web page, but also for the
names of the files and folders on a computer disc or an internet site.
See ASCII Character Set
See ANSI Character Set
See Unicode Character Set
See Unicode Encoding: UTF-8
See Unicode Encoding: UTF-16
See Endian and BOM

ASCII Character Set
The ASCII (American Standard Code for Information Exchange) was first published in 1963 and
was adopted by the American National Standards Institute (ANSI) during the 1960’s and has
been in common use since then.
The ASCII definition used 7 bits to define characters and some non character codes such as tab,
back space and line feed (new line). The seven bits means that only a maximum of 127 codes
are allowed.
An examples of the ASCII codes are:

2 is the ASCII code for start of text (STX)
8 is the ASCII code for back space (BS)
9 is the ASCII code for horizontal tab (TAB)

10 is the ASCII code for line feed, new line (NL)
27 is the ASCII code for escape (ESC)
32 is the ASCII code for a space (" ")

36 is the ASCII code for a dollar sign $
40 is the ASCII code for a left parenthesis (
41 is the ASCII code for a right parenthesis)
48 is the ASCII code for the digit zero 0
49 is the ASCII code for the digit zero 1
65 is the ASCII code for the Latin capital letter A A
97 is the ASCII code for the Latin small letter a a
126 is the ASCII code for a tilde ~
127 is not used

Even with the newer standards, the 7-bit ASCII table continues to be the backbone of modern
computing and data storage. Is is so ubiquitous that the terms "text file" and "ascii file" have
come to mean the same thing for most computer users.
The ASCII standard was good, as long as you were only working in US English.
Page 1344 Set Ups.h

Chapter B Appendix - Ascii, Ansi and Unicode
ANSI Character Set
The ANSI standard extended the ASCII character set. In the ANSI standard, the first 128
characters were the same as for ASCII but from character 128 onwards, there were different
ways depending on where you lived. These different ways were called code pages.

For example, in Israel DOS used a code page called 862 while Greek users used code page 737.
The ANSI set of 218 characters (also know as Windows-1252) was the standard for core fonts
supplied with US versions of Microsoft Windows up to and including Windows 95 and Windows
NT 4 (character 218 was the euro currency symbol was added during this time).
ANSI characters 32 to 127 correspond to those in the 7-bit ASCII character set.

Some of the extra ANSI codes are:
163 is the ANSI code for a currency Pound sign

165 is the ANSI code for a currency Yen sign
If you use a version of Windows that is designed for a non-Latin alphabet such Arabic, Cyrillic,
Greek or Thai to view a document that has been typed using the ANSI character set, then in the
code page for the characters from these languages may replace some of those in the 128-255
range and so the document will look different.
There are similar problems when transferring ANSI documents to DOS or Macintosh computers,
because DOS and MacRoman arrange characters differently in the 128-255 range.

Unicode Character Set
Today people want to transfer information around the world in emails and on Web sites but the
ASCII and ANSII character sets can not work with a variety of Latin and non-Latin alphabets in
the one document.

The solution is to move to a system that assigns a unique number to each character in each of
the major languages of the world. Such as system has been developed and is known as
Unicode and it is intended to be used on all computer systems, not just Windows.
The Unicode Standard covers more than 110,000 characters covering 100 scripts, a set of code
charts for visual reference, an encoding methodology and set of standard character encodings,
an enumeration of character properties such as upper and lower case, a set of reference data
computer files, and a number of related items such as character properties, rules for
normalisation, decomposition, collation rendering and bidirectional display order (for the correct
display of text containing both right-to-left scripts such as Arabic and Hebrew and left-to-right
scripts such as English). As of 2012, the most recent version is Unicode 6.1
Unicode’s success at unifying character sets has led to its widespread use in computer software
and the standard has been implemented in XML, Java, Microsoft .NET Framework and modern
operating systems.

To make it Unicode compatible with ASCII, the first 128 characters where the same as for ASCII
but from character 128 onwards they are totally different.

All the Unicode characters can be covered with 32 bits but to use a 32-bit representation in a file
means that a standard ASCII file would be four times as large when written out in Unicode.

So to save on disk space, and the size of files for emailing etc, there are a number of different
mapping methods, or character encodings, for writing Unicode characters to a file.
The Unicode standard defines two mapping methods: the Unicode Transformation Format (UTF)
encodings, and the Universal Characters Set (UCS) encodings. An encoding maps the range of
Unicode characters (or possibly a subset) to sequences of values in some fixed-size range.

Note: Even though software stores Unicode characters, the computer system still needs the
graphics for the character sets to be able to correctly display the Unicode characters.
Page 1345Set Ups.h

12d Model Programming Language Manual
Unicode Encoding: UTF-8
One of the most common character encodings is UTF-8.

In UTF-8 encoding, only 8-bits are used for any ASCII characters from 0 to 127. For the
characters 128 and above, it uses between 16, 24 and up to 48 bits.
And because the representation of the first 128 characters are the same in Unicode and ASCII,
US English text looks exactly the same in UTF-8 as it did in ASCII.
So why can’t a standard ASCII text editor, or a program requiring plain ASCII text have problems
with a Unicode file just containing ASCII characters?

The main reason is that in many Unicode files, a special character called a BOM (see Endian
and BOM) is often placed at the beginning of the file, and the BOM would not be recognised by
a program only expecting ASCII and would generate an error or show up as blank spaces or
strange-looking characters.

Unicode Encoding: UTF-16
In UTF-16 encoding, 16-bits are the basic unit and depending on the Unicode character, UTF-16
encoding may require one or two 16-bit code units. Using the two 16-bit code units, UTF-16 is
capable of encoding up to 1,112,064 numbers.
The basic unit of computers is a byte which consists of 8-bits. Because the UFT-16 encoding
uses 16-bit and so is made up of two bytes, the order of the bytes may depend on the
endianness (byte order) of the computer architecture.
To assist in recognizing the byte order of code units, UTF-16 allows a Byte Order Mark (BOM -
see Endian and BOM), a code with a special value to precede the first actual coded value.
Because the fundamental unit in UFT-16 is 16 bits, storing a text file only containing ASCII text
will take twice as much disk space as the ASCII version.
Microsoft has used UTF-16 for internal storage for Windows NT and its descendents including
Windows 2000, WIndows XP, Windows Vista and Windows 7.

Endian and BOM
From early computing, the fundamental unit of storage was a byte consisting of 8-bits (a bit is a
one or a zero). When computers started using 16-bits, this could be stored as two bytes but there
was a choice of the order of storing the two bytes. Two different approaches arose and are
referred to the endian or endianness.

Big endian stores the most significant byte first and the least significant byte second. Similar to
a number written on paper. Little endian stores the least significant byte first and the most
significant byte second.
The byte order mark (BOM) is a Unicode character used to signal endianness (byte order) of a
text file or character stream.
A BOM is essential when the basic unit of an encoding consists of two bytes such as in UTF-16.

Beyond its specific use as a byte-order indicator, the BOM character may also indicate which of
the Unicode encoding has been used because the values of the bits in the BOM will be different
for the different Unicode encodings.
So although a BOM is not strictly necessary for UTF-8 when it only contains ASCII data, it still
alerts the software that it is UTF-8.
Some common programs from Microsoft, such as Notepad and Visual C++, add BOMs to UTF-8
files by Default. Google Docs adds a BOM when a Microsoft Word document is downloaded as
a .txt file.

When a BOM is used, it should appear at the start of the text.
Page 1346 Set Ups.h

Index

Index

Symbols
, Integer num_pts) 365
,Integer max_num,Integer &ret_num) 1097, 1099
,Integer max_pts,Integer &num_pts,Integer start_pt) 601, 683, 767, 772, 787, 792
,Integer max_pts,Integer &num_pts) 365, 600, 683, 767, 772, 786, 792
,Integer num_pts, Integer num_pits) 599
,Integer num_pts,Integer offset) 366
,Integer num_pts,Integer start_pt) 600, 684, 764, 768, 771, 788, 794
,Integer num_pts) 361, 600, 682, 684, 764, 766, 768, 770, 771, 786, 787, 791, 793
,Message_Box message) 984
,Real &zvalue,Integer max_pt,Integer &num_pts,Integer start_pt) 763
,Real &zvalue,Integer max_pts,Integer &num_pts) 762
,Real zvalue,Integer num_pts) 762
,Text &ret) 839
) 342, 846, 847, 895, 910, 1109, 1110

A
Add_item (List_Box box,Text text) 941
Affine(Dynamic_Element elements, Real rotate_x,Real rotate_y,Real scale_x,Real scale_y,Real dx,Real dy) 1129
Angle_intersect(Point pt_1,Real ang_1,Point pt_2, Real ang_2,Point &p) 225
Angle_prompt(Text msg,Text &ret) 844
Append (Widget widget,Widget_Pages pages) 879
Append_hip(Element elt,Real x,Real y,Real radius,Real left_spiral,Real right_spiral) 797
Append_hip(Element elt,Real x,Real y,Real radius) 797
Append_hip(Element elt,Real x,Real y) 796
Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode) 802
Append_vip(Element elt,Real ch,Real ht,Real parabolic) 801
Append_vip(Element elt,Real ch,Real ht) 801
Append(Dynamic_Element from_de,Dynamic_Element &to_de) 178
Append(Dynamic_Text from_dt,Dynamic_Text &to_dt) 180
Append(Text text,Dynamic_Text &dt) 180
Append(Widget widget,Horizontal_Group group) 859
Append(Widget widget,Vertical_Group group) 862
Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut_volume,Real

&fill_volume,Real &balance_volume,Text report) 1106
Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &bal-

ance,Text report,Integer do_strings,Dynamic_Element &strings,Integer do_sections,Dynamic_Element
§ions,Integer section_colour,Integer do_polygons,D 1106

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &balance)
1106

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real
&cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer
do_sections,Dynamic_Element §ions,Integer section 1105

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real
&cut,Real &fill,Real &balance,Text report) 1105

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real
&cut,Real &fill,Real &balance) 1105

Apply(Real xpos,Real ypos,Real zpos,Real angle,Tin tin,Text template, Element &xsect) 1105
ASCII 1344
Attribute_debug(Element elt) 331
Attribute_delete_all(Element elt) 326
Page 1347

12d Model Programming Langauge Manual
Attribute_delete(Element elt,Integer att_no) 326
Attribute_delete(Element elt,Text att_name) 326
Attribute_dump(Element elt) 331
Attribute_exists(Element elt,Text att_name,Integer &att_no) 326
Attribute_exists(Element elt,Text att_name) 325

B
big endian 1346
Breakline (Tin tin,Integer p1,Integer p2) 343
buttons 11
byte order 1346

C
Calc_alignment(Element elt) 805
Calc_extent(Element elt) 321
Calc_extent(Model model) 279
Calc_extent(View view) 295
Change_of_angle(Line l1,Line l2,Real &angle) 230
Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3, Real &angle) 230
Clear (Draw_Box box,Integer r,Integer g,Integer b) 909
Clip_string(Element string,Integer direction,Real chainage1,Real chainage2,Element &left_string,Element

&mid_string,Element &right_string) 1109
Clip_string(Element string,Real chainage1,Real chainage2, Element &left_string,Element &mid_string,Element

&right_string) 1108
Colour_exists(Integer col_number) 231
Colour_exists(Text col_name) 231
Colour_prompt(Text msg,Text &ret) 837
Colour_triangles(Tin tin,Integer colour, Element poly,Integer mode) 348
Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer cont_col,Dynamic_Element &cont_de,Real

bold_inc,Integer bold_col,Dynamic_Element &bold_de) 1088
Convert_colour(Integer col_number, Text &col_name) 232
Convert_colour(Text col_name,Integer &col_number) 231
Convert_time(Integer t1,Text &t2) 138
Convert_time(Integer t1,Text format,Text &t2) 138
Convert_time(Text &t1,Integer t2) 138
Convert(Dynamic_Element in_de,Integer mode, Integer pass_others, Dynamic_Element &out_de) 1134
Convert(Element elt,Text type,Element &newelt) 1134
Create_2d(Integer num_pts,Element seed) 762
Create_2d(Integer num_pts) 762
Create_3d(Integer num_pts,Element seed) 766
Create_3d(Integer num_pts) 766
Create_3d(Line line) 766
Create_4d(Integer num_pts,Element seed) 771
Create_4d(Integer num_pts) 770
Create_align() 796
Create_align(Element seed) 796
Create_angle_box(Text title,Message_Box message) 883
Create_arc_2(Real xs,Real ys,Real zs,Real radius,Real arc_length,Real start_angle) 570
Create_arc_3(Real xs,Real ys,Real zs,Real radius,Real arc_length,Real chord_angle) 570
Create_arc(Arc arc) 568
Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3) 568
Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze) 568
Create_arc(Real xc,Real yc,Real zc,Real radius,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze) 569
Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep) 569
Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze,Integer dir) 569
Create_button(Menu menu,Text button_text,Text button_reply) 174
Page 1348

Index
Create_button(Text title,Text reply) 1056
Create_child_button(Text title) 1057
Create_choice_box(Text title,Message_Box message) 894
Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3) 574
Create_circle(Real xc,Real yc,Real zc, Real xp,Real yp,Real zp) 574
Create_circle(Real xc,Real yc,Real zc,Real radius) 574
Create_colour_box(Text title,Message_Box message) 898
Create_directory_box(Text title,Message_Box message,Integer mode) 904
Create_drainage(Integer num_pts,Integer num_pits) 599
Create_draw_box (Integer width,Integer height,Integer border) 907
Create_feature() 680
Create_feature(Element seed) 680
Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real radius) 680
Create_file_box(Text title,Message_Box message,Integer mode,Text wild) 914
Create_finish_button (Text title,Text reply) 1058
Create_input_box(Text title,Message_Box message) 926
Create_integer_box(Text title,Message_Box message) 929
Create_interface(Integer num_pts,Element seed) 682
Create_interface(Integer num_pts) 682
Create_justify_box(Text title,Message_Box message) 933
Create_linestyle_box(Text title,Message_Box message,Integer mode) 936
Create_list_box (Text title,Message_Box message,Integer nlines) 939
Create_map_file_box(Text title,Message_Box message,Integer mode) 944
Create_menu(Text menu_title) 174
Create_message_box(Text title) 1043
Create_model_box(Text title,Message_Box message,Integer mode) 947
Create_model(Text model_name) 274
Create_name_box(Text title,Message_Box message) 950
Create_named_tick_box(Text title,Integer state,Text response) 952
Create_pipe(Integer num_pts,Element seed) 786
Create_pipe(Integer num_pts) 786
Create_pipeline() 592
Create_pipeline(Element seed) 592
Create_plot_frame(Text name) 751
Create_plotter_box(Text title,Message_Box message) 965
Create_polyline(Integer num_pts,Element seed) 791
Create_polyline(Integer num_pts) 791
Create_polyline(Segment segment) 792
Create_real_box(Text title,Message_Box message) 971
Create_report_box(Text title,Message_Box message,Integer mode) 974
Create_screen_text (Text text) 976
Create_select_box(Text title,Text select_title,Integer mode,Message_Box message) 978
Create_select_button(Text title,Integer mode,Message_Box box) 1060
Create_sheet_size_box(Text title,Message_Box message) 991
Create_super(Integer flag,Integer npts) 360
Create_super(Integer flag,Segment seg) 361
Create_super(Integer npts,Element seed) 360
Create_template_box(Text title,Message_Box message,Integer mode) 1007
Create_text_edit_box(Text name,Message_Box box,Integer no_lines) 1018
Create_text_style_box(Text title,Message_Box message) 1010
Create_text_units_box(Text title,Message_Box message) 1012
Create_text(Text text,Real x,Real y,Real size, Integer colour,Real angle) 576
Create_text(Text text,Real x,Real y,Real size, Integer colour) 576
Create_text(Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif, Integer size_mode) 577
Create_text(Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif,Integer size_mode,Real

offset_distance,Real rise_distance) 577
Create_text(Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif) 577
Create_tick_box(Message_Box message) 1026
Page 1349

12d Model Programming Langauge Manual
Create_tin_box(Text title,Message_Box message,Integer mode) 1029
Create_view_box(Text title,Message_Box message,Integer mode) 1034
Create_xyz_box(Text title,Message_Box message) 1038
Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result) 1135, 1136
Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result) 1135

D
Date(Integer &d,Integer &m,Integer &y) 136
Date(Text &date) 136
Delete_hip(Element elt,Integer i) 800
Delete_item (List_Box box,Integer item) 941
Delete_vip(Element elt,Integer i) 804
Destroy_on_exit() 82
direction text 94, 415, 436
Directory_prompt(Text msg,Text &ret) 845
Display_relative(Menu menu, Integer &across_rel,Integer &down_rel,Text &reply) 175
Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply) 175
drainage junction 597
drainage network 597
Drainage_pipe_attribute_debug (Element elt,Integer pipe) 668
Drainage_pipe_attribute_delete (Element elt,Integer pipe,Integer att_no) 667
Drainage_pipe_attribute_delete (Element elt,Integer pipe,Text att_name) 667
Drainage_pipe_attribute_delete_all (Element elt,Integer pipe) 668
Drainage_pipe_attribute_dump (Element elt,Integer pipe) 668
Drainage_pipe_attribute_exists (Element elt, Integer pipe,Text name,Integer &no) 667
Drainage_pipe_attribute_exists (Element elt,Integer pipe,Text att_name) 666
Drainage_pit_attribute_debug (Element elt,Integer pit) 645
Drainage_pit_attribute_delete (Element elt,Integer pit,Integer att_no) 645
Drainage_pit_attribute_delete (Element elt,Integer pit,Text att_name) 644
Drainage_pit_attribute_delete_all (Element elt,Integer pit) 645
Drainage_pit_attribute_dump (Element elt,Integer pit) 645
Drainage_pit_attribute_exists (Element elt,Integer pit,Text att_name) 644
Drainage_pit_attribute_exists (Element elt,Integer pit,Text name,Integer &no) 644
Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts) 1090
Drape(Tin tin,Model model,Dynamic_Element &draped_elts) 1090
Draw_text (Draw_Box box,Real x,Real y,Real size,Real ht,Text text) 911
Draw_to (Draw_Box box,Real x,Real y) 910
Draw_triangle (Tin tin,Integer tri,Integer c) 342
Draw_triangles_about_point(Tin tin,Integer pt ,Integer c) 342
Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real

&off,Segment &segment) 812
Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real &off)

812
Drop_point(Segment segment,Point pt_to_drop, Point &dropped_pt,Real &dist) 228
Drop_point(Segment segment,Point pt_to_drop, Point &dropped_pt) 228

E
Element_delete(Element elt) 322
Element_draw(Element elt, Integer colour) 808
Element_draw(Element elt) 808
Element_duplicate(Element elt,Element &dup_elt) 322
Element_exists(Element elt) 314
End_batch_draw (Draw_Box box) 909
endian 1346
endianness 1346
Error_prompt(Text msg) 839
Page 1350

Index
Exit(Integer code) 82
Exit(Text msg) 82
Extend_string(Element elt,Real before,Real after,Element &newelt) 1108

F
Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element &face_draped_strings) 1091
Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts) 1090
Factor(Dynamic_Element elements, Real xf,Real yf,Real zf) 1137
Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element polygon_list,Dynamic_Element

&ret_inside,Dynamic_Element &ret_outside) 1138
Fence(Dynamic_Element data_to_fence,Integer mode,Element user_poly,Dynamic_Element

&ret_inside,Dynamic_Element &ret_outside) 1138, 1139
File_close(File file) 165
File_delete(Text file_name) 165, 166, 167
File_exists(Text file_name) 158
File_flush(File file) 161
File_open(Text file_name, Text mode,File &file) 159
File_prompt(Text msg,Text key,Text &ret) 839
File_read_line(File file,Text &text_in) 160
File_rewind(File file) 161
File_seek(File file,Integer pos) 160
File_tell(File file,Integer &pos) 160
File_write_line(File file,Text text_out) 160
Filter(Dynamic_Element in_de,Integer mode, Integer pass_others,Real tolerance,Dynamic_Element &out_de) 1140
Find_system_file (Text new_file_name,Text old_file_name,Text env) 141
Find_text(Text text,Text tofind) 86
Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet) 220
Fitarc(Segment seg_1,Segment seg_2,Point start_tp, Arc &fillet) 221
Fitarc(Segment seg_1,Segment seg_2,Real radius, Point cpt,Arc &fillet) 221
Flip_triangles(Tin tin,Integer t1,Integer t2) 343
From_text(Text text, Dynamic_Text &de) 90
From_text(Text text, Integer &value,Text format) 88
From_text(Text text, Integer &value) 88
From_text(Text text, Real &value,Text format) 89
From_text(Text text, Real &value) 88, 89
From_text(Text text, Text &value,Text format) 89
Function_prompt(Text msg,Text &ret) 844
Function_rename(Text original_name,Text new_name) 1156

G
Get_2d_data(Element elt,Integer i,Real &x,Real &y) 763
Get_2d_data(Element elt,Real &z) 764
Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z) 768
Get_4d_angle(Element elt,Real &angle) 776, 777
Get_4d_data(Element elt,Integer i, Real &x,Real &y,Real &z, Text &t) 773
Get_4d_height(Element elt,Real &height) 778
Get_4d_justify(Element elt,Integer &justify) 775
Get_4d_offset(Element elt,Real &offset) 777
Get_4d_rise(Element elt,Real &rise) 778
Get_4d_size(Element elt,Real &size) 775
Get_4d_slant(Element elt,Real &slant) 779
Get_4d_style(Element elt,Text &style) 779
Get_4d_units(Element elt,Integer &units_mode) 774
Get_4d_x_factor(Element elt,Real &xfact) 779
Get_4dmodel_version(Integer &major,Integer &minor,Text &patch) 141
Get_all_linestyles(Dynamic_Text &linestyles) 181
Page 1351

12d Model Programming Langauge Manual
Get_all_textstyles(Dynamic_Text &textstyles) 181
Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc) 571
Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc, Real &radius,Real &xs,Real &ys,Real &zs,Real &xe,Real

&ye,Real &ze) 572
Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze) 572
Get_arc_radius(Element elt,Real &radius) 571
Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs) 571
Get_arc(Segment segment, Arc &arc) 207
Get_attribute_length(Element elt,Integer att_no,Integer &att_len) 329
Get_attribute_length(Element elt,Text att_name,Integer &att_len) 329
Get_attribute_name(Element elt,Integer att_no,Text &name) 328
Get_attribute_type(Element elt,Integer att_no,Integer &att_type) 329
Get_attribute_type(Element elt,Text att_name,Integer &att_type) 328
Get_attribute(Element elt,Integer att_no,Integer &att) 328
Get_attribute(Element elt,Integer att_no,Real &att) 328
Get_attribute(Element elt,Integer att_no,Text &att) 328
Get_attribute(Element elt,Text att_name,Integer &att) 327
Get_attribute(Element elt,Text att_name,Real &att) 327
Get_attribute(Element elt,Text att_name,Text &att) 327
Get_auto_cut_paste (List_Box box,Integer &mode) 940
Get_breakline(Element elt,Integer &break_type) 317
Get_caret (List_Box box,Integer &item) 941
Get_centre(Arc arc) 191
Get_chainage(Element elt,Real &start_chain) 319
Get_char(Text t,Integer pos, Integer &c) 92
Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &radius) 575
Get_colour(Element,Integer &colour) 315
Get_command_argument(Integer i,Text &argument) 80
Get_cursor_position(Integer &x,Integer &y) 854
Get_data (Screen_Text widget,Text &data) 976
Get_data (Text_Edit_Box widget,Text &data) 1018
Get_data(Angle_Box box,Text &data) 883
Get_data(Choice_Box box,Text &data) 895
Get_data(Colour_Box box,Text &data) 900
Get_data(Directory_Box box,Text &data) 905
Get_data(Element elt,Integer i,Real &x,Real &y,Real &z) 314
Get_data(File_Box box,Text &data) 915
Get_data(Input_Box box,Text &data) 927
Get_data(Integer_Box box,Text &data) 930
Get_data(Justify_Box box,Text &data) 933
Get_data(Linestyle_Box box,Text &data) 937
Get_data(Map_File_Box box,Text &data) 944
Get_data(Message_Box box,Text &data) 1043
Get_data(Model_Box box,Text &data) 948
Get_data(Name_Box box,Text &data) 951
Get_data(Named_Tick_Box box,Text &data) 953
Get_data(Plotter_Box box,Text &data) 965
Get_data(Real_Box box,Text &data) 971
Get_data(Report_Box box,Text &data) 974
Get_data(Select_Box select,Text &string) 979
Get_data(Select_Boxes select,Integer n,Text &string) 985
Get_data(Select_Button select,Text &string) 1062
Get_data(Sheet_Size_Box box,Text &data) 991
Get_data(Template_Box box,Text &data) 1007
Get_data(Text_Style_Box box,Text &data) 1011
Get_data(Text_Units_Box box,Text &data) 1013
Get_data(Tick_Box box,Text &data) 1026
Get_data(Tin_Box box,Text &data) 1030
Page 1352

Index
Get_data(View_Box box,Text &data) 1034
Get_data(XYZ_Box box,Text &data) 1038
Get_directory (File_Box box,Text &data) 916
Get_distance_3d(Point p1,Point p2) 226
Get_distance(Point p1,Point p2) 226
Get_drainage_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f) 602
Get_drainage_float (Element,Integer &float) 605
Get_drainage_flow(Element elt,Integer &dir) 604
Get_drainage_fs_tin (Element,Tin &tin) 604
Get_drainage_hc_adopted_level(Element elt,Integer h,Real &level) 673
Get_drainage_hc_bush(Element elt,Integer h,Text &bush) 674
Get_drainage_hc_chainage(Element elt,Integer h,Real &chainage) 679
Get_drainage_hc_colour(Element elt,Integer h,Integer &colour) 674
Get_drainage_hc_depth(Element elt,Integer h,Real &depth) 675
Get_drainage_hc_diameter(Element elt,Integer h,Real &diameter) 675
Get_drainage_hc_grade(Element elt,Integer h,Real &grade) 675
Get_drainage_hc_hcb(Element elt,Integer h,Integer &hcb) 676
Get_drainage_hc_length(Element elt,Integer h,Real &length) 676
Get_drainage_hc_level(Element elt,Integer h,Real &level) 677
Get_drainage_hc_material(Element elt,Integer h,Text &material) 677
Get_drainage_hc_name(Element elt,Integer h,Text &name) 678
Get_drainage_hc_side(Element elt,Integer h,Integer &side) 678
Get_drainage_hc_type(Element elt,Integer h,Text &type) 679
Get_drainage_hc(Element elt,Integer h,Real &x,Real &y,Real &z) 673
Get_drainage_hcs(Element elt,Integer &no_hcs) 673
Get_drainage_intensity 1092
Get_drainage_intensity(Text rainfall_filename,Integer rainfall_method,Real frequency,Real duration,Real &intensi-

ty) 1092
Get_drainage_ns_tin (Element,Tin &tin) 603
Get_drainage_outfall_height(Element elt,Real &ht) 603
Get_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Integer &att) 666
Get_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Real &att) 666
Get_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Text &att) 666
Get_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Integer &att) 665
Get_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Real &att) 665
Get_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Text &att) 665
Get_drainage_pipe_attribute_length (Element elt,Integer pipe,Integer att_no,Integer &att_len) 669
Get_drainage_pipe_attribute_length (Element elt,Integer pipe,Text att_name,Integer &att_len) 668
Get_drainage_pipe_attribute_name (Element elt,Integer pipe,Integer att_no,Text &name) 669
Get_drainage_pipe_attribute_type (Element elt,Integer pipe,Integer att_name,Integer &att_type 670
Get_drainage_pipe_attribute_type (Element elt,Integer pipe,Text att_name,Integer &att_type) 669
Get_drainage_pipe_cover (Element,Integer pipe,Real &minc,Real &maxc) 651
Get_drainage_pipe_diameter(Element elt,Integer p,Real &diameter) 653
Get_drainage_pipe_flow(Element elt,Integer p,Real &flow) 658
Get_drainage_pipe_grade(Element elt,Integer p,Real &grade) 658
Get_drainage_pipe_hgls(Element elt,Integer p,Real &lhs,Real &rhs) 656
Get_drainage_pipe_inverts(Element elt,Integer p,Real &lhs,Real &rhs) 649
Get_drainage_pipe_length(Element elt,Integer p,Real &length) 658
Get_drainage_pipe_name(Element elt,Integer p,Text &name) 650
Get_drainage_pipe_number_of_attributes(Element elt,Integer pipe,Integer &no_atts) 668
Get_drainage_pipe_type(Element elt,Integer p,Text &type) 651
Get_drainage_pipe_velocity(Element elt,Integer p,Real &velocity) 657
Get_drainage_pit_angle (Element,Integer pit,Real &angle,Integer trunk) 621
Get_drainage_pit_angle(Element elt,Integer p,Real &angle) 620
Get_drainage_pit_area(Element element,Integer pit,Integer elev,Real &sump_area,Dynamic_Real &depth-el-

ev,Dynamic_Real &area,Integer &ret_num) 609
Get_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Integer &att) 637
Get_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Real &att) 637
Page 1353

12d Model Programming Langauge Manual
Get_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Text &att) 637
Get_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Integer &att) 639
Get_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Real &att) 638
Get_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Text &att) 638
Get_drainage_pit_attribute_length (Element elt,Integer pit,Integer att_no,Integer &att_len) 636
Get_drainage_pit_attribute_length (Element elt,Integer pit,Text att_name,Integer &att_len) 636
Get_drainage_pit_attribute_name (Element elt,Integer pit,Integer att_no,Text &name) 637
Get_drainage_pit_attribute_type (Element elt,Integer pit,Integer att_name,Integer &att_type) 636
Get_drainage_pit_attribute_type (Element elt,Integer pit,Text att_name,Integer &att_type) 636
Get_drainage_pit_branches(Element,Integer pit,Dynamic_Element &branches) 626
Get_drainage_pit_chainage(Element elt,Integer p,Real &chainage) 621
Get_drainage_pit_depth(Element elt,Integer p,Real &depth) 627
Get_drainage_pit_diameter(Element elt,Integer p,Real &diameter) 611
Get_drainage_pit_drop(Element elt,Integer p,Real &drop) 627
Get_drainage_pit_float (Element,Integer pit,Integer &float) 623
Get_drainage_pit_hgls(Element elt,Integer p,Real &lhs,Real &rhs) 624
Get_drainage_pit_inverts(Element elt,Integer p,Real &lhs,Real &rhs) 620
Get_drainage_pit_name(Element elt,Integer p,Text &name) 610
Get_drainage_pit_number_of_attributes(Element elt,Integer pit,Integer &no_atts) 638
Get_drainage_pit_road_chainage(Element elt,Integer p,Real &chainage) 625
Get_drainage_pit_road_name(Element elt,Integer p,Text &name) 625
Get_drainage_pit_type(Element elt,Integer p,Text &type) 626
Get_drainage_pit(Element elt,Integer p,Real &x,Real &y,Real &z) 609
Get_drainage_pits(Element elt,Integer &npits) 609
Get_drainage_trunk (Element,Element &trunk) 605
Get_elements(Model model,Dynamic_Element &de, Integer &total_no) 275
Get_enable(Widget widget,Integer &mode) 867
Get_end_chainage(Element elt,Real &chainage) 319
Get_end(Arc arc) 192
Get_end(Line line) 189
Get_end(Segment segment,Point &point) 208
Get_extent_x(Element elt,Real &xmin,Real &xmax) 321
Get_extent_x(Model model,Real &xmin,Real &xmax) 278
Get_extent_y(Element elt,Real &ymin,Real &ymax) 321
Get_extent_y(Model model,Real &ymin,Real &ymax) 279
Get_extent_z(Element elt,Real &zmin,Real &zmax) 321
Get_extent_z(Model model,Real &zmin,Real &zmax) 279
Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc) 680
Get_feature_radius(Element elt,Real &radius) 681
Get_help (Widget widget,Integer &help) 876
Get_help (Widget widget,Text &help) 877
Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &radius,Real &left_spiral,Real &right_spiral) 798
Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &radius) 798
Get_hip_data(Element elt,Integer i,Real &x,Real &y) 797
Get_hip_geom(Element elt,Integer hip_no,Integer mode, Real &x,Real &y) 801
Get_hip_id (Element,Integer position,Integer &id) 806
Get_hip_points(Element elt,Integer &num_pts) 797
Get_hip_type(Element elt,Integer hip_no,Text &type) 800
Get_id(Element elt,Integer &id) 319
Get_id(Widget) 873
Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f) 684
Get_item (List_Box box,Integer item,Text &text) 941
Get_item(Dynamic_Element &de,Integer i,Element &elt) 178
Get_item(Dynamic_Text &dt,Integer i,Text &text) 181
Get_length_3d(Element elt,Real &length) 810
Get_length_3d(Segment segment,Real &length) 219
Get_length(Element elt,Real &length) 809
Get_length(Segment segment,Real &length) 219
Page 1354

Index
Get_line(Segment segment, Line &line) 207
Get_macro_name() 138
Get_model_attribute (Model model,Integer att_no,Integer &att) 286
Get_model_attribute (Model model,Integer att_no,Real &att) 287
Get_model_attribute (Model model,Integer att_no,Text &att) 286
Get_model_attribute (Model model,Text att_name,Integer &att) 286
Get_model_attribute (Model model,Text att_name,Real &att) 286
Get_model_attribute (Model model,Text att_name,Text &att) 286
Get_model_attribute_length (Model model,Integer att_no,Integer &att_len) 289
Get_model_attribute_length (Model model,Text att_name,Integer &att_len) 289
Get_model_attribute_name (Model model,Integer att_no,Text &name) 288
Get_model_attribute_type (Model model,Integer att_name,Integer &att_type) 289
Get_model_create(Text model_name) 274
Get_model_number_of_attributes(Model model,Integer &no_atts) 289
Get_model(Element elt,Model &model) 316
Get_model(Text model_name) 276
Get_module_license(Text module_name) 139
Get_name(Element elt,Text &elt_name) 315
Get_name(Function func,Text &name) 1157
Get_name(Model model,Text &model_name) 276
Get_name(Tin tin,Text &tin_name) 335
Get_name(View view,Text &view_name) 291
Get_name(Widget widget,Text &text) 870
Get_number_of_attributes(Element elt,Integer &no_atts) 327
Get_number_of_command_arguements 80
Get_number_of_items(Dynamic_Element &de,Integer &no_items) 178
Get_number_of_items(Dynamic_Text &dt,Integer &no_items) 180
Get_number_of_items(Model model,&num) 275
Get_optional(Widget widget,Integer &mode) 868
Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z) 788
Get_pipe_diameter(Element elt, Real &diameter) 789
Get_pipe_justify(Element elt,Integer &justify) 789
Get_pipeline_diameter(Element pipeline,Real &diameter) 592
Get_pipeline_length (Element pipeline,Real &length) 593
Get_plot_frame_colour(Element elt,Integer &colour) 754
Get_plot_frame_draw_border(Element elt,Integer &draw_border) 753
Get_plot_frame_draw_title_file(Element elt,Integer &draw_title) 753
Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport) 753
Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t) 752
Get_plot_frame_name(Element elt,Text &name) 751
Get_plot_frame_origin(Element elt,Real &x,Real &y) 752
Get_plot_frame_plot_file(Element elt,Text &plot_file) 754
Get_plot_frame_plotter_name(Element elt,Text &plotter_name) 754
Get_plot_frame_plotter(Element elt,Integer &plotter) 754
Get_plot_frame_rotation(Element elt,Real &rotation) 751
Get_plot_frame_scale(Element elt,Real &scale) 751
Get_plot_frame_sheet_size(Element elt,Real &w,Real &h) 752
Get_plot_frame_sheet_size(Element elt,Text &size) 752
Get_plot_frame_text_size(Element elt,Real &text_size) 753
Get_plot_frame_textstyle(Element elt,Text &textstyle) 754
Get_plot_frame_title_1(Element elt,Text &title) 755
Get_plot_frame_title_2(Element elt,Text &title) 755
Get_plot_frame_title_file(Element elt,Text &title_file) 755
Get_point(Segment segment, Point &point) 207
Get_points(Element elt,Integer &numpts) 314
Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f) 793
Get_position(Element elt,Real ch,Real &x,Real &y, Real &z,Real &inst_dir) 811
Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real &radius, Real &inst_grade) 811
Page 1355

12d Model Programming Langauge Manual
Get_project_attribute (Integer att_no,Integer &att) 272
Get_project_attribute (Integer att_no,Real &att) 272
Get_project_attribute (Integer att_no,Text &att) 271
Get_project_attribute (Text att_name,Integer &att) 271
Get_project_attribute (Text att_name,Real &att) 270
Get_project_attribute (Text att_name,Text &att) 273
Get_project_attribute_length (Integer att_no,Integer &att_len) 269
Get_project_attribute_length (Text att_name,Integer &att_len) 270
Get_project_attribute_name (Integer att_no,Text &name) 269
Get_project_attribute_type (Integer att_no,Integer &att_type) 270
Get_project_attribute_type (Text att_name,Integer &att_type) 270
Get_project_colours(Dynamic_Text &colours) 232
Get_project_functions(Dynamic_Text &function_names) 264
Get_project_models(Dynamic_Text &model_names) 276
Get_project_name(Text &name) 260, 264
Get_project_number_of_attributes(Integer &no_atts) 269
Get_project_templates(Dynamic_Text &template_names) 1104
Get_project_tins(Dynamic_Text &tins) 334
Get_project_views(Dynamic_Text &view_names) 292
Get_radius(Arc arc) 191
Get_rainfall_temporal_patterns_enabled(Text file,Real min_freq,Real max_freq,Dynamic_Integer &storms,Integer

&ret_num) 1095
Get_read_locks (Element elt,Integer &no_locks) 814
Get_segment(Element elt,Integer i,Segment &seg) 211
Get_segments(Element elt,Integer &nsegs) 210
Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht) 960, 981, 982
Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real &ch,Real &ht) 987, 988
Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real &ch,Real &ht) 1064
Get_select_direction(Select_Box select,Integer &dir) 959, 960, 981
Get_select_direction(Select_Boxes select,Integer n,Integer &dir) 987
Get_select_direction(Select_Button select,Integer &dir) 1063
Get_selection (List_Box box,Integer &item) 942
Get_selection_count (List_Box box,Integer &count) 942
Get_selections (List_Box box,Integer &mode) 940
Get_size (Draw_Box,Integer &x,Integer &y) 908
Get_size (Widget widget,Integer &x,Integer &y) 872
Get_sort (List_Box box,Integer &mode) 939
Get_start(Arc arc) 192
Get_start(Line line) 189
Get_start(Segment segment,Point &point) 208
Get_style(Element elt,Text &elt_style) 318
Get_subtext(Text text,Integer start,Integer end) 86
Get_super_2d_level (Element,Real &level) 374
Get_super_culvert (Element,Real &w,Real &h) 412
Get_super_data(Element,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f) 365
Get_super_diameter (Element,Real &diameter) 410
Get_super_pipe_justify (Element,Integer &justify) 404
Get_super_segment_attribute (Element elt,Integer seg,Integer att_no,Integer &att) 517
Get_super_segment_attribute (Element elt,Integer seg,Integer att_no,Real &att) 517
Get_super_segment_attribute (Element elt,Integer seg,Integer att_no,Text &att) 516
Get_super_segment_attribute (Element elt,Integer seg,Text att_name,Integer &att) 516
Get_super_segment_attribute (Element elt,Integer seg,Text att_name,Real &att) 516
Get_super_segment_attribute (Element elt,Integer seg,Text att_name,Text &att) 515
Get_super_segment_attribute_length (Element elt,Integer seg,Integer att_no,Integer &att_len) 518
Get_super_segment_attribute_length (Element elt,Integer seg,Text att_name,Integer &att_len) 518
Get_super_segment_attribute_name (Element elt,Integer seg,Integer att_no,Text &name) 517
Get_super_segment_attribute_type (Element elt,Integer seg,Integer att_name,Integer &att_type) 518
Get_super_segment_attribute_type (Element elt,Integer seg,Text att_name,Integer &att_type) 517
Page 1356

Index
Get_super_segment_colour (Element,Integer seg,Integer &colour) 486
Get_super_segment_culvert (Element,Integer seg,Real &w,Real &h) 413
Get_super_segment_diameter (Element,Integer seg,Real &diameter) 411
Get_super_segment_major (Element,Integer seg,Integer &major) 383
Get_super_segment_number_of_attributes(Element elt,Integer seg,Integer &no_atts) 515
Get_super_segment_radius (Element,Integer seg,Real &radius) 383, 385
Get_super_segment_text_angle (Element,Integer vert,Real &a) 446
Get_super_segment_text_colour (Element,Integer vert,Integer &c) 446
Get_super_segment_text_justify (Element,Integer vert,Integer &j) 444
Get_super_segment_text_offset_height (Element,Integer vert,Real &o) 445
Get_super_segment_text_offset_width (Element,Integer vert,Real &o) 444
Get_super_segment_text_size (Element,Integer vert,Real &s) 448
Get_super_segment_text_slant (Element,Integer vert,Real &s) 449
Get_super_segment_text_style (Element,Integer vert,Text &s) 449
Get_super_segment_text_type (Element,Integer &type) 443
Get_super_segment_text_x_factor (Element,Integer vert,Real &x) 448
Get_super_segment_tinability (Element,Integer seg,Integer &tinability) 380
Get_super_segment_visibility (Element,Integer seg,Integer &visibility) 537
Get_super_use_2d_level (Element,Integer &use) 372
Get_super_use_3d_level (Element,Integer &use) 373
Get_super_use_culvert (Element,Integer &use) 402
Get_super_use_diameter (Element,Integer &use) 400
Get_super_use_pipe_justify (Element,Integer &use) 403
Get_super_use_segment_annotation_array(Element,Integer &use) 441
Get_super_use_segment_annotation_value(Element,Integer &use) 440
Get_super_use_segment_attribute (Element,Integer &use) 510
Get_super_use_segment_colour (Element,Integer &use) 486
Get_super_use_segment_culvert (Element,Integer &use) 402
Get_super_use_segment_diameter (Element,Integer &use) 401
Get_super_use_segment_radius (Element,Integer &use) 382, 384
Get_super_use_segment_text_array (Element,Integer &use) 439
Get_super_use_segment_text_value (Element,Integer &use) 438
Get_super_use_symbol (Element,Integer &use) 391
Get_super_use_tinability (Element,Integer &use) 376
Get_super_use_vertex_annotation_array(Element,Integer &use) 420
Get_super_use_vertex_annotation_value(Element,Integer &use) 419
Get_super_use_vertex_attribute (Element,Integer &use) 499
Get_super_use_vertex_point_number (Element,Integer &use) 386
Get_super_use_vertex_symbol (Element,Integer &use) 391
Get_super_use_vertex_text_array (Element,Integer &use) 418
Get_super_use_vertex_text_value (Element,Integer &use) 417
Get_super_use_visibility (Element,Integer &use) 491, 532
Get_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Integer &att) 506
Get_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Real &att) 506
Get_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Text &att) 505
Get_super_vertex_attribute (Element elt,Integer vert,Text att_name,Integer &att) 505
Get_super_vertex_attribute (Element elt,Integer vert,Text att_name,Real &att) 505
Get_super_vertex_attribute (Element elt,Integer vert,Text att_name,Text &att) 504
Get_super_vertex_attribute_length (Element elt,Integer vert,Integer att_no,Integer &att_len) 507
Get_super_vertex_attribute_length (Element elt,Integer vert,Text att_name,Integer &att_len) 506
Get_super_vertex_attribute_name (Element elt,Integer vert,Integer att_no,Text &name) 506
Get_super_vertex_attribute_type (Element elt,Integer vert,Integer att_name,Integer &att_type) 507
Get_super_vertex_attribute_type(Element elt,Integer vert,Text att_name,Integer &att_type) 507
Get_super_vertex_coord (Element,Integer vert,Real &x,Real &y,Real &z) 364
Get_super_vertex_number_of_attributes(Element elt,Integer vert,Integer &no_atts) 504
Get_super_vertex_point_number (Element,Integer vert,Integer &point_number) 387
Get_super_vertex_symbol_colour (Element,Integer vert,Integer &c) 393
Get_super_vertex_symbol_offset_height(Element,Integer vert,Real &r) 395
Page 1357

12d Model Programming Langauge Manual
Get_super_vertex_symbol_offset_width (Element,Integer vert,Real &o) 394
Get_super_vertex_symbol_rotation (Element,Integer vert,Real &a) 395
Get_super_vertex_symbol_size (Element,Integer vert,Real &s) 396
Get_super_vertex_symbol_style (Element,Integer vert,Text &s) 393
Get_super_vertex_text (Element,Integer vert,Text &text) 421
Get_super_vertex_text_angle (Element,Integer vert,Real &a) 425, 426, 447
Get_super_vertex_text_colour (Element,Integer vert,Integer &c) 424
Get_super_vertex_text_justify (Element,Integer vert,Integer &j) 423
Get_super_vertex_text_offset_height (Element,Integer vert,Real &o) 424
Get_super_vertex_text_offset_width (Element,Integer vert,Real &o) 423
Get_super_vertex_text_size (Element,Integer vert,Real &s) 426
Get_super_vertex_text_slant (Element,Integer vert,Real &s) 427
Get_super_vertex_text_style (Element,Integer vert,Text &s) 428
Get_super_vertex_text_type (Element,Integer &type) 422
Get_super_vertex_text_x_factor (Element,Integer vert,Real &x) 427
Get_super_vertex_tinability (Element,Integer vert,Integer &tinability) 378
Get_super_vertex_visibility (Element,Integer vert,Integer &visibility) 534
Get_text_angle(Element elt,Real &angle) 582, 583
Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer &colour,Real &angle,Integer &justifica-

tion,Integer &size_mode,Real &offset_dist,Real &rise_dist) 578
Get_text_height(Element elt,Real &height) 584
Get_text_justify(Element elt,Integer &justify) 581
Get_text_length(Element elt,Real &length) 579
Get_text_offset(Element elt,Real &offset) 583
Get_text_rise(Element elt,Real &rise) 584
Get_text_size(Element elt,Real &size) 581
Get_text_slant(Element elt,Real &slant) 585
Get_text_style(Element elt,Text &style) 585
Get_text_units(Element elt,Integer &units_mode) 580
Get_text_value(Element elt,Text &text) 578
Get_text_x_factor(Element elt,Real &xfact) 586
Get_text_xy(Element elt,Real &x, Real &y) 580
Get_time_created(Element elt,Integer &time) 320
Get_time_updated(Element elt,Integer &time) 320
Get_tin(Element elt) 334
Get_tin(Text tin_name) 334
Get_tooltip (Widget widget,Text &help) 876
Get_type (Function_Box box,Integer &type) 922
Get_type (Function_Box box,Text &type) 922
Get_type(Element elt,Integer &elt_type) 317
Get_type(Element elt,Text &elt_type) 317
Get_type(Segment segment) 207
Get_type(View view,Text &type) 292
Get_user_name(Text &name) 139
Get_view(Text view_name) 292
Get_vip_data(Element elt,Integer i, Real &ch,Real &ht,Real ¶bolic) 802
Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer &mode) 802
Get_vip_data(Element elt,Integer i,Real &ch,Real &ht) 802
Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real &height) 805
Get_vip_id (Element,Integer position,Integer &id) 806
Get_vip_points(Element elt,Integer &num_pts) 802
Get_vip_type(Element elt,Integer vip_no,Text &type) 805
Get_widget_position(Widget widget,Integer &x,Integer &y) 873
Get_widget_size(Widget widget,Integer &w,Integer &h) 872
Get_wildcard (File_Box box,Text &data) 915
Get_write_locks(Element elt,Integer &no_locks) 814
Get_x(Point pt) 187
Get_y(Point pt) 187
Page 1358

Index
Get_z(Point pt) 187
Getenv (Text env) 140

H
Head_to_tail(Dynamic_Element in_list, Dynamic_Element &out_list) 1141
Helmert(Dynamic_Element elements, Real rotate,Real scale,Real dx,Real dy) 1142
Hide_widget(Widget widget) 871
Horizontal_Group Create_button_group() 859
Horizontal_Group Create_horizontal_group(Integer mode) 859

I
Insert_hip(Element elt,Integer i, Real x,Real y,Real radius,Real left_spiral,Real right_spiral) 800
Insert_hip(Element elt,Integer i, Real x,Real y,Real radius) 799
Insert_hip(Element elt,Integer i,Real x,Real y) 799
Insert_item (List_Box box,Integer item,Text text) 941
Insert_text(Text &text,Integer start,Text sub) 87
Insert_vip(Element elt,Integer i, Real ch,Real ht,Real parabolic) 804
Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode) 804
Insert_vip(Element elt,Integer i,Real ch,Real ht) 804
Integer Null(Element elt) 320
Integer Set_size (Widget widget,Integer x,Integer y) 872
Integer Set_super_pipe_justify (Element,Integer justify) 404
Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side, Element

&interface_string,Dynamic_Element &tadpoles) 1103
Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side,Element

&interface_string) 1103
Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2) 223
Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2) 223
Is_null(Real value) 1086
Is_practise_version() 141

J
Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real y2,Real z2,Element

&joined_string) 1110
junction 597
justification point 94, 390, 415, 436
Justify_prompt(Text msg,Text &ret) 844

L
Linestyle_prompt(Text msg,Text &ret) 843
little endian 1346
Locate_point(Point from,Real angle,Real dist,Point &to) 227
Loop_clean(Element elt,Point ok_pt,Element &new_elt) 813

M
Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer colour,Integer ptln,Text style) 829
Map_file_close(Map_File file) 828
Map_file_create(Map_File &file) 828, 831, 832, 833
Map_file_find_key(Map_File file,Text key, Integer &number) 829
Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model, Integer &colour,Integer &ptln,Text

&style) 829
Map_file_number_of_keys(Map_File file,Integer &number) 828
Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file) 828, 832
Page 1359

12d Model Programming Langauge Manual
Match_name(Dynamic_Element de,Text reg_exp, Dynamic_Element &matched) 1085
Match_name(Text name,Text reg_exp) 1085
Menu_delete(Menu menu) 174
Model_attribute_debug (Model model) 285
Model_attribute_delete (Model model,Integer att_no) 285
Model_attribute_delete (Model model,Text att_name) 285
Model_attribute_delete_all (Model model,Element elt) 285
Model_attribute_dump (Model model) 285
Model_attribute_exists (Model model,Text att_name) 284
Model_attribute_exists (Model model,Text name,Integer &no) 284
Model_delete(Model model) 281
Model_draw(Model model,Integer colour) 280
Model_draw(Model model) 280
Model_duplicate(Model model,Text dup_name) 279
Model_exists(Model model) 275
Model_exists(Text model_name) 275
Model_get_views(Model model, Dynamic_Text &view_names) 293
Model_prompt(Text msg,Text &ret) 840
Model_rename(Text original_name,Text new_name) 280
mouse buttons

LB 11
left 11
MB 11
middle 11
RB 11
right 11

Move_to (Draw_Box box,Real x,Real y) 910

N
Name_prompt(Text msg,Text &ret) 846
Null_by_angle_length (Tin tin,Real a1,Real l1,Real a2,Real l2) 346
Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max) 1087
Null_ht(Dynamic_Element elements,Real height) 1086
Null_item(Dynamic_Element &de,Integer i) 179
Null_triangles(Tin tin, Element poly, Integer mode) 345
Null(Dynamic_Element &de) 178
Null(Dynamic_Text &dt) 180
Null(Model model) 280
Null(Real value) 1086
Null(Tin tin) 345
Null(View view) 291
Numchr(Text text) 85

O
Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point

&p1,Point &p2) 224

P
Parallel(Arc arc, Real distance, Arc ¶llelled) 220
Parallel(Element elt, Real distance, Element ¶llelled) 813
Parallel(Line line,Real distance,Line ¶llelled) 220
Parallel(Segment segment, Real dist, Segment ¶llelled) 220
Plan_area(Element elt, Real &plan_area) 810
Plan_area(Segment segment,Real &plan_area) 219
Plot_ppf_file(Text name) 1196
Page 1360

Index
Plotter_prompt(Text msg,Text &ret) 842
Print(Integer value) 155
Print(Real value) 155
Print(Text msg) 155
Project_attribute_debug () 269
Project_attribute_delete (Integer att_no) 268
Project_attribute_delete (Text att_name) 268
Project_attribute_delete_all (Element elt) 268
Project_attribute_dump() 269
Project_attribute_exists (Text att_name) 268
Project_attribute_exists (Text name,Integer &no) 268
Project_prompt(Text msg,Text &ret) 845
Projection(Segment segment,Point start_point, Real dist,Point &projected_pt) 229
Projection(Segment segment,Real dist,Point &projected_pt) 229
Prompt(Text msg,Integer &ret) 837
Prompt(Text msg,Real &ret) 837
Prompt(Text msg,Text &ret) 837
Prompt(Text msg) 836

R
Reset_colour_triangles(Tin tin,Element poly,Integer mode) 349
Reset_colour_triangles(Tin tin) 349
Reset_null_ht(Dynamic_Element elements,Real height) 1087
Reset_null_triangles(Tin tin,Element poly, Integer mode) 345
Reset_null_triangles(Tin tin) 345
Retain_on_exit() 82
Retriangulate (Tin tin) 343
Reverse (Segment segment) 210
Reverse(Arc arc) 193
Reverse(Line line) 190
Rotate(Dynamic_Element elements, Real xorg,Real yorg,Real angle) 1144

S
Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht) 807, 808
Select_string(Text msg,Element &string) 807
Set_2d_data(Element elt,Integer i,Real x, Real y) 765
Set_2d_data(Element elt,Real z) 765
Set_3d_data(Element elt,Integer i,Real x, Real y,Real z) 769
Set_4d_angle(Element elt,Real angle) 775, 776
Set_4d_data(Element elt,Integer i,Real x, Real y,Real z,Text t) 772
Set_4d_height(Element elt,Real height) 778
Set_4d_justify(Element elt,Integer justify) 775
Set_4d_offset(Element elt,Real offset) 777
Set_4d_rise(Element elt,Real rise) 777
Set_4d_size(Element elt,Real size) 774
Set_4d_slant(Element elt,Real slant) 778
Set_4d_style(Element elt,Text style) 779
Set_4d_units(Element elt,Integer units_mode) 774
Set_4d_x_factor(Element elt,Real xfact) 779
Set_arc_centre(Element elt,Real xc,Real yc,Real zc) 570
Set_arc_data(Element elt,Real xc,Real yc,Real zc, Real radius,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze) 572
Set_arc_end(Element elt,Real xe,Real ye,Real ze) 572
Set_arc_radius(Element elt,Real radius) 571
Set_arc_start(Element elt,Real xs,Real ys,Real zs) 571
Set_arc(Segment &segment, Arc arc) 209
Set_attribute(Element elt,Integer att_no,Integer att) 330
Page 1361

12d Model Programming Langauge Manual
Set_attribute(Element elt,Integer att_no,Real att) 331
Set_attribute(Element elt,Integer att_no,Text att) 330
Set_attribute(Element elt,Text att_name,Integer att) 330
Set_attribute(Element elt,Text att_name,Real att) 330
Set_attribute(Element elt,Text att_name,Text att) 329
Set_auto_cut_paste (List_Box box,Integer mode) 940
Set_border(Horizontal_Group group,Integer bx,Integer by) 860
Set_border(Horizontal_Group group,Text text) 860
Set_border(Vertical_Group group,Integer bx,Integer by) 863
Set_border(Vertical_Group group,Text text) 862
Set_breakline(Element elt,Integer break_type) 316
Set_caret (List_Box box,Integer pos,Integer scroll) 940
Set_chainage(Element elt,Real start_chain) 318
Set_char(Text t,Integer pos, Integer c) 93
Set_circle_data(Element e,Real xc,Real yc,Real zc,Real radius) 574
Set_colour (Draw_Box box,Integer colour) 909
Set_colour (Draw_Box box,Integer r,Integer g,Integer b) 909
Set_colour(Element elt,Integer colour) 315
Set_cursor_position(Integer x,Integer y) 854
Set_cursor_position(Widget widget) 872
Set_data (Colour_Box box,Text data) 899
Set_data (Screen_Text widget,Text data) 976
Set_data (Text_Edit_Box widget,Text data) 1018
Set_data(Angle_Box box,Real data) 883
Set_data(Choice_Box box,Text data) 895
Set_data(Colour_Box box,Integer data) 899
Set_data(Directory_Box box,Text data) 905
Set_data(File_Box box,Text data) 915
Set_data(Input_Box box,Text data) 927
Set_data(Integer_Box box,Integer data) 930
Set_data(Justify_Box box,Integer data) 934
Set_data(Linestyle_Box box,Text data) 937
Set_data(Map_File_Box box,Text data) 944
Set_data(Message_Box box,Text data) 1043
Set_data(Model_Box box,Text data) 948
Set_data(Name_Box box,Text data) 951
Set_data(Named_Tick_Box box,Text data) 953
Set_data(Plotter_Box box,Text data) 965
Set_data(Real_Box box,Real data) 971
Set_data(Report_Box box,Text data) 975
Set_data(Select_Box select,Text string) 979
Set_data(Select_Boxes select,Integer n,Text string) 985
Set_data(Select_Button select,Text string) 1062
Set_data(Sheet_Size_Box box,Text data) 991
Set_data(Template_Box box,Text data) 1008
Set_data(Text_Style_Box box,Text data) 1011
Set_data(Text_Units_Box box,Integer data) 1013
Set_data(Tick_Box box,Text data) 1026
Set_data(Tin_Box box,Text data) 1030
Set_data(View_Box box,Text data) 1035
Set_data(XYZ_Box box,Real x,Real y,Real z) 1038
Set_directory (File_Box box,Text data) 916
Set_drainage_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f) 602
Set_drainage_float (Element,Integer float) 604
Set_drainage_flow(Element elt,Integer dir) 604
Set_drainage_fs_tin (Element,Tin tin) 603
Set_drainage_hc_adopted_level(Element,Integer hc,Real level) 673
Set_drainage_hc_bush (Element,Integer hc,Text bush) 674
Page 1362

Index
Set_drainage_hc_colour (Element,Integer hc,Integer colour) 674
Set_drainage_hc_depth (Element,Integer hc,Real depth) 674
Set_drainage_hc_diameter (Element,Integer hc,Real diameter) 675
Set_drainage_hc_grade (Element,Integer hc,Real grade) 675
Set_drainage_hc_hcb (Element,Integer hc,Integer hcb) 676
Set_drainage_hc_length (Element,Integer hc,Real length) 676
Set_drainage_hc_level (Element,Integer hc,Real level) 677
Set_drainage_hc_material (Element,Integer hc,Text material) 677
Set_drainage_hc_name (Element,Integer hc,Text name) 677
Set_drainage_hc_side (Element,Integer hc,Integer side) 678
Set_drainage_hc_type (Element,Integer hc,Text type) 678
Set_drainage_ns_tin (Element,Tin tin) 603
Set_drainage_outfall_height(Element elt,Real ht) 603
Set_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Integer att) 671
Set_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Real att) 671
Set_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Text att) 671
Set_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Integer att) 670
Set_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Real att) 670
Set_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Text att) 670
Set_drainage_pipe_cover (Element,Integer pipe,Real cover) 651
Set_drainage_pipe_diameter(Element elt,Integer p,Real diameter) 652
Set_drainage_pipe_flow(Element elt,Integer p,Real flow) 657
Set_drainage_pipe_hgls(Element elt,Integer p,Real lhs,Real rhs) 656
Set_drainage_pipe_inverts(Element elt,Integer p,Real lhs,Real rhs) 649
Set_drainage_pipe_name(Element elt,Integer p,Text name) 650
Set_drainage_pipe_type(Element elt,Integer p,Text type) 651
Set_drainage_pipe_velocity(Element elt,Integer p,Real velocity) 656
Set_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Integer att) 642
Set_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Real att) 642
Set_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Text att) 643
Set_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Integer att) 643
Set_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Real att) 643
Set_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Text att) 643
Set_drainage_pit_diameter(Element elt,Integer p,Real diameter) 611
Set_drainage_pit_float (Element,Integer pit,Integer float) 622
Set_drainage_pit_hgls(Element elt,Integer p,Real lhs,Real rhs) 624
Set_drainage_pit_inverts(Element elt,Integer p,Real lhs,Real rhs) 620
Set_drainage_pit_name(Element elt,Integer p,Text name) 610
Set_drainage_pit_road_chainage(Element elt,Integer p,Real chainage) 625
Set_drainage_pit_road_name(Element elt,Integer p,Text name) 625
Set_drainage_pit_type(Element elt,Integer p,Text type) 626
Set_drainage_pit(Element elt,Integer p,Real x,Real y,Real z) 609
Set_enable(Widget widget,Integer mode) 867
Set_end(Arc &arc,Point end) 193
Set_end(Line &line, Point pt) 189
Set_end(Segment &segment,Point point) 210
Set_error_message(Widget widget,Text text) 871
Set_feature_centre(Element elt,Real xc,Real yc,Real zc) 681
Set_feature_radius(Element elt,Real radius) 681
Set_finish_button (Widget panel,Integer move_cursor) 1058
Set_focus(Widget widget) 873
Set_height (Tin tin,Integer pt,Real ht) 343
Set_help (Widget widget,Integer help) 876
Set_help (Widget widget,Text help) 877
Set_hip_data(Element elt,Integer i, Real x,Real y,Real radius) 799
Set_hip_data(Element elt,Integer i,Real x,Real y,Real radius,Real left_spiral,Real right_spiral) 799
Set_hip_data(Element elt,Integer i,Real x,Real y) 798
Set_interface_data(Element elt, Integer i,Real x, Real y,Real z,Integer flag) 685
Page 1363

12d Model Programming Langauge Manual
Set_item(Dynamic_Element &de,Integer i,Element elt) 179
Set_item(Dynamic_Text &dt,Integer i,Text text) 181
Set_line(Segment &segment, Line line) 209
Set_message_mode(Integer mode) 836
Set_message_text(Text msg) 836
Set_model_attribute (Model model,Integer att_no,Integer att) 287
Set_model_attribute (Model model,Integer att_no,Real att) 287
Set_model_attribute (Model model,Integer att_no,Text att) 287
Set_model_attribute (Model model,Text att_name,Integer att) 288
Set_model_attribute (Model model,Text att_name,Real att) 288
Set_model_attribute (Model model,Text att_name,Text att) 288
Set_model(Dynamic_Element de,Model model) 316
Set_model(Element elt,Model model) 316
Set_name(Element elt,Text elt_name) 315
Set_name(Widget widget,Text text) 869
Set_optional(Widget widget,Integer mode) 868
Set_origin (Draw_Box box,Real x,Real y) 908
Set_page(Widget_Pages pages,Integer page_no) 879
Set_pipe_data(Element elt,Integer i,Real x, Real y,Real z) 788
Set_pipe_diameter(Element elt, Real diameter) 789
Set_pipe_justify(Element elt,Integer justify) 789
Set_pipeline_diameter(Element pipeline,Real diameter) 592
Set_pipeline_length (Element pipeline,Real length) 592
Set_plot_frame_colour(Element elt,Integer colour) 758
Set_plot_frame_draw_border(Element elt,Integer draw_border) 757
Set_plot_frame_draw_title_file(Element elt,Integer draw_title) 758
Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport) 758
Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t) 757
Set_plot_frame_name(Element elt,Text name) 755
Set_plot_frame_origin(Element elt,Real x,Real y) 756
Set_plot_frame_plot_file(Element elt,Text plot_file) 759
Set_plot_frame_plotter_name(Element elt,Text plotter_name) 759
Set_plot_frame_plotter(Element elt,Integer plotter) 758
Set_plot_frame_rotation(Element elt,Real rotation) 756
Set_plot_frame_scale(Element elt,Real scale) 756
Set_plot_frame_sheet_size(Element elt,Real w,Real h) 756
Set_plot_frame_sheet_size(Element elt,Text size) 757
Set_plot_frame_text_size(Element elt,Real text_size) 757
Set_plot_frame_textstyle(Element elt,Text textstyle) 758
Set_plot_frame_title_1(Element elt,Text title_1) 759
Set_plot_frame_title_2(Element elt,Text title_2) 759
Set_plot_frame_title_file(Element elt,Text title_file) 760
Set_point(Segment &segment, Point point) 208
Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f) 794
Set_project_attribute (Integer att_no,Integer att) 272
Set_project_attribute (Integer att_no,Real att) 272
Set_project_attribute (Integer att_no,Text att) 271
Set_project_attribute (Text att_name,Integer att) 271
Set_project_attribute (Text att_name,Real att) 271
Set_project_attribute (Text att_name,Text att) 273
Set_radius(Arc &arc, Real radius) 192
Set_raised_button(Button button,Integer mode) 1056
Set_scale (Draw_Box box,Real xs,Real ys) 908
Set_select_snap_mode(Select_Box select,Integer mode,Integer control,Text snap_text) 959, 980
Set_select_snap_mode(Select_Box select,Integer snap_control) 958, 980
Set_select_snap_mode(Select_Boxes select,Integer n,Integer control) 986
Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer snap_control,Text snap_text) 986
Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text) 1063
Page 1364

Index
Set_select_snap_mode(Select_Button select,Integer snap_control) 1063
Set_select_type(Select_Box select,Text type) 958, 980
Set_select_type(Select_Boxes select,Integer n,Text type) 986
Set_select_type(Select_Button select,Text type) 1063
Set_selection (List_Box box,Integer item) 942
Set_selections (List_Box box,Integer mode) 940
Set_sort (List_Box box,Integer mode) 939
Set_start(Arc &arc, Point start) 192
Set_start(Line &line, Point pt) 189
Set_start(Segment &segment,Point point) 210
Set_style(Element elt,Text elt_style) 317
Set_subtext(Text &text,Integer start,Text sub) 87
Set_super_2d_level (Element,Real level) 374
Set_super_culvert (Element,Real w,Real h) 412
Set_super_data (Element,Integer i,Real x,Real y,Real z,Real r,Integer f) 364
Set_super_diameter (Element,Real diameter) 410
Set_super_segment_attribute (Element elt,Integer seg,Integer att_no,Integer att) 520
Set_super_segment_attribute (Element elt,Integer seg,Integer att_no,Real att) 520
Set_super_segment_attribute (Element elt,Integer seg,Integer att_no,Text att) 519
Set_super_segment_attribute (Element elt,Integer seg,Text att_name,Integer att) 519
Set_super_segment_attribute (Element elt,Integer seg,Text att_name,Real att) 519
Set_super_segment_attribute (Element elt,Integer seg,Text att_name,Text att) 518
Set_super_segment_colour (Element,Integer seg,Integer colour) 486
Set_super_segment_culvert (Element,Integer seg,Real w,Real h) 412
Set_super_segment_device_text (Element) 442
Set_super_segment_diameter (Element,Integer seg,Real diameter) 411
Set_super_segment_major (Element,Integer seg,Integer major) 383
Set_super_segment_radius (Element,Integer seg,Real radius) 382, 384
Set_super_segment_text (Element,Integer seg,Text text) 442
Set_super_segment_text_angle (Element,Integer vert,Real a) 446
Set_super_segment_text_colour (Element,Integer vert,Integer c) 445
Set_super_segment_text_justify (Element,Integer vert,Integer j) 443
Set_super_segment_text_offset_height (Element,Integer vert,Real o) 445
Set_super_segment_text_offset_width (Element,Integer vert,Real o) 444
Set_super_segment_text_size (Element,Integer vert,Real s) 448
Set_super_segment_text_slant (Element,Integer vert,Real s) 449
Set_super_segment_text_style (Element,Integer vert,Text s) 449
Set_super_segment_text_type (Element,Integer type) 443
Set_super_segment_text_x_factor (Element,Integer vert,Real x) 448
Set_super_segment_tinability (Element,Integer seg,Integer tinability) 380
Set_super_segment_visibility (Element,Integer seg,Integer visibility) 537
Set_super_segment_world_text (Element) 442
Set_super_use_2d_level (Element,Integer use) 372
Set_super_use_3d_level (Element,Integer use) 372
Set_super_use_culvert (Element,Integer use) 401
Set_super_use_diameter (Element,Integer use) 400
Set_super_use_pipe_justify (Element,Integer use) 403
Set_super_use_segment_annotation_array(Element,Integer use) 440
Set_super_use_segment_annotation_value(Element,Integer use) 440
Set_super_use_segment_attribute (Element,Integer use) 510
Set_super_use_segment_colour (Element,Integer use) 486
Set_super_use_segment_culvert (Element,Integer use) 402
Set_super_use_segment_diameter (Element,Integer use) 401
Set_super_use_segment_radius (Element,Integer use) 382
Set_super_use_segment_text_array (Element,Integer use) 438
Set_super_use_segment_text_value (Element,Integer use) 438
Set_super_use_symbol (Element,Integer use) 391
Set_super_use_tinability (Element,Integer use) 376
Page 1365

12d Model Programming Langauge Manual
Set_super_use_vertex_annotation_array(Element,Integer use) 419
Set_super_use_vertex_annotation_value(Element,Integer use) 419
Set_super_use_vertex_attribute (Element,Integer use) 499
Set_super_use_vertex_point_number (Element,Integer use) 386
Set_super_use_vertex_symbol (Element,Integer use) 391
Set_super_use_vertex_text_value (Element,Integer use) 417
Set_super_use_visibility (Element,Integer use) 490, 532
Set_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Integer att) 509
Set_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Real att) 509
Set_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Text att) 508
Set_super_vertex_attribute (Element elt,Integer vert,Text att_name,Integer att) 508
Set_super_vertex_attribute (Element elt,Integer vert,Text att_name,Real att) 508
Set_super_vertex_attribute (Element elt,Integer vert,Text att_name,Text att) 507
Set_super_vertex_coord (Element,Integer vert,Real x,Real y,Real z) 364
Set_super_vertex_device_text (Element) 421
Set_super_vertex_point_number (Element,Integer vert,Integer point_number) 386
Set_super_vertex_symbol_colour (Element,Integer vert,Integer c) 393
Set_super_vertex_symbol_offset_height(Element,Integer vert,Real r) 394
Set_super_vertex_symbol_offset_width (Element,Integer vert,Real o) 394
Set_super_vertex_symbol_rotation (Element,Integer vert,Real a) 395
Set_super_vertex_symbol_size (Element,Integer vert,Real s) 395
Set_super_vertex_symbol_style (Element,Integer vert,Text s) 393
Set_super_vertex_text (Element,Integer vert,Text text) 421
Set_super_vertex_text_angle (Element,Integer vert,Real a) 424, 425, 426, 447
Set_super_vertex_text_colour (Element,Integer vert,Integer c) 424
Set_super_vertex_text_justify (Element,Integer vert,Integer j) 422
Set_super_vertex_text_offset_height (Element,Integer vert,Real o) 423
Set_super_vertex_text_offset_width (Element,Integer vert,Real o) 423
Set_super_vertex_text_size (Element,Integer vert,Real s) 426
Set_super_vertex_text_slant (Element,Integer vert,Real s) 427
Set_super_vertex_text_style (Element,Integer vert,Text s) 428
Set_super_vertex_text_type (Element,Integer type) 422
Set_super_vertex_text_x_factor (Element,Integer vert,Real x) 427
Set_super_vertex_tinability (Element,Integer vert,Integer tinability) 378
Set_super_vertex_visibility (Element,Integer vert,Integer visibility) 534
Set_super_vertex_world_text (Element) 421
Set_supertin (Tin_Box box,Integer mode) 1030
Set_text_align (Draw_Box box,Integer mode) 911
Set_text_angle(Element elt,Real angle) 582, 583
Set_text_colour (Draw_Box box,Integer r,Integer g,Integer b) 910
Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif,Integer

size_mode,Real offset_distance,Real rise_distance) 577
Set_text_font (Draw_Box box,Text font) 911
Set_text_height(Element elt,Real height) 584
Set_text_justify(Element elt,Integer justify) 581
Set_text_offset(Element elt,Real offset) 583
Set_text_rise(Element elt,Real rise) 584
Set_text_size(Element elt,Real size) 581
Set_text_slant(Element elt,Real slant) 585
Set_text_style(Element elt,Text style) 585
Set_text_units(Element elt,Integer units_mode) 580
Set_text_value(Element elt,Text text) 578
Set_text_weight (Draw_Box box,Integer weight) 911
Set_text_x_factor(Element elt,Real xfact) 585
Set_text_xy(Element elt,Real x, Real y) 579
Set_time_updated(Element elt,Integer time) 320
Set_tooltip (Widget widget,Text help) 876
Set_type (Function_Box box,Integer type) 922
Page 1366

Index
Set_type (Function_Box box,Text type) 922
Set_vip_data(Element elt,Integer i, Real ch,Real ht,Real parabolic) 803
Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode) 803
Set_vip_data(Element elt,Integer i,Real ch,Real ht) 803
Set_width_in_chars(Widget widget,Integer chars) 871
Set_wildcard (File_Box box,Text data) 915
Set_x(Point &pt, Real x) 187
Set_y(Point &pt, Real y) 188
Set_z(Point &pt, Real z) 188
sewer junction 597
Sheet_size_prompt(Text msg,Text &ret) 843
Show_browse_button(Widget widget,Integer mode) 866
Show_widget(Widget widget,Integer x,Integer y) 871
Show_widget(Widget widget) 871
Split_string(Element string,Real chainage,Element &string1,Element &string2) 1109
Start_batch_draw (Draw_Box box) 908
String_close(Element elt) 809
String_closed(Element elt, Integer &closed) 809
String_open(Element elt) 809
String_self_intersects(Element elt,Integer &intersects) 813
Super_segment_attribute_debug (Element elt,Integer seg) 515
Super_segment_attribute_delete (Element elt,Integer seg,Integer att_no) 514
Super_segment_attribute_delete (Element elt,Integer seg,Text att_name) 514
Super_segment_attribute_delete_all (Element elt,Integer seg) 514
Super_segment_attribute_dump (Element elt,Integer seg) 515
Super_segment_attribute_exists (Element elt,Integer seg,Text att_name) 513
Super_segment_attribute_exists (Element elt,Integer seg,Text name,Integer &no) 514
Super_vertex_attribute_debug (Element elt,Integer vert) 504
Super_vertex_attribute_delete (Element elt,Integer vert,Integer att_no) 503
Super_vertex_attribute_delete (Element elt,Integer vert,Text att_name) 503
Super_vertex_attribute_delete_all (Element elt,Integer vert) 503
Super_vertex_attribute_dump (Element elt,Integer vert) 504
Super_vertex_attribute_exists (Element elt,Integer vert,Text att_name) 503
Super_vertex_attribute_exists (Element elt,Integer vert,Text name,Integer &no) 502
Swap_xy(Dynamic_Element elements) 1147
symbol

justification point 390
symbol justification point 390
System(Text msg) 136

T
Tangent(Segment seg_1,Segment seg_2,Line &line) 222
Template_exists(Text template_name) 1104
Template_prompt(Text msg,Text &ret) 840
Template_rename(Text original_name,Text new_name) 1104
text

direction 94, 415, 436
justification point 94, 415, 436

Text_justify(Text text) 86
Text_length(Text text) 85
Text_lower(Text text) 86
Text_units_prompt(Text msg,Text &ret) 845
Text_upper(Text text) 85
Textstyle_prompt(Text msg,Text &ret) 843
Time(Integer &h,Integer &m,Real &sec) 137
Time(Integer &time) 137
Time(Text &time) 137
Page 1367

12d Model Programming Langauge Manual
Tin_aspect(Tin tin,Real x, Real y, Real &aspect) 338
Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de) 338
Tin_colour(Tin tin,Real x, Real y,Integer &colour) 337
Tin_delete(Tin tin) 339
Tin_duplicate(Tin tin,Text dup_name) 338
Tin_exists(Text tin_name) 334
Tin_exists(Tin tin) 334
Tin_get_point(Tin tin, Integer point, Real &x, Real &y, Real &z) 339
Tin_get_triangle_colour(Tin tin, Integer triangle, Integer &colour) 348
Tin_get_triangle_from_point(Tin tin, Integer &triangle, Real x,Integer y, Integer z) 342
Tin_get_triangle_inside(Tin tin, Integer triangle, Integer &Inside) 341
Tin_get_triangle_neighbours(Tin tin, Integer triangle, Integer &n1, Integer &n2, Integer &n3) 340
Tin_get_triangle_points(Tin tin, Integer triangle, Integer &p1, Integer &p2,Integer &p3) 339
Tin_get_triangle(Tin tin, Integer triangle, Integer &p1, Integer &p2, Integer &p3, Integer &n1, Integer &n2, Integer

&n3, Real &x1, Real &y1, Real &z1, Real &x2, Real &y2, Real &z2,Real &x3, Real &y3, Real &z3) 341
Tin_height(Tin tin,Real x, Real y, Real &height) 337
Tin_models(Tin tin, Dynamic_Text &models_used) 335
Tin_number_of_duplicate_points(Tin tin, Integer ¬ri) 336
Tin_number_of_points(Tin tin, Integer ¬ri) 336
Tin_number_of_triangles(Tin tin, Integer ¬ri) 336
Tin_prompt(Text msg,Integer mode,Text &ret) 841
Tin_prompt(Text msg,Text &ret) 841
Tin_rename(Text original_name,Text new_name) 338
Tin_slope (Tin tin,Real x, Real y, Real &slope) 337
Tin_tin_depth_contour(Tin original,Tin new,Integer cut_colour,Integer zero_colour,Integer fill_colour,Real inter-

val,Real start_level,Real end_level,Integer mode,Dynamic_Element &de) 1088
Tin_tin_intersect(Tin original,Tin new, Integer colour,Dynamic_Element &de) 1089
Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de,Integer mode) 1089
To_text(Integer value,Text format) 91, 93
To_text(Integer value) 91, 92, 93
To_text(Real value, Integer no_dec) 91
To_text(Real value,Text format) 91, 92
To_text(Text text,Text format) 92
Translate(Dynamic_Element elements, Real dx,Real dy,Real dz) 1148, 1149
Triangulate (Dynamic_Text list,Text tin_name,Integer colour, Integer preserve,Integer bubbles,Tin &tin) 333
Triangulate(Dynamic_Element de,Text tin_name, Integer tin_colour,Integer preserve,Integer bubbles,Tin &tin) 333

U
UCS 1345
Unicode Transformation Format 1345
Universal Characters Set 1345
Use_browse_button(Widget widget,Integer mode) 866
UTF 1345

V
Validate (Select_Box select,Element &string,Integer silent) 978
Validate (Select_Boxes select,Integer n,Element &string,Integer silent) 984
Validate (Select_Button select,Element &string,Integer silent) 1061
Validate(Angle_Box box,Real &result) 884
Validate(Choice_Box box,Text &result) 894
Validate(Colour_Box box,Integer &result) 899
Validate(Directory_Box box,Integer mode,Text &result) 904
Validate(File_Box box,Integer mode,Text &result) 914
Validate(Input_Box box,Text &result) 927
Validate(Integer_Box box,Integer &result) 930
Validate(Justify_Box box,Integer &result) 933
Page 1368

Index
Validate(Linestyle_Box box,Integer mode,Text &result) 937
Validate(Map_File_Box box,Integer mode,Text &result) 944
Validate(Model_Box box,Integer mode,Model &result) 947
Validate(Name_Box box,Text &result) 951
Validate(Named_Tick_Box box,Integer &result) 953
Validate(Plotter_Box box,Text &result) 965
Validate(Real_Box box,Real &result) 971
Validate(Report_Box box,Integer mode,Text &result) 974
Validate(Select_Box select,Element &string) 978
Validate(Select_Boxes select,Integer n,Element &string) 984
Validate(Select_Button select,Element &string) 1061
Validate(Sheet_Size_Box box,Real &w,Real &h,Text &code) 991
Validate(Template_Box box,Integer mode,Text &result) 1007
Validate(Text_Style_Box box,Text &result) 1011
Validate(Text_Units_Box box,Integer &result) 1013
Validate(Tick_Box box,Integer &result) 1026
Validate(Tin_Box box,Integer mode,Tin &result) 1029
Validate(View_Box box,Integer mode,View &result) 1034
Validate(XYZ_Box box,Real &x,Real &y,Real &z) 1038
Vertical_Group Create_vertical_group(Integer mode) 862
View_add_model(View view, Model model) 293
View_exists(Text view_name) 291
View_exists(View view) 291
View_fit(View view) 294
View_get_models(View view, Dynamic_Text &model_names) 293
View_get_size(View view,Integer &width,Integer &height) 294
View_prompt(Text msg,Text &ret) 842
View_redraw(View view) 293
View_remove_model(View view, Model model) 293
Volume_exact(Tin tin_1,Element tin_2,Element poly,Real &cut,Real &fill,Real &balance) 1102
Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill, Real &balance) 1102
Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real

&fill,Real &balance) 1101
Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real

&fill,Real &balance) 1101

W
Wait_on_widgets(Integer &id,Text &cmd,Text &msg) 866
Widget_Pages Create_widget_pages() 879
Winhelp (Widget widget,Text helpfile,Integer helpid,Integer popup) 878
Winhelp (Widget widget,Text helpfile,Integer helpid) 878
Winhelp (Widget widget,Text helpfile,Integer table,Text key) 877
Winhelp (Widget widget,Text helpfile,Text key) 877

Y
Yes_no_prompt(Text msg,Text &ret) 842
Page 1369

12d Model Programming Langauge Manual
Page 1370

12d Solutions Pty Ltd
Civil and Surveying Software

Course Notes

Programming Language

12D Solutions Pty Ltd
ACN 101 351 991

Phone: +61 (2) 9970 7117Fax: +61 (2) 9970 7118 Email training@12d.com Web
www.12d.com

CIVIL AND

SURVEYING SOFTWARE
THE 12D PERSPECTIVE

12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd

COURSE NOTES

12d Model Programming Language

12d Model Programming Language
Course Notes

These course notes assume that the trainee has the basic 12d Model skills usually obtained from the
“12d Model Training Manual”

These notes are intended to cover basic 12d Model programming language examples. For more
information regarding training courses contact 12d Solutions training Manager.

These notes were prepared by
Robert Graham and Lee Gregory

Copyright © 12d Solutions Pty Ltd 2018

These notes may be copied and distributed freely.

Disclaimer

12d Model is supplied without any express or implied warranties whatsoever.
No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in these notes and the program 12d Model
is correct, however, no warranty is expressed or implied by 12d Solutions Pty Ltd.

Copyright © 12d Solutions Pty Ltd 2018

Course Introduction ... 5
Getting Started.. 6

Names and Reserved Names... 6
White Space and Comments ... 6
Variables, Assignments and Operators ... 6

Variables .. 7
Assignment Operator ... 8
Operators.. 8

Statements and Blocks .. 9
Functions ... 11

General Information About Functions .. 11
Your First Program.. 13

Print(Text msg).... your first 12dPL function.. 13
Creating Your First Program... 14
Compiling and Running the Program ... 15

Common Compile Error Messages ... 17
Overloaded Functions .. 18
Using Input and Output Functions ... 19

Output to the Macro Console .. 19
Input via the Macro Console (quick and easy).. 24

Using Flow Control... 28
Logical Expressions .. 28
12dPL Flow Controls .. 28
.“goto” and “label” Statements ... 29
.“if” and “else” Statements.. 29
.Error Checking Using “goto”, “label”, “if” and “else” Statements ... 30
“for” loops ... 32
“while” loops... 33
“switch” Statement.. 33
“continue” Statement .. 35
“break” Statement ... 35

Running Existing 12dPL Programs .. 36
Unleashing the Power - 12d Database Handles ... 37

Locks ... 37
Read In Some Data to use 12dPL Programs On ... 37
Elements, Models and Uids... 38
Accessing Elements .. 39
Exercises 1 and 2... 41

Exercise 1... 41
Exercise 2... 41

Accessing Models ... 42
Dynamic_Elements ... 43
Accessing Element in Models ... 44
Getting Information about an Element.. 45
Putting it All Together .. 45
Exercises 3and 4.. 48

Exercise 3... 48
Exercise 4... 48

Infinite Loops .. 49
Killing a 12dPL Program .. 49
Ending the Process 12d.exe... 50

Writing to a Text File (Reports).. 51
Writing a Simple Unicode and ANSI (Ascii) Files... 52
Writing 12d Model Data to a Text File ... 52
3

12d Model Programming Language Manual
Checking if a File Exists .. 54
Exercise 5 ... 54

Reading a Text File ... 55
What to Do with the Line Read from a File .. 55
Reading a Text File.. 56

Exercise 6 ... 56
Using a Clipboard .. 57
Binary Files.. 57

Creating User Defined Functions .. 58
A Simple User Defined Function Example ... 58

Exercise 7 ... 59
Exercise 8 ... 60

User Menus, User Defined Function Keys and Toolbars .. 61
Panel Basics.. 63

Creating and Displaying a Panel.. 64
Adding Widgets to the Panel ... 65
Monitoring Events in the Panel ... 66
Events Produced by a Panel... 67
Processing Events from a Panel... 68
Set_Ups.h and #include ... 70

Creating a Model_Box ... 70
Creating a File_Box.. 72
More Events from Wait_on_widgets.. 72
Exercise 9 ... 72

Horizontal and Vertical Groups ... 74
Exercise 10 ... 75

Validating Boxes and Buttons ... 76
Model_Box Events ... 76
File_Box Events ... 76
Write Button ... 76
Exercise 11 ... 79

CHECK and GET Modes .. 80
Ignored Events ... 80

Working with 12d Model Strings... 81
Exercise 12 ... 82

Types of Elements ... 83
Dimensions of a Super String .. 84

Exercise 13 ... 85
Accessing (x,y,z) Data for a Super String ... 86

Exercise 14 ... 86
Changing Element Header Properties.. 87

Exercise 15 ... 88
Some Examples.. 90

Exercise_8.4dm.. 90
Eleven_1.4dm .. 92
Eleven_2.4dm .. 93
Eleven_3.4dm .. 94
Twelve_1.4dm ... 96
Thirteen.4dm.. 97
Fourteen.4dm ... 99
Fifteen.4dm .. 101

Not Used ... 103
4

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
12d Model Programming Language Course
1.0 Course Introduction

The 12d Model programming Language (12dPL) is a powerful programming language designed
to run from within 12d Solutions software 12d Model.
Its main purpose is to allow users to enhance the existing 12d Solutions package by writing their
own programs (also known as 12d Model macros).
12dPL is based on a subset of the C++ language with special extensions to allow easy
manipulation of 12d Model data. A large number of intrinsic functions are supplied which cover
most aspects of civil modelling.

12dPL has been designed to fit in with the ability of 12d Model to "stack" an incomplete
operation.
This training manual does not try to teach programming techniques. Instead this manual takes
the user through the basics steps to get started with 12dPL.
This course intends to teach you:

1. How to use the 12dPL manual
2. The syntax for 12dPL programs
3. How to create/compile and run 12dPL code.

4. The basic 12dPL variable types and "handles" to 12d Elements (strings etc.).
5. How to retrieve and change basic Element properties.
6. File input/output (creating reports).

7. How to build 12d Model panels.
8. How to include your 12dPL programs in the 12d Model menu system, function keys and

toolbars.

The course does not try and each you everything about 12dPL but builds up your knowledge in a
structured, step by step approach, with many programming examples.
At first the going may appear slow but the pace accelerates once you have a good understanding
of the basics, and how to effectively use the 12dPL manual.
12d Model Programming Language Training Notes Page 5

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
2.0 Getting Started

2.1 Names and Reserved Names
12dPL programs consists of names (also known as words) and names are broken in to reserved
names and user defined names.
The reserved names (or reserved words or Key words) that have special purposes. For example
goto, if, else, while, switch, Real, Text (For a more complete list, see Reserved Names).
Some of these reserved words are part of the language structure (for example goto, if, else, while,
switch), others are 12dPL variable types (for example Real, Integer, Model, Element) and 12dPL
supplied function names.
In many places a user defines their own names (user defined names) but a user defined name can
not be the same as any reserved name.

Example of user defined names are for variable names (see Variables, Assignments and
Operators) and user defined function names.

2.2 White Space and Comments
Spaces, tabs, new lines (<Enter>), form feeds and comments are collectively known as white
space.

White space is ignored except for the purpose of separating names, or in text between double
quotes. Hence blank lines are ignored in the program code.
For example
 goto fred ;

is the same as
goto fred
and “many spaces” remains as it is.

Comments are extremely important for writing any program.
12dPL supports two styles of comments:

(a) a line oriented comment
where all the characters after a double forward slash (//) and up to the end of the line are ignored.

(b) a block comment
where all characters between a starting /* and a terminating */ are ignored.

The following is an example of 12dPL code with single and multiple line comments.
void main()
{
Real y = 1; // the rest of this line is comment
/* this comment can carry
over many lines until
we get to the termination characters */
}

2.3 Variables, Assignments and Operators
Variables and constants are the basic data objects manipulated in a 12dPL program.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Variables have unique user defined names and a unique type which is specified in a Variable
Declaration. All variables must be declared prior to use.

Operators specify what is to be done to variables.
Expressions combine variables and operators to produce new values.
The type of the variable determines the set of values it can have and what operations can be
performed on it.

2.3.1 Variables

2.3.1.1 Variable Names
In 12dPL, variable names must start with an alphabetic character and can consist of upper
and/or lower case alphabetic characters, numbers and underscores(_) and there is no
restriction on the length of variable names.

12dPL variable names are case sensitive.

2.3.1.2 Variable Declarations
All variables must be declared before they are used.
A declaration consists of a variable type (which is a reserved name) and a list of variable
names separated by commas and ending the line with a semi-colon ";".

For example
 Integer fred, joe, tom;
where Integer is the variable type and fred, joe and tom are the names of variables of type
Integer.

2.3.1.3 Variable Types
There are a wide variety of 12d Model variable types supported in the 12dPL language. For
example void, Integer, Real, Text, Arrays.
Important Note: unlike C and C++, array in 12dPL start at position 1.
See Variables .

2.3.1.3.1 Void
This is a special type which is only used for functions which have no return value.

2.3.1.3.2 Integers, Real and Text
Integer - a 32-bit whole number. It can be positive or negative.
Real - a 64-bit decimal number. It can be positive or negative.

Text - a sequence of characters.
Examples of declarations:
 Integer i;
 Real x,y,z;
 Text ans, rep;

2.3.1.3.3 Arrays
Arrays may be allocated statically or dynamically.See Array Types .
BIG WARNING: array subscripts start at 1 and not 0 like in C and C++
12d Model Programming Language Training Notes Page 7

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Static Array
Real x[10]; // great for small arrays (created on the stack)
Dynamic Allocated Array
Integer n = 100; // a must for large arrays (say greater than 10)

Real x[n];

2.3.2 Assignment Operator
An assignment gives a value to a variable.

In 12dPL, the assignment operator is a single equal sign (=).
An assignment consists of a
 variable_name = expression

For example
x = y + 3

The Assignment is NOT a mathematical equality and in interpreted as:

the expression on the right hand side is evaluated and then the variable on the left is given
that value.

For example
x = y + 3

means that x is given the value that is equal to the current value of y plus 3. The value of y does
not change.
If the same variable occurs on both sides of the assignment operator, the current value is used in
evaluating the expression on the right hand side of the “=” and then the variable on the left is
given the value of the expression on the right.
For example,

x = x + 1;
means that x is given the new value that is equal to the original value of x, plus 1.
It is also allowable to use assignments to give constant values to a variable in the variable
declaration.

Integer i=2; // this is declaring the type and also assigning it the value 2.

2.3.3 Operators
Operators specify operations that are done to variables.
The other most common operators are

Binary Arithmetic Operators
+ addition
- subtraction

* multiplication
/ division - note that integer division truncates any fractional part

Increment and decrement operators
++ post and pre-increment e.g. i++ which is shorthand for i = i + 1
-- post and pre-decrement e.g. i-- which is shorthand for i = i -1
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
Assignment operators
+= x += y is shorthand for x = x + y
-= x -= y is shorthand for x = x - y

*= x *= y is shorthand for x = x *y
/= x /= y is shorthand for x = x /y

Logical Operators

== equal to
!= not equal to

|| inclusive or
&& and
! not

Relational operators
< less than

<= less than or equal to
> greater than
>= greater than or equal to

For more information see Assignment and Operators

2.4 Statements and Blocks
An expression such as x = 0 or i++ becomes a statement when it is followed by a semi-colon.

Curly brackets { and } (braces) are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a single statement.

There is no semi-colon after the right brace that ends a block.
Blocks can be nested but cannot overlap.
Examples of statements are
x = 0;
i++;
fred = 2 * joe + 9.0;

An example of a compound statement or block is
{
 x = 0;
 i++;
12d Model Programming Language Training Notes Page 9

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

 fred = 2 * joe + 9.0;
}

12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
3.0 Functions
Functions can be used to break large computing tasks into smaller ones and allow users to build
on software that already exists.
Basically a program is just a set of definitions of variables and functions. Communication
between the functions is by function arguments, by values returned by the functions, and through
global variables.
The 12dPL program file must contain a starting function called main, calls to 12dPL supplied
functions as well as zero or more user defined functions.

(a) main function
The special function called main is the designated start of the program.
The main function is simply a header void main () followed by the actual program code enclosed
between a start brace { and an end brace }.
Hence the function called main is a header followed by a block of code:

 void main ()
 {
 declarations and statements
 i.e. program code
 }
For more information, see Main Function .

(b) 12dPL Supplied Functions
A large number of functions are supplied with 12dPL to make tasks easier for the program writer.
These 12dPL supplied functions are predefined and nothing special is needed to use them. The
12dPL supplied functions are all given in the 12d Model Programming Language manual.

Note - All 12dPL supplied functions begin with a capital letter to help avoid clashes with any user variable
names or user defined function names.

(c) User Defined Functions
As well as the main function, and 12dPL supplied functions, a program file can also contain user
defined functions.
We will examine user defined functions later in the course (see Creating User Defined Functions
).

3.1 General Information About Functions
A function performs a specific task using the variables (arguments) that are passed to it in
brackets. After it has completed these tasks it can return a value. The returning value is often a
result or answer from the function or it is a code indicating the success of the function.
The definition of a function would look like the following

Real calc_distance(Real x1, Real y1, Real x2, Real y2)

This says that the function called calc_distance has the Real values of x1,y1,x2,y2 passes to it.
The function body (not shown) might calculate the distance between the two points (x1,y1) and
(x2,y2) and return the distance as a Real number as the function return value.
When calc_distance is called inside a12dPL program, the code would look like the following.
 Real distance, x1,y1,x2,y2 // defining distance,x1,y1,x2,y2 as Real variables

 ...
12d Model Programming Language Training Notes Page 11

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

 distance = calc_distance(x1,y1,x2,y2); // distance is given the return value of calc_distance

Note that when the function is used (called) in code, the types of the variables (Real in this case) are
not included. They are only used in the function definition to specify what types the arguments and
return function value must be.

In any code where a function is called, the compiler will give an error if any of the arguments do not
match those in the function definition.

The arguments (constants or variables) of the function can be Passed by Value (a one way transfer)
as in the above example calc_distance, or a variable can be Passed by Reference (a two way
transfer) by including an & before the variable name in the argument list. The arguments in the
following function definition for calc_distance are passed by reference.

Real calc_distance(Real &x1, Real &y1, Real &x2, Real& y2);

With passed by reference, the argument variable in the calling routine can be changed by the
function.
Note:
pass by reference is mainly used when you want to pass more values back from the function than
just the function return value. The avoid what can be a nasty run time coding error, pass by
reference should only be used when you definitely want the argument value to be modified inside
the function.

So you would normally only use Real calc_distance(Real x1, Real y1, Real x2, Real y2) because
you don’t want the coordinates (x1,y1) and (x2,y2) to be modified by mistake inside the function
calc_distance.

The return statement in a function is the mechanism for returning a value from the called function to
its caller using the return-type of the function.

The general definition of the return statement is:
 return expression;

For a function with a void return-type (a void function), the expression must be empty. That is, for a
void return-type you can only have return and no expression since no value can be returned.
Thus for a void function the return statement is
 return;

Also for a void function, the function will implicitly return if it reaches the end of the function without
executing a return statement. The function main is an example of a void function.
For a function with a non-void return-type (a non-void function), the expression after the return must
be of the same type as the return type of the function. Hence any function with a non-void return-
type must have a return statement with the correct expression type.

The code calling the function is free to ignore the returned value.

Restrictions
Unlike C++, in 12dPL the last statement for a function with a non-void return type must be a return
statement.

WARNING! Function named are case sensitive!
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
4.0 Your First Program

4.1 Print(Text msg).... your first 12dPL function
This is the first function from 12dPL that we will examine. If we search for Print in the Help
system, we will find the following function.

void Print(Text msg)

and its definition in the manual is:

This is read as:

The function Print(Text msg) has no return value (void) and has a Text argument, msg say.
The function prints the value of the Text variable msg to the Output Window.
The Text argument is passed by value (as there is no ampersand & after Text).

24 is the unique identification number given to this function. The identification number is the best
way of identifying the function if there are a number of functions with the same, or similar, names.

Print(Text msg)
Name
void Print(Text msg)

Description
Print the Text msg to the Output Window.
ID = 24
12d Model Programming Language Training Notes Page 13

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

4.2 Creating Your First Program

From the Main menu select

Utilities=>Macros=>Create
and the following panel will appear.

The directory is defaulted to your project directory.

Type first as the name of your first macro.

Select Create to create the macro and load it into your
text editor.

You will now see the following

A file will be created with the name first.4dm.
The first few lines are comments (beginning with the //). Following the comments and blank lines is
the function main().

All programs must have the main function. It is always of type void and will have nothing in the
parameter list (parameters for main are available but they will not be covered in this training
manual). See Main Function .
You will note that the main function has one line of executable code and that includes the Print(Text
msg) function. The Print(Text msg) function can have a text constant or text variable as its
argument. In this case it is a text constant “\n Macro finished\n”. Note the special line feed character
“\n” that moves the printing to the next line.

When run, this program will write to the Output Window, a blank line, followed by the words Macro
finished on the new lines, and then onto another new line, and then stop.
Save the program.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

4.3 Compiling and Running the Program

From the Main menu select

Utilities=>Macros=>Compile/run
and the following panel will appear.

The file first.4dm will be compiled to create an object file called first.4do.
This compiled file that is then run by 12d Model.
The running program brings up the Macro Console and also writes Macro finished to the Output
Window.

Select the Browse icon and then
select the macro code text file
first.4dm from the pop-up list.

Select Retain on Exit so that the
prompt box will remain after the macro
finishes.

Select Compile/Run.
12d Model Programming Language Training Notes Page 15

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
Note that the Macro Console has the program name on the top and in the Output Window, the words
Macro finished appear (preceded and followed by a blank line).

You have just created and run your first program!

program name first.4do

“Macro finished”, preceded and followed
 by a blank line, in the Output Window
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
5.0 Common Compile Error Messages
The most common typing error is to forget the semi colon at the end of a statement.
Try removing the semi colon at the end of the Print function and then Compile/Run the program.
What do you notice about the line number that the compiler reports?
Because there was an error, an error log called first.4dl is produced (that is what is displayed in
the editor) and no compiled object is produced (first.4do) and so isn’t run.

Next put the semi colon back in and remove one of the quote marks “ in the Print function.
Now Compile/Run this file and check the error messages.
12d Model Programming Language Training Notes Page 17

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
6.0 Overloaded Functions
In our program, we used the function void Print(Text msg) but there are four functions with exactly
the same name Print.
 void Print(Text msg)
 void Print(Integer value)

 void Print(Real value)
 void Print()

In 12dPL you can have functions with the same name as long as each one has a different number of
argument and/or different argument types. This is called Overloading of Function Names .
In the above examples, each Print function has different argument types and there is a Print
function for any of the argument types Integer, Real and Text, or with no argument at all.

We will see how each of the four Print functions are used in the programs we create.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
7.0 Using Input and Output Functions
You have seen one method of output from the 12dPL. You may also create output by writing to
the Macro Console, by placing text on the clipboard or by writing to files.
Input to the 12dPL may be via the Macro Console or via custom 12dPL panels with advanced
error checking.

7.1 Output to the Macro Console
The Prompt(Text msg) function is used to print to the Macro Console. From the manual:

We will now create our second program that writes the message “Hello World” to the Macro
Console.
Note: “Hello World” is known as a Text Constant which is a special case of a Text variable that
the Prompt(Text msg) function requires as its argument.

Type in and then Compile/Run this second program.

Prompt(Text msg)
Name
void Prompt(Text msg)

Description
Print the message msg to the prompt message area of the macro console.

If another message is written to the prompt message area then the previous message
will be overwritten by the new message.
ID = 34

Prompt Message Area
12d Model Programming Language Training Notes Page 19

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
The running program second.4do brings up the Macro Console, writes Hello World to the Macro
Console and also writes Macro finished to the Output Window.

The Output Window is a scrolling window but the Prompt Message Area for he Macro Console
contains only one line so if a second message is written to the Prompt Message Area then it will
overwrite the first message.
So running the program

program name second.4do

“Macro finished”, preceded and followed
 by a blank line, in the Output Window

“Hello World” written to the
Macro Console Prompt Message Area
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
produces

Note that with Print and the Output Window, the message continues to be written across the line
of the Output Window and a “\n” is needed to scroll to the next line (or by calling Print() which is
equivalent to Print(“\n”)).
In contrast, Prompt overwrites the message in the Macro Console Prompt Message Area.

Hint
Prior to using the Print function, you can use the function Clear_console() to clear the Output
Window. This function does not have any arguments.
Yes I know, it should be Clear_output_window but the programmer must have been in a dream
that day.

You will also note that the message “Hello World” flashed by in the Macro Console Prompt
Message Area so fast that you never saw it. It was replaced by “Hello”.
If you want the program to stop execution after the “Hello World”, we’ll use the function.

Integer Error_prompt(Text msg)

void main()
// --
// this is where the macro starts
// --
{
 Prompt("Hello World"); // write to the Macro Console
 Prompt("Hello"); // write to the Macro Console

 Print("\nMacro finished"); // write to the Output Window
 Print("Macro finished again\n"); // write to the Output Window
}

macro second_exta_lines.4dm

program name

“Macro finished”, preceded by a blank line,
 written to the Output Window

“Hello World” and then “Hello” written
to the Macro Console Prompt
Message Area. Only “Hello” remains.

Then “Macro finished again”, with no preceded by a blank
 line is written to the Output Window.

second_extra_ines.4do
12d Model Programming Language Training Notes Page 21

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Even though this function has a return code, you do not have to do anything special. Return codes
can just be ignored.

We’ll now change
Prompt("Hello World");

to
Error_prompt("Hello World");

and also change the Print function back to the original and add a Clear_console() call.
The program is now:

When running this program, it writes “Hello World” to the Macro Console information/error message
area message area, and “Press return to continue” and then pauses.

When <Enter> is pressed whilst the cursor is focused on the User Reply Area, “Hello” is written to
the Prompt Message Area, the Output Window is cleared, then a blank line, “Macro finished”
followed by a new line is written to the Output Window.

void main()
// --
// this is where the macro starts
// --
{
 Error_prompt("Hello World"); // write to the Macro Console
 Prompt("Hello"); // write to the Macro Console

 Clear_console();
 Print("\nMacro finished\n"); // write to the Output Window

}

macro third.4dm

“Hello World” is written to the
Information/Error Message Area

“Press return to continue” is
written to the Prompt Message Area

The macro then waits until <Enter>
is pressed whilst the cursor is focused
n the User Reply Area.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
Click on X to remove the Macro Console.

“Macro finished”, preceded by a blank line,
 and followed by a new line, is written

“Hello” is written to the
Prompt Message Area

 The Output Window is cleared and then

t the Output Window
12d Model Programming Language Training Notes Page 23

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

7.2 Input via the Macro Console (quick and easy)

A simple method to input data is via the Macro Console.
There are three Prompt functions with two arguments that can be used to receive data from the
Macro Console.

Integer Prompt(Text msg,Text &ret) - writes out msg and waits for a Text to be typed in

Integer Prompt(Text msg,Integer &ret) - writes out msg and waits for an Integer to be typed in
Integer Prompt(Text msg,Real &ret) - writes out msg and waits for a Real to be typed in

Note that the variable name of the second argument is preceded with a &. This indicates that the
variable is Passed by Reference and so data can be passed back to the calling program via the
second arguments.

We are now going to change our program so that it asks for Text, Inter and Real values and prints
the values to the Output Window.

To print out the values, we will use the functions
 void Print(Text msg) - prints out a Text variable

 void Print(Integer value) - prints out an Integer variable
 void Print(Real value) - prints out a real variable
 void Print() - prints out a blank line

The program to type in is

Compile/run this program and the program starts by writing “Enter some text” to the Prompt

void main()
{
 Clear_console();

 Text input_text; // input_text is a user defined name
 Prompt("Enter some text",input_text);
 Print(input_text+"\n"); // print out a Text variable
 // + is used to append two Text’s

 Integer input_integer; // input_integer is a user defined name
 Prompt("Enter a positive integer",input_integer);
 Print(input_integer); // print out an Integer variable
 Print(); // print out a blank line

 Real input_real; // input_real is a user defined name
 Prompt("Enter a real",input_real);
 Print(input_real); // print out a Real variable
 Print("\n"); // print out a blank line

 Prompt("Macro finished");
 Print("\nMacro finished\n"); // write to the Output Window
}

macro four.4dm
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Message Area

Click the cursor in the User Reply Area and type in some text followed by <Enter>.

The text is then written to the Output Window and the message “Enter a positive integer” is
written to the Prompt Message Area.

Click the cursor in the User Reply Area
and type in some text followed by
<Enter>
12d Model Programming Language Training Notes Page 25

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Type in the text “-7” followed by <Enter>...

The Integer “-7” is then written to the Output Window and the message “Enter a real” is written to the
Prompt Message Area.
Type in the text “a” followed by <Enter>.

The Real “0.000000” or some other number is then written to the Output Window and the message
“Macro Finished” is written to the Prompt Message Area.

Type in the text “-7”
followed by <Enter>

Type in the text “a”
followed by <Enter>
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Type in the text “a” followed by <Enter>.

Click on X to remove the Macro Console.

Now you will notice a few strange things happened whilst running this program.

We were asked to type in some text which we did and everything was fine.
Next we were asked to type in a positive integer and we typed in “-7” which is not a positive
integer. Then “-7” was written to the Output Window.
Finally we were then asked to type in a real and we typed in “a” which is not a real. Then
“0.000000” (or some other strange number) was written to the Output Window.

So this program is a bit deficient.

To make the program do what we really intended it to do, we need to be able to check if the
values we typed in are what we expected, and if not, get annoyed and go back and get new
values typed in.

To do this we need to make tests and control the order in which the lines of the program are
executed. That is, we need flow control.

Click on X to remove the
Macro Console
12d Model Programming Language Training Notes Page 27

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
8.0 Using Flow Control
In a program, the normal processing flow is that a statement is processed and then the following
statement is processed.
The flow control statements of a language change the order in which statements are processed.
12dPL supports a subset of the C++ flow control statements but before we start examining the flow
controls, we need to look at logical expressions.

8.1 Logical Expressions
Many flow control statements include expressions that must be logically evaluated.

That is, the flow control statements use expressions that must be evaluated as being either true or
false.
For example,

a is equal to b a == b
a is not equal to b a != b
a is less than b a < b

Following C++, 12dPL extends the expressions that have a truth value to any expression that can
be evaluated arithmetically by the simple rule:

an expression is considered to be true if its value is non-zero, otherwise it is considered
to be false.

Hence the truth value of an arithmetic expression is equivalent to:

 "value of the expression" is not equal to zero
For example, the expression

a + b

is true when the sum a+b is non-zero.

Any expression that can be evaluated logically (that is, as either true or false) will be called a logical
expression.

8.2 12dPL Flow Controls
The flow control statements supported by 12dPL are listed below with links to for definitions for
them. However we will only cover some of them in this course.

if, else, else if
Conditional Expression
Switch

While Loop
For Loop
Do While Loop

Continue
Goto and Labels
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

8.3 .“goto” and “label” Statements

12dPL supports the standard C++ goto and label.
Although modern programming theory frowns upon goto’s and label’s, they are very simple to
understand and use.

A label has the same form as a variable name and is followed by a colon (:).
A label can be attached to any statement in a function. A label name must be unique within the
function.

 get_integer:
 Prompt("Enter a positive integer",input_integer);

A goto is always followed by a label and then a semi-colon (;).
When a goto is executed in a program, control is immediately transferred to the statement with
the appropriate label attached to it. The label must be in the same function as the goto.

 get_integer:
 Prompt("Enter a positive integer",input_integer);

...
 goto get_integer;

There may be many goto’s that goto the same label in the function.

Important Note - it is one word goto, NOT two words go to.

8.4 .“if” and “else” Statements
If statements are used frequently to execute a statement or a block of statements only if a
condition is true.

if (conditional) {
 // these statements are executed if the conditional is true
}

If else statements are used frequently to execute a statement or a block of statements if a
condition is true, and a different statement or a block of statements if the condition is false.

if (conditional) {
 // these statements are executed if the conditional is true
} else {
 // these statements are executed if the conditional is false
}

If can follow else.
if (conditional_1) // these statements are executed if the
 //conditional_1 is true
} else if (conditional_2){
 // these statements are executed if the
 // conditional_1 is false and conditional_2 is true
}

12d Model Programming Language Training Notes Page 29

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

8.5 .Error Checking Using “goto”, “label”, “if” and “else” Statements

We will now change the previous program using flow control statements to try and fix up some of the
problems.

void main()
{
 Clear_console();

 Text input_text;
 Prompt("Enter some text",input_text);
 if (input_text == "some text") Print("good typing\n");
 else Print("typing error\n");

 Integer input_integer;

 get_integer:
 Prompt("Enter a positive integer",input_integer);
 if(input_integer > 0) {
 Print(input_integer);
 Print();
 } else {
 Print("The number is less than 1. Go and try again");
 Print();
 goto get_integer;
 }

 Integer ierr;
 Real input_real;

 get_real:
 ierr = Prompt("Enter a real",input_real);
 if(ierr!= 0){
 Print("Not a real. Go and try again\n");
 goto get_real;
 } else {
 Print(input_real);
 Print();
 }

 Prompt("Macro finished");
 Print("\nMacro finished\n"); // write to the Output Window
}

program five.4dm

checking a value

checking a positive value

checking a function return code

indenting

indenting

label
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
A few things to note in the program five.4dm are:
1. Indenting - each line has been indented by an extra two spaces when inside a block. This is

to make it easier to line up brackets etc.

2. Checking a value - for the code around “Enter some text”, it expects the text “some text” to
be entered to get the message “good typing”. But if you don’t type that in then you get the
message “typing error” and the program moves on.

3. Checking a value - for the code around “Enter a positive integer”, it tests to see if the entered
integer is greater than zero and if not, it loops back and asks you to “Enter a positive integer”
again. This will keep looping forever or until a positive integer is entered.

4. Checking the function return code - for the code around “Enter a real”, the Integer variable
ierr records the function return code

 ierr = Prompt("Enter a real",input_real);
From the documentation on Prompt(Text msg,Real &ret) , if ierr is non zero then there was a
error in the function. This would occur when “a” was typed in instead of a real number.
If an error occurs then it loops back and asks you to “Enter a real” again. This will keep
looping forever or until a real number is entered.

IMPORTANT NOTE
Always check function return codes or error codes to ensure that the function behaved correctly’.
If an error has occurred, then the results of the function may be garbage.

Click on X to remove the
Macro Console

“some text” wasn’t entered
an integer less than 1 was entered

7 was entered

a real wasn’t entered

80.5 was entered
12d Model Programming Language Training Notes Page 31

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

8.6 “for” loops

A for loop is appropriate when a block has to be executed a fixed number of times.
12dPL supports the standard C++ for statement.
 for (expression1;logical_expression;expression2) statement

This looks like gibberish but in long hand it means:
(a) first execute expression1.
(b) if logical_expression is true, execute statement and expression2 and then test

logical_expression again.
(c) repeat (b) until the logical_expression is false.

This probably still seems like gibberish so an example might help.
j = 0;
for (i = 1; i <= 10; i++)
 j = j + i;

This actually sums the numbers 1 through to 10. To see that we’ll step though it more carefully:

expression1 is i = 1.
logical_expression is i <= 10. That is, is less than or equal to 10.
expression2 is i++. That is, increase i by 1.

statement is j = j + i. That is, the new value for j is the current value of j plus the current value of i.
Start by setting j is to 0.
First execute expression1: i is set to1.

First pass:
1 <= 10 so j= j + i is executed so j = 0 + 1 = 1.
i is then incremented to 2 and 2 <= 10.

Second pass:
Now i = 2 and 2 <= 10 so j = j + 2 is executed so j = 1 + 2 = 3.
i is then incremented to 3 and 3<= 10.

Third pass:
Now i = 3 and 3<= 10 so j = j + 3 is executed so j = 1 + 2 + 3 = 6.
i is then incremented to 4 and 4<= 10.

...
Ninth pass:
Now i = 9 and 9<= 10 so j = j + 9 is executed so j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
i is then incremented to 10 and 10<= 10.
Tenth pass:
Now i = 10 and 10<= 10 so j = j + 10 is executed so j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
i is then incremented to 11 and 11 > 10 and so the loop stops.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

8.7 “while” loops

while loops are convienent for executing a block of statements until a condition is reached.
12dPL supports the standard C++ while statement.
 while (logical_expression) statement

Again this may look like gibberish but in long hand it means:
(a) If logical_expression is true, execute statement and then test the logical_expression

again.
(b) repeat (a) until the logical_expression is false.

A simple example of a while loop is.

Text data;
data = “ ”;

while (data != "stop") {
 Prompt("Enter some text",data);
 Print(data+"\n");
}

This keeps prompting the user to enter some text and it keeps re asking until the text “stop” is
entered. To see that we’ll step though it more carefully:

logical_expression is data != “stop”. That is, the Text data is not equal to “stop”
statement is Prompt(“Enter some test,data);

First pass
The data is “ ” so data does not equal “stop” and Prompt for some Text data to be entered.
Repeat Pass
Check if new data does equal “stop” then logical_expression is false and this ends the while
loop.
If the entered data does not equal “stop”, then it prompts again for some Text data to be entered
and the Repeat Pass is repeated.

8.8 “switch” Statement
12dPL supports a switch statement.
The switch statement is a multiway decision that tests a value against a set of constants and
branches accordingly.
In its general form, the switch structure is:

 switch (expression) {
 case constant_expression : { statements }
 case constant_expression : { statements }

 default : { statements }
 }

Each case is labelled by one of more constants.
12d Model Programming Language Training Notes Page 33

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

When expression is evaluated, control passes to the case that matches the expression value.

The case labelled default is executed if the expression matches none of the cases.
A default is optional; if it isn't there and none of the cases match, no action takes place.
Once the code for one case is executed, execution falls through to the next case unless explicit
action is taken to escape using break, return or goto statements.

A break statement transfers control to the end of the switch statement (see “break” Statement).

Warning
Unlike C++, in 12dPL the statements after the case constant_expression: must be enclosed in
curly brackets ({}).

Switch Example
An example of a switch statement is:
 switch (a) {

case 1 : {
 x = y;
 break;
}
case 2: {
 x = y + 1;
 z = x * y;
}
case 3: case 4: {
 x = z + 1;
 break;
}
default : {
 y = z + 2;
 break;
}

 }

Notes
1. Some programmers like to put the break after the closing } for the case. For example

case 1 : {
 x = y;
} break;

2. In the switch example, if control goes to case 2, it will execute the two statements after the case
2 label and then continue onto the statements following the case 3 label.

Restrictions
1. Currently the switch statement only supports an Integer, Real or Text expression. All other

expression types are not supported.

2. Statements after the case constant_expression: must be enclosed in curly brackets ({}).
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

8.9 “continue” Statement

Now that we are starting to use flow control statements, another useful statement is continue.
The continue statement causes the next iteration of the enclosing for or while loop to begin. It
also applies to do while loops which we haven’t defined yet. See Do While Loop .
In the while and do, this means that the test part is executed immediately.

In the for, control passes to the evaluation of expression2, normally an increment step.
Important Note
The continue statement applies only to loops. A continue inside a switch inside a loop causes
the next loop iteration.

8.10 “break” Statement
break is used to exit from a do, for, or while loop, bypassing the normal loop condition. It is also
used to exit from a switch statement.
In a switch statement, break keeps program execution from "falling through" to the next case. A
break statement transfers control to the end of the switch statement.

A break only terminates the for, do or while statement that contains it. It will not break out of any
nested loops or switch statements.
12d Model Programming Language Training Notes Page 35

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
9.0 Running Existing 12dPL Programs
For most of the work we have been doing so far we have used
 Utilities =>Macros =>Compile/run
which is normal when you are writing and debugging your program.

However once the program is finished, you no longer need to compile it every time you run the
program.
The option

 Utilities =>Macros =>Run
has a walk right menu and a program can be run by clicking on it in the walk-right list.

However programs run this way will not have Retain on exit ticked on and so the Macro Console in
the examples we have created will disappear as soon as the program finishes.

To bring up the Run a Macro panel which allows Retain on exit to be ticked on, don’t walk right but
click on click on
 Utilities =>Macros =>Run

For regularly used program, we will later see how they can be added to user menus or toolbars, or
bound to function keys (see User Menus, User Defined Function Keys and Toolbars).

Click on Run to bring up the
Run a Macro panel

To run a macro just click on it
in the walk-right list
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
10.0 Unleashing the Power - 12d Database Handles
The real power of the 12dPL comes with accessing the data inside the 12d Model database.
This database holds all of the entities for the project such as Views, Model, Strings, Tins,
Functions etc.
An entity in the 12d Model database is accessed by creating what is called a handle to the
entity. The handle doesn’t contain the actual database information but merely points to the
appropriate database record for the entity.
The 12dPL variables Element, Model, View, and Macro_Function create and use handles.

Once a handle has been constructed to point to an entity, the properties of the entity may be
obtained, printed in a report, changed etc via the handle.
Since the handle merely points to the Project data, the handle can be changed so that it points to
a different record without affecting the data it originally pointed to.

Sometimes it is appropriate to set a handle so that it doesn't point to any data. This process is
referred to as setting the handle to null.
Note that when setting a handle to null ("nulling" it), no 12d Model data is changed - the handle
simply points to nothing.
For more information, see 12d Model Database Handles .

As well as accessing existing entities, 12dPL can also create new 12d Model database entities.
For example, data can be read from reports and then strings created according to the information
read in from the report.

10.1 Locks
Whenever an handle to an entity (string, model, tin etc.) in the database is created and assigned
to a variable, the entity becomes locked to other processes. In order to remove the lock, the
variable holding the handle must go out of scope. A variable defined inside a block goes out of
scope when execution reaches the bottom of the block.

For this reason blocks are often defined solely to have variables go out of scope. Also it is good
practice to obtain all of your handles after all user input is finished and have the variables go out
of scope (or null them using the null() function) before requesting more input from a prompt box
or dialogue. In this way the entities never remain locked while the program is in a user input
mode.
For more information, see Locks .

10.2 Read In Some Data to use 12dPL Programs On
We need some 12d Model data to use with the programs we will be creating.
Read in the 12da file Barwon_data.4da into your project and add the models terrain and
boundary to a plan view.
12d Model Programming Language Training Notes Page 37

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.3 Elements, Models and Uids

The variable type Element is used as a handle to all the data types that can be stored in a
12d Model model. That is, Elements are used to refer to 12d Model strings, trimeshes, tins, super
tins, plot frames etc.
Elements act as handles to the data in the 12d Model database so that the data can be easily
referred to and manipulated within a program.
For example, once we have an Element, we can call functions such as Get_points(Element
elt,Integer &num_verts) :

The variable type Model is used as a handle to 12d Model models which act as containers of
Element data.

Elements and Models created within 12d Model are given a unique identifier called a Uid (see Ids,
Uids and Guids). When a new element or model is created, it is given the next available Uid. Uid’s
are never reused so when an element or model is deleted, its Uid is not available for any other
element or model.

Get_points(Element elt,Integer &num_verts)
Name
Integer Get_points(Element elt,Integer &num_verts)

Description
Get the number of vertices in the Element elt.
The number of vertices is returned as the Integer num_verts.
For Elements of type Alignment, Arc and Circle, Get_points gives the number of vertices when the
Element is approximated using the 12d Model chord-to-arc tolerance.

A function return value of zero indicates the number of vertices was successfully returned.
ID = 43
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.4 Accessing Elements

When a string is requested by the user the first step is to create a handle to the string. Handles to
strings are variables of type Element.
A simple way to allow the user to select a string from a program is with the Select_string function

Now that we can select a string, we’ll write a program to select a string and write out to the Macro
Console how many vertices there are in the string.

This time we will not tick on Retain on exit on the Compile/Run a Macro panel. The Macro
Console will then be removed as soon as the program terminates.

Select_string(Text msg,Element &string)
Name
Integer Select_string(Text msg,Element &string)

Description
Write the message msg to the 12d Model Output Window and wait until a selection is made.

If a pickable Element is selected, then return the Element picked by the user in string and the
function return value is 1.
If no pickable Element is picked and the function returns, then the function returns codes are:
 -1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick

ID = 29

Retain on exit
not ticked
12d Model Programming Language Training Notes Page 39

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
A few things to note are:

1. The return statement, when executed, terminates the program. All the previous programs
terminated because they reached the end of statements in the program.

2. The Integer no_verts was converted to Text so that is could be concatenated with other texts
using the + operator.

3. Function return codes are important

The function return code for Select_string gives important information about the select action not
just if a string was successfully selected or not. For example if a string was not selected, the
function return code supplies the extra information about if Cancel chosen, or a cursor pick was
made.

4. Some Prompt messages may not be visible because another message may over write them.

void main(){
 Element string;
 Integer ret,no_verts;
 Text text;

 Prompt("Select a string");// write message to console

ask:
 ret = Select_string("Select a string",string); //message to Output Window
 if(ret == -1) {
 Prompt("Macro finished - cancel selected");
 return;
 } else if (ret == 1) {
 if(Get_points(string,no_verts)!=0) goto ask;
 text = To_text(no_verts);
 text = "There are "+text+" vertices in the string. Select another string";
 Prompt(text);
 goto ask;
 } else {
 Prompt("Invalid pick. Select again");
 goto ask;
 }
}

Example 1

handle to an Element

converting an Integer to a Text

building up the Text message

end running of macro at this point
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.5 Exercises 1 and 2

10.5.1 Exercise 1
Rewrite Example 1 so there are no goto’s used.
See Example 1a .

10.5.2 Exercise 2
Modify Example 1 so that it asks if the selected string is to be deleted.

And if the answer is yes, then delete the string.
See Example 2 and Example 2a .
12d Model Programming Language Training Notes Page 41

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.6 Accessing Models

When a model is requested by the user the first step is to create a handle to the model. Handles to
models are variables of type Model.
A simple way to interact with the user regarding models is with the Model_prompt function

From reading the Model_prompt documentation, all that is returned is the name of a model, not a
handle to the model.

But there is a function to get a handle to a model when you have a model name - Get_model.

Model_prompt(Text msg,Text &ret)
Name
Integer Model_prompt(Text msg,Text &ret)

Description
Print the message msg to the prompt message area and then read back a Text from the user reply
area of the Macro Console.

If LB is clicked on the model icon at the right hand end of the user reply area, a list of all existing
models is placed in a pop-up. If a model is selected from the pop-up (using LB), the model name is
placed in the user reply area.
MB for "Same As" also applies. That is, If MB is clicked in the user reply area and then a string from
a model on a view is selected, the name of the model containing the selected string is written to the
user reply area.

The reply, either typed or selected from the model pop-up or Same As, must be terminated by
pressing <Enter> for the macro to continue.

The reply is returned in Text ret.
A function return value of zero indicates the Text ret is returned successfully.
ID = 401

Click LB to on the icon to

user reply area

bring up the list of models

msg written to prompt message area

to select from

Get_model(Text model_name)
Name
Model Get_model(Text model_name)

Description
Get the Model model with the name model_name.
If the model exists, its handle is returned as the function return value.
If no model of name model_name exists, a null Model is returned as the function return
value.

ID = 58
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

So Get_model will return a handle to the model of a given name.

Programs often need to operate on all of the elements in a model so a method is needed to
obtain all the handles to each of the Elements in a model. And to easily do that, we need to know
about Dynamic_Elements.

10.7 Dynamic_Elements
When we ask for a list of all the handles to elements in the model, or are creating lists of handles
to elements, we may not know how many elements there are, or are required.
So to cope with these situations, there is a variable called a Dynamic_Element .

A Dynamic_Element is a dynamic array and can hold an arbitrary number of handles to
elements. At any time, the number of items in a dynamic array is known but extra items can be
added at any time.
Like fixed arrays, the items in dynamic arrays are accessed by their unique position number. It is
equivalent to an array subscript for a fixed array.
But unlike fixed arrays, the items of a dynamic array can only be accessed through 12dPL
function calls rather than by array subscripts enclosed in square brackets.

As for an array in 12dPL, the dynamic array positions go from one to the number of items in the
dynamic array.
So for a model, the function
 Integer Get_elements(Model model,Dynamic_Element &de,Integer &total_no)

gets all of the handles of the elements in the model and loads them into a Dynamic_Element (de
say).
.

While this Dynamic_Element exists, all of the elements it refers to will be locked.

Get_elements(Model model,Dynamic_Element &de,Integer &total_no)
Name
Integer Get_elements(Model model,Dynamic_Element &de,Integer &total_no)

Description
Get all the Elements from the Model model and add them to the Dynamic_Element array, de.
The total number of Elements in de is returned by total_no.

Note: whilst this Dynamic_Element exists, all of the elements with handles in the Dynamic_Element
are locked.
A function return value of zero indicates success.
ID = 132
12d Model Programming Language Training Notes Page 43

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.8 Accessing Element in Models

We will now look at a program using the variable types Model, Element and Dynamic_Element.

void main()
{
Text my_model_name;
 Model my_model;

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

 Uid model_uid;

 Get_id(my_model,model_uid);
 Print("Model uid ");
 Print(model_uid);
 Print("\n");

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(my_model,model_elts,num_elts);
 Print("There are ");
 Print(num_elts);
 Print(" elements in the model: " + my_model_name + "\n");

 Prompt("Macro finished");
 Print("\nMacro finished\n"); // write to the Output Window
}

macro six.4dm
using the Integer return code

get handles to all the elements

as a logical value

in a model and load them
into a Dynamic_Element

get the Uid of a model

click on model icon to bring
up the list of existing models
to select from
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.9 Getting Information about an Element

Once we have a element handle, there are numerous 12dPL functions to get information about
the element such as Get_points which we used before, and the new call Get_id.
..

10.10 Putting it All Together
Now we will add the flow control for to retrieve and for each element in the selected model, print
the element’s name, Uid, type and the number of vertices in the element.
This program will use most of the concepts we have introduced.

Get_id(Element elt,Uid &uid)
Name
Integer Get_id(Element elt,Uid &uid)

Description
Get the unique Uid of the Element elt and return it in uid.

If elt is null or an error occurs, uid is set to zero.
A function return value of zero indicates the Element Uid was successfully returned.
ID = 1908
12d Model Programming Language Training Notes Page 45

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
Compile and Run the program.

void main()
{
 Text my_model_name;
 Model my_model;

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

 Uid model_uid;
 Get_id(my_model,model_uid);
 Print("Model uid ");
 Print(model_uid);
 Print("\n");

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(my_model,model_elts,num_elts);
 Print("There are ");
 Print(num_elts);
 Print(" elements in the model: " + my_model_name + "\n");

 for(Integer i=1;i<=num_elts;i++) {
 Element element;
 Get_item(model_elts,i,element);

 Text element_name;
 Get_name(element,element_name);
 Print(“Name: “+ element_name +" Uid: ");

 Uid element_uid;
 Get_id(element,element_uid);
 Print(element_uid);

 Text element_type;
 Get_type(element,element_type);
 Print(“ Type: “ + element_type + Num vertices: “);

 Integer num_verts;
 Get_points(element,num_verts);
 Print(num_verts);
 Print("\n\n");
 }
 Prompt("Macro finished");
 Print("\nMacro finished\n"); // write to the Output Window
}

macro seven.4dm
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

A few things to note are:

1. It is important to read the 12dPL function documentation carefully
Every function call is different and the function return value and its meaning can be different.

2. The type of the function return code varies
The variable type of the function return codes varies. For Model_prompt it is an Integer but
for Get_model it is a Model.

3. Function return codes are not always for errors
Sometimes the function return code is for indicating an error BUT NOT ALWAYS.

Sometimes a return code of zero indicates the function ran successfully, and sometimes zero
indicates the function didn’t run successfully.
12d Model Programming Language Training Notes Page 47

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

10.11 Exercises 3and 4

10.11.1 Exercise 3
The program six.4dm finishes after reporting the number of elements for one model.
How can the program be modified so that after reporting the number of elements for one model,
that it repeats the process. That is, it keeps asking for a new model and printing the number of
elements out for the new model.
How will the program finish?

Hint
What does the following piece of code do?

Question
Why was the “<“ and “>” included in the piece of code?

10.11.2 Exercise 4
The program seven.4dm finishes after reporting the number of elements and some information
for each string in the model.

Modify seven.4dm so that after reporting the information about one model, that it repeats the
process. That is, it keeps asking for a new model and prints out the information for the new
model.

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 Print("Entered name = <");
 Print(my_model_name); Print(">\n");
 my_model = Get_model(my_model_name); }
 }

An Aside
Notice that it is legal to
have more than one
statement on the one line.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
11.0 Infinite Loops
When writing programs it is possible to put the program into a loop so that the program never
finishes (infinite loops).
Some program loops can be stopped gracefully (see Killing a 12dPL Program), others require
12d Model itself to be stopped (see Ending the Process 12d.exe).
So it is important to thoroughly test your programs on data and projects that are not important
before using them on critical data.

11.1 Killing a 12dPL Program
Some looping programs pause whilst waiting for further information. These programs can usually
be stopped by clicking on the X on the Macro Console, or if there is no Macro Console, by the
option

Utilities =>Macro => Kill.
which lists the running programs and allows them to be stopped (killed).

Set the Kill column to yes for the programs to be killed and then click on Kill.
The selected programs will then be terminated.

Note: after killing any program, it is a good procedure to restart 12d Model. A save may or may
not be appropriate depending on what the killed programs did.

set Kill to yes

click on Kill
12d Model Programming Language Training Notes Page 49

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

11.2 Ending the Process 12d.exe

Some looping programs do not pause waiting for further information and so totally lock up
12d Model.
These programs can only be stopped by stopping the Process 12d.exe itself.
This is done by holding the Ctrl, Alt and Delete keys down together (<Ctrl>+<Alt>+<Delete>) and
selecting Start Task Manager to bring up the Windows Task Manager.

Highlight 12d.exe and then click on End Process.
This will totally stop 12d Model and any data that has not been saved will be lost.

highlight 12d.exe

click on
End Process
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
12.0 Writing to a Text File (Reports)
The previous example seven.4dm can be quickly modified to write the data to a text file rather
than to the Output Window. For example, if a report is needed.
Text files, both ANSI (ASCII) or UNICODE, can be created and read via 12dPL functions.

To write a text file, four 12dPL functions are required.
(a) Open a Text File for Writing

Integer File_open(Text file_name, “w”,””, File &file)
to write a new file with ANSI encoding (ASCII)

or
Integer File_open(Text file_name, “w”,”ccs=UNICODE”, File &file)

to write a new file with UNCODE encoding

or
Integer File_open(Text file_name, “a”,””,File &file)

to append to an existing file.

Opening a file accesses the file and returns a handle to the file of variable type File.
Note that if the file already exists and it has a BOM (Byte Order Mark), the Unicode coding
specified by the BOM takes precedence over that specified by the ccs flag. The ccs encoding
is only used when no BOM is present or the file is a new file.
For all the File_open choices, see File_open(Text file_name,Text mode,Text ccs_text,File
&file) .

(b) Write to a Text File
Integer File_write_line(File file,Text text_out)

This is used to write data to the file, line by line.
(c) Flush the File

Integer File_flush(File file)
This is used to make certain all the data has been written out to the file.

and finally

(d) Closing a File
Integer File_close(File file)

The file must be closed once writing has been finished. If a file is not closed, then some of the
data might not get written out to the file. Also other processes will not be able to access the
file.
12d Model Programming Language Training Notes Page 51

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

12.1 Writing a Simple Unicode and ANSI (Ascii) Files

The default file type in 12d Model is now Unicode files. However some older software may not be
able to read Unicode files and you may be required to write out an ANSI (Ascii) file.
Example 5a creates both an Unicode and an Ascii file.

Compile and Run Example 5a.
Look at the files test_unicode.rpt and test_ansi.rpt to check that they are of the correct type.

12.2 Writing 12d Model Data to a Text File
In the following example, eight.4dm, the user is asked for a model and then information about the
model, and information about each element in the model, is written to a Unicode file.
Compile and Run eight.4dm.

void main()
 File file;
 Text file_name, file_type;
 Integer file_start;
 Clear_console();

 file_name = "test_unicode.rpt";
 file_type = "ccs=UNICODE";
 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 Print("File <"+file_name+"> Start pos = "+To_text(file_start)+"\n");
 File_flush(file);
 File_close(file);

 file_name = "test_ansi.rpt";
 file_type = "";
 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 Print("File <"+file_name+"> Start pos = "+To_text(file_start)+"\n");
 File_flush(file);
 File_close(file);

 Print("\nMacro finished\n"); // write to the Output Window
}

Example 5a

the text file is to be UNICODE

the text file is to be Ascii
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

.

void main()
{
 Text my_model_name;
 Model my_model;
 Clear_console();

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

 Text file_name;
 File_prompt("Enter the file name","*.rpt",file_name);

 File my_file;
 File_open(file_name,"w",”ccs=UNICODE”,my_file);

 Uid model_uid;
 Get_id(my_model,model_uid);
 File_write_line(my_file,"Model uid "+To_text(model_uid));

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(my_model,model_elts,num_elts);
 File_write_line(my_file,"There are "+To_text(num_elts)+" elements in
the model: "+ my_model_name);

 for(Integer i=1;i<=num_elts;i++) {
 Element element;
 Get_item(model_elts,i,element);

 Text line_out;
 Text element_name;
 Get_name(element,element_name);
 line_out = element_name+"\t";

 Uid element_uid;
 Get_id(element,element_uid);
 line_out += To_text(element_uid)+"\t";

 Text element_type;
 Get_type(element,element_type);
 line_out += element_type+"\t";

 Integer num_verts;
 Get_points(element,num_verts);
 line_out += To_text(num_verts);
 File_write_line(my_file,line_out);
 }
 File_flush(my_file);
 File_close(my_file);
}

macro eight.4dm

tab character

open the text file as UNICODE

wild_card_key

open the text file for writing
any existing contents are destroyed
12d Model Programming Language Training Notes Page 53

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

A few things to note are:

1. wild_card_key in File_prompt
With the File_prompt, if a name is entered without a dot ending (e.g. fred and not fred.csv say)
then the ending after the dot in the wild_card_key is automatically added to the name.
For example, if wild_card_key = "*.rpt" and "fred" is type in as the file name, then ret will be
returned as ret = "fred.rpt".

12.3 Checking if a File Exists
Looking at the documentation on using the “w” flag to open a file, it say:
 w opens a file for writing. If the files exists, its current contents are destroyed.
So unless you want the contents of the file destroyed, it is a good idea to check that the file exists
before opening the file for writing.

To check if a file exist, we use the function:
Integer File_exists(Text file_name)

Note that File_exists returns a non-zero value if the file exists. Why?

12.3.1 Exercise 5
Modify program eight.4dm so that it only writes information out to a new file.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
13.0 Reading a Text File
Text files, both ANSI (ASCII) or UNICODE, can be read as well as written via 12dPL functions.

To read a file, three 12dPL functions are required.

(a) Open a Text File for Reading
Integer File_open(Text file_name, “r”,””, File &file)

to read a text file with ANSI encoding (ASCII)
Opening a file accesses the file and returns a handle to the file of variable type File.

Note that if the file already exists and it has a BOM (Byte Order Mark), the Unicode coding
specified by the BOM takes precedence over that specified by the ccs flag. The ccs encoding
is only used when no BOM is present or the file is a new file.
For all the File_open choices, see File_open(Text file_name,Text mode,Text ccs_text,File
&file) .

(b) Reading from a File
Integer File_read_line(File file,Text &text_in)

This is used to read data from the file, line by line.

and finally
(c) Close a File

Integer File_close(File file)
The file must be closed once reading has been finished. If a file is not closed, then other
processes will not be able to access the file.

13.1 What to Do with the Line Read from a File
We now have a line of information read from the file but what can we do with it?
Unlike writing a file, to do anything sensible with the information in the file, you need to know
how that information in the file is structured. What you think the data represents may not be
correct.
For example the text “ 1235.235436235781” could represent the real number
“1235.235436235781” but it is possible the data was written to the file to a specification that
states that starting form the beginning of the line, that each 10 characters (including spaces)
is a separate number. It would then represents two numbers: ”1235.23” and “5436235781”
(there were three spaces before the first “1”). This is not unusual and is known as a fixed
format.
And if the numbers had to be Integers only (whole numbers) then the first number is invalid.
Text Conversion functions are used to covert a Text into items such as Integers and Reals,
and also for the reverse process, to convert Integers and Reals into Text.
To start with, we will break the line of text into individual words where a word is defined as
the grouping of one or more non-blank characters between blank characters.

For example, in
This is an example

there are four words “This”, “is”, “an” and “example”. Notice that there can be more than one
space separating the words.
The function
12d Model Programming Language Training Notes Page 55

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Integer From_text(Text text,Dynamic_Text &dtext)

breaks a Text into separate words and returns the individual words in a Dynamic_Text.

13.2 Reading a Text File
We’ll now look at Example 4 which opens an existing file, reads it in line by line and counts the
number of words that are separated by spaces.

13.2.1 Exercise 6
Compile Example 4 and then run it on the file produced by eight.4dm.

What is strange about the results?
Why it is so?
What can be done about it?

void main()
{
 Text file_name; File file;

 while (1) {
 File_prompt("Enter the file name","*.rpt",file_name);
 if(!File_exists(file_name)) continue;
 File_open(file_name,"r","ccs=UNICODE",file);
 break;
 }
 Integer eof,count = 0 word_count = 0;
 Text line;

 while(1) {
 if(File_read_line(file,line)!= 0) break;
 ++count;

// break line into words
 Dynamic_Text words;
 Integer no_words = From_text(line,words);
 word_count = word_count + no_words;//
// this could be written as word_count +=no_words
 Get_number_of_items(words,no_words);
 for(Integer i=1;i<=no_words;i++) {
 Text t;
 Get_item(words,i,t);
 Print(t); Print();
 }
 }
 File_close(file);

// display the number of lines and words read
 Text out;
 out = To_text(count)+" lines & " +To_text(word_count) + "words read";
 Prompt(out); Print(out);
 Print("\nMacro finished\n"); // write to the Output Window
}

Example 4

break out of the while loop

this is always true so the
while loop would continue forever
unless a break or goto transfers control
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Can you modify Example 4 so the break up into words is correct?

13.3 Using a Clipboard
Text data can be written to and read from the Windows clipboard using the following 12dPL
functions.

Integer Console_to_clipboard() ;

Integer Set_clipboard_text(Text txt) ;
Integer Get_clipboard_text(Text &txt) ;

13.4 Binary Files
We have only been reading and writing text files but it is also possible to read and write binary
files which contain Real, Integer and Text variables, and Real and Integer arrays.
Reading and writing binary files will not be covered in this course.
12d Model Programming Language Training Notes Page 57

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
14.0 Creating User Defined Functions
As well as the main function, and 12dPL supplied functions, a program file can also contain user
defined functions.
User defined functions allow re-use of code and generally make programs easier to follow.
Like the main function, user defined functions consist of a header followed by the program code
enclosed in braces. However the header for a user defined function must include a return type for
the function and the order and variable types for each of the parameters of the function.
Hence each user defined function definition has the form
 return-type function-name(argument declarations)

 {
 declarations and statements
 }

User defined function names must start with an alphabetic character and can consist of upper and/
or lower case alphabetic characters, numbers and underscores (_). There is no restriction on the
length of user defined function names. User defined function names are case sensitive.

User defined function names cannot be the same as any of the 12dPL keywords or variable names
in the program, or any of the 12dPL supplied functions.

User defined functions must occur in the file before they are used in the program file unless a
Function Prototype is included before the function is used. If this occurs then the user defined
function can be defined anywhere in the file. See Function Prototypes .

For more information, see User Defined Functions .

14.1 A Simple User Defined Function Example
In Example 5a , the code to check if a file exist, creating the file and writing information to the file is
repeated in two places - once with file_name = ”test_unicode.rpt and file_type = “ccs=UNICODE”,
and the other time with file_name = ”test_ansi.rpt and file_type = “”.

And if we wanted to also create two extra files with file_type = “ccs=UFT-8” and file_type =
“ccs=UFT-16LE”, then the piece of code would repeated two more times.
This is the perfect situation for creating a user defined function.
The information that changes is the file_name and the file_type so they would need to be passed as
arguments to the user defined function. There is no information that needs to be returned.

So we’ll define a user defined function called create_new_file which has two Text arguments:

 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 Print("File <"+file_name+"> Start pos = "+To_text(file_start)+"\n");
 File_close(file);
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

We’ll now use this function and rewrite Example 5a to give:

14.1.1 Exercise 7
Modify this example so it also creates a file with file_name = ”test_utf_8.rpt and file_type =
“ccs=UTF-8”, and a fourth file file_name = ”test_utf_16.rpt and file_type = “ccs=UTF-16LE”.

If you get stuck, see Example 5b .

Integer create_new_file(Text file_name,Text file_type)
{
 File file;
 Integer file_start,file_end;

 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 File_tell(file,file_end); // record after writing a line
 Print("File <" + file_name + "> Start pos = " + To_text(file_start) +
 " End pos = " + To_text(file_end) + "\n");
 File_flush(file);
 File_close(file);
 return(0);
}

function arguments
function return type

return with this function return value

Integer create_new_file(Text file_name,Text file_type)
{
 File file;
 Integer file_start,file_end;

 if(File_exists(file_name)) File_delete(file_name);
 File_open(file_name,"w",file_type,file);
 File_tell(file,file_start); // record the beginning of the file
 File_write_line(file,"one line");
 File_tell(file,file_end); // record after writing a line
 Print("File <" + file_name + "> Start pos = " + To_text(file_start) +
 " End pos = " + To_text(file_end) + "\n");
 File_flush(file);
 File_close(file);
 return(0);
}
void main()
{
 Clear_console();

 create_new_file("test_unicode.4dm","ccs=UNICODE");
 create_new_file("test_ansi.4dm","");

 Print("\nMacro finished\n"); // write to the Output Window
}

12d Model Programming Language Training Notes Page 59

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

14.1.2 Exercise 8
For program eight.4dm, create a function called
 Integer write_out_model(Model model,File file)

that does the writing out of the data to the file, up to and including closing the file. Is is assumed
that the handles to the Model and the File have already been created and are passed as
arguments to the user defined function.
If you get stuck, see Exercise_8.4dm .
Notice that in the User Defined Function write_out_model, the variable names can be different
from what they were in eight.4dm.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
15.0 User Menus, User Defined Function Keys and Toolbars
12dPL programs can be added to the 12d Model User menus, toolbars and also hooked to
function keys. The best place to put such 12dPL programs is in the User_Lib folder.

(a) 12dPL Programs on 12d Model User menus
To add 12dPL programs to the 12d Model User menu, you need to add the entries to the
usermenu.4d file which is the User folder. Unless someone has already added 12dPL
programs to Usermenu.4d, you will need to create it for the first time.

An example of an entry in usermenu.4d is.
Menu "User Reports" {
 Button "Info on strings in model" {
 Command "macro -close_on_exit $USER_LIB/Exercise_8.4do"
 }
}

Exercise_8.4do must then be in User_Lib.

The menu name ("User String Create" in the example) must correspond to the name
on the top of the 12d Model User menu that you wish to attach your program to.
The other macro options that can be used with, or in place of, -close_on_exit are:

-no_console // don’t display macro console
-close_on_exit // remove console when macro terminates
-buttons // have buttons for finish, restart and quit on console
-allow_defaults // allow default answers for console questions

The default when there are no macro options is to run the macro with a console but without
buttons, and to leave the macro console on the screen when the macro terminates.

Buttons and sub menus may also be created and the syntax is given in the 12d Reference
manual.
A good example to look at is the 12d supplied file xtramenu.4d which is in the folder Set_ups.

Important Notes
1. the entire command "macro -close_on_exit $USER_LIB/Exercise_8.4do"
has quotes around it.
2. usermenu.4d is only read in when a 12d Model project is opened so if your project is
already open, you need to do a Project =>Restart to see the results of any changes to
usermenu.4d.

(b) 12dPL Programs on User Defined Function Keys
To add 12dPL programs to user defined function keys, you need to add the entries to the
userkeys.4d file which, if it has not been added to, is in Set_Ups, or if it has been modified,
should be in User. If you add to the userkeys.4d file, place the modified userkeys.4d file in
User.
An example of an entry in userkeys.4d is:

 shift f5 macro -close_on_exit $USER_LIB/Exercise_8.4do
Exercise_8.4do must then be in User_Lib.
The other macro options that can be used with, or in place of, -close_on_exit are:

-no_console // don’t display macro console
12d Model Programming Language Training Notes Page 61

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

-close_on_exit // remove console when macro terminates
-buttons // have buttons for finish, restart and quit on console
-allow_defaults // allow default answers for console questions

The default when there are no macro options is to run the macro with a console but without
buttons, and to leave the macro console on the screen when the macro terminates.

Important Notes
1. unlike in the User Menus, macro -close_on_exit $USER_LIB/Exercise_8.4do
does not have quotes around it.
2. userkeys.4d is only read in when a 12d Model project is opened so if your project is already
open, you need to do a Project =>Restart to see the results of any changes to userkeys.4d.

(c) 12dPL Programs on User Defined Toolbars
To add 12dPL programs to user defined toolbars, you need to add the entries to the
user_toolbars.4d file in the folder User. If the file user_toolbars.4d does not exist, then create it.

Toolbar "User Reports" {
 Button "Info on strings in model" {
 Command "macro -close_on_exit $USER_LIB/Exercise_8.4do"
 Icon "Tin_Contour.bmp"
 }
}

Exercise_8.4do must then be in User_Lib.
Obviously the icon Tin_Contour.bmp is not the correct one and you would need to create a
suitable icon for the option. If the Icon line in missing, then there will just be a black square in its
place on the toolbar.
The other macro options that can be used with, or in place of, -close_on_exit are:

-no_console // don’t display macro console
-close_on_exit // remove console when macro terminates
-buttons // have buttons for finish, restart and quit on console
-allow_defaults // allow default answers for console questions

The default when there are no macro options is to run the macro with a console but without
buttons, and to leave the macro console on the screen when the macro terminates.

Toolbar Flyouts may also be created and the syntax for them is given in the 12d Reference
manual.

A good example to look at is the 12d supplied file toolbars.4d which is in the folder Set_ups. In
that file you will see that user_toolbars.4d has been included in toolbars.4d with the command
#include_silent "user_toolbars.4d".
Important Notes
1. the entire command "macro -close_on_exit $USER_LIB/Exercise_8.4do"
has quotes around it.
2. user_toolbars.4d is only read in when a 12d Model project is opened so if your project is
already open, you need to do a Project =>Restart to see the results of any changes to
user_toolbars.4d.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
16.0 Panel Basics
So far all the examples have used the Macro Console and hence have been of a sequential
nature. That is, the user is only asked for one thing at a time.
We will now look at building and using Panels in 12dPL that replicates the look and feel, and
much of the functionality, of standard 12d Model panels.
Panels consist of zero or more items called Widgets. And Widgets include such things as panel
fields, message boxes and buttons.

The user can usually type/enter/push things in any order on the Panel. That is, it is event driven.
This makes life much more complicated because you have to program to catch everything that a
user may do. And I mean everything.

The basic structure of 12d Panel code is as follows.
(a) Create and display the panel
(b) Create a loop that monitors events for the panel - this is usually a while loop.
(c) Process each event as it occurs.

For example, an event may be clicking on a Button.

A switch statement is regularly used in the event monitoring.
(d) Hopefully there is an event that terminates the program.

Panel title Browse button
of a Widget

Browse button
turned off
for a widget

Widget optional

Widget disabled

Horizontal_Group of
two Buttons with
border text "Buttons"

Vertical_Group of
four Widgets with
border text "Tins"

Widget of type Button Title of Button Widget

or Colour_Message_Box
Widget of type Message_Box

Widget of type
Named_Tick_Box

Widget Tin_Box

Widget title
12d Model Programming Language Training Notes Page 63

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

The easiest way to learn to code and work with Panels is to look at some simple examples and build
up from there.

16.1 Creating and Displaying a Panel
Panel is a variable type in 12dPL and an individual panel is create by the call

Panel Create_panel(Text title_text)

So in your code you would have say:
 Panel panel = Create_panel(“Training Panel”);

Note that this does not show a panel, it just defines an object that is a Panel. To display the panel,
we use the call

Integer Show_widget(Widget widget)

So type in and run this small program to define and display a Panel with the title “Test Panel”.

Not an exciting program but it shows how to create and display a panel. The minimise, restore and
Windows buttons work but that is all. Everything else in a panel has to be controlled by the program,
even the X on the panel.
If the Error_prompt call was missing, the panel would be displayed but then removed when the
program finished and it would have been so fast that you wouldn’t have seen it.

void main()
{
 Panel panel = Create_panel("Test Panel");
 Show_widget(panel);

 Error_prompt("Is there anything on the screen");
}

minimise button

restore button

Window button

panel_1.4dm
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.2 Adding Widgets to the Panel

There are many different Widgets we can add to a panel and which ones we use depends on the
what the application.
For example, we usually want a Message_Box so that we can write messages out to the panel
(see Create_message_box(Text message_text)).
A Finish button is useful (see Create_finish_button(Text title_text,Text reply)) and we’ll also add
a Button with the name “Test” (see Create_button(Text title_text,Text reply)).

The order that things must be done is that the Panel and Widgets are created (and then the
Widgets are added to the Panel using the Append(Widget widget,Panel panel) call.
The creation order for the Panel and Widgets is not important but the Panel must be created
before any Widgets are appended to it. The order of the Widgets in the Panel is the order that
they are appended to the Panel.

void main()
{
 Panel panel = Create_panel("Test Panel");

 Message_Box msg_box = Create_message_box("First message");
 Button finish_button,test_button;

 test_button = Create_button("Test","test_reply");
 finish_button = Create_finish_button("Finish","finish_reply");

 Append(msg_box,panel);
 Append(test_button,panel);
 Append(finish_button,panel);

 Show_widget(panel);
 Error_prompt("Is there anything on the screen");
}

Message_Box appended first

Button appended second

Finish Button appended third

panel_2.4dm
12d Model Programming Language Training Notes Page 65

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.3 Monitoring Events in the Panel

The next step is to start monitoring and then acting on the events in the Panel. For example,
monitoring that the Finish button was clicked on, and then terminating the program.
The function that monitors events in a panel is

Integer Wait_on_widgets(Integer &id,Text &cmd,Text &msg)

and when the user activates a Widget displayed on the screen (for example by clicking on a Button
Widget), the id, cmd and msg from the Widget is passed back to Wait_on_widgets.
 id is the id of the Widget that has been activated - this is a unique number set by 12d Model when

the Widget is created.

 cmd is the command text that is returned from the Widget - this is dependent on the type of
Widget.

 msg is the message text that is returned from the Widget - this is dependent on the type of Widget.
For example, for a Button and a Finish Button , pressing and releasing LB or RB whilst highlighting
the Button send the Text reply (set by the programmer when creating the Button) as cmd with
nothing in msg. Pressing and releasing MB does nothing.

To monitor Wait_on_widgets, we put the call inside a while loop and then test the values id, cmd
and msg returned by Wait_on_widgets.
For example, a snippet of code to monitor a Panel is

 Integer doit = 1;
 while(doit) {
 Integer id;
 Text cmd,msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel
// somewhere in here doit must be set to 0
// or a jump made to outside the loop
// or the while loop will go on forever

 }
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.4 Events Produced by a Panel

What sort of events are monitored by Wait_on_widgets?
One easy way to find out is to put Print statements inside the while loop and print out the values
of id, cmd and msg returned by Wait_on_widgets.

Type in the code for nine.4dm, compile and run the program.
Click and press on the widgets in Test Panel and see what messages are written to the Output
Window.
Note in particular what happens when you click on the X on the top right hand corner of the
panel, and also when you click on the Test and Finish buttons.

You will also notice that there is no Macro Console panel (because we made no Macro Console
calls) and also that the program will not stop. It is in an infinite loop.
Luckily the while loop is sitting waiting for events so whilst it is waiting, we can go and start other
12d Model options. So we can get to the option

Utilities =>Macro =>Kill

to kill the program nine.4do (see Killing a 12dPL Program).

void main()
{
 Panel panel = Create_panel("Test Panel");

 Message_Box msg_box = Create_message_box("First message");
 Button finish_button,test_button;

 test_button = Create_button("Test","test_reply");
 finish_button = Create_finish_button("Finish","finish_reply");

 Append(msg_box,panel);
 Append(test_button,panel);
 Append(finish_button,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id;
 Text cmd,msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel

 Print("id= " + To_text(id));
 Print(" cmd=<" + cmd + ">");
 Print("msg=<" + msg + ">\n");
 }
}

macro nine.4dm
12d Model Programming Language Training Notes Page 67

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.5 Processing Events from a Panel

The final step is to start processing the events returned from a panel.
What events we look for and how we process it of course depends on the purpose of the program.
From running program nine.4do, you will have noticed that clicking on X returns with

cmd = “Panel Quit”
So testing for cmd equal to “Panel Quit” would give us a way to trap the X and end the program.
Looking further at the messages produced by nine.4do, clicking on the Finish buttons returns with

cmd = “finish_reply”
which is the Text reply we set when creating the Finish button.

Similarly clicking on the Test button returns with cmd = “test_reply” which is the reply we set for that
button.
Also note that the id that is returned is always the same for the same Widget. That is, clicking on X
always returns the same id and it is different from the id you get when sicking on Test or Finish.
This is because every Widget is given a unique id when it is created.

And there is function to get the id for a Widget.
Integer Get_id(Widget widget)

The Integer function return value is the id of the Widget.

We will now modify nine.4dm so that it
(a) Ends the program if X is clicked.
(b) Ends the program if Finish is clicked.
(c) Writes the message “Test clicked” to the Message_Box when Test is clicked.

Compile, run and test the program ten.4dm.

Clicking on Test writes “Test Clicked”
to the message box

Clicking on X or Finish
ends the program and
the panel is removed
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

void main()
{
Panel panel = Create_panel("Test Panel");

 Message_Box msg_box = Create_message_box("First message");
 Button finish_button,test_button;

 test_button = Create_button("Test","test_reply");
 finish_button = Create_finish_button("Finish","finish_reply");

 Append(msg_box,panel);
 Append(test_button,panel);
 Append(finish_button,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id;
 Text cmd,msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel

 Print("id= "+To_text(id)+" cmd=<"+cmd+"> msg=<"+msg+">\n");

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(test_button): {
 Set_data(msg_box,"Test clicked");
 break;
 }
 }
 }
}

macro ten.4dm

get the id of the Widget
12d Model Programming Language Training Notes Page 69

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.6 Set_Ups.h and #include

In our earlier program eight.4dm and its rewrite using a user defined function Exercise_8.4dm , we
selected a model and then wrote out information about all the elements in the model to a file. We
used a Model_prompt and a File_prompt (see Writing 12d Model Data to a Text File).
We will now write a program similar to eight.4dm but using a Panel instead of a Macro_Console. So
we need the equivalent of a Model_prompt and a File_prompt for a panel, and they are the Widgets
Model_Box and File_Box.
We will first look at how to create a Model_Box and a File_Box but that gives us no clue as how to
use them in a panel, and how use them when it is time to write out the information on elements in
the model out to a file.
So after learning how to create a Model_Box and a File_Box, we will build a panel containing them
and a Write button, and finally look at processing the evens inside the panel and writing the data out
to a file.

16.6.1 Creating a Model_Box

Notice that the Create_model_box requires a Message_Box - this is where error and other
messages generated by the Model_Box are written to. So a Message_Box must be created

Create_model_box(Text title_text,Message_Box message,Integer mode)
Name
Model_Box Create_model_box(Text title_text,Message_Box message,Integer mode)

Description
Create an input Widget of type Model_Box for inputting and validating Models.

The Model_Box is created with the title title_text (see Model_Box).
The Message_Box message is normally the message box for the panel and is used to display
Model_Box validation messages.
If <enter> is typed into the Model_Box automatic validation is performed by the Model_Box according
to mode. What the validation is, what messages are written to Message_Box, and what actions
automatically occur, depend on the value of mode.

For example,
CHECK_MODEL_MUST_EXIST 7 // if the model exists, the message says "exists".
 // if it doesn’t exist, the messages says "ERROR"
The values for mode and their actions are listed in Appendix A (see Model Mode).

If LB is clicked on the icon at the right hand end of the Model_Box, a list of all existing models is placed
in a pop-up. If a model is selected from the pop-up (using LB), the model name is placed in the
information area of the Model_Box and validation performed according to mode.
MB for "Same As" also applies. That is, If MB is clicked in the information area and then a string from
a model on a view is selected, then the name of the model containing the selected string is written to
the information area and validation performed according to mode.

The function return value is the created Model_Box.

Special Note:

#include "set_ups.h" must be in the macro code to define CHECK_MODEL_MUST_EXIST etc.
ID = 848
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

BEFORE we create the Model_Box.

Also Create_model_box has a Integer mode and the value of mode determines the behaviour of
the Model_Box. In the description for Create_model_box there is the example of
mode = CHECK_MODEL_MUST_EXIST and this mode means you get an error message
written to the Message_Box if the model does not exist.
CHECK_MODEL_MUST_EXIST has the value 7 but where is that defined?
CHECK_MODEL_EXIST and its value 7 is defined in a file called Set_ups.h and the file is put in
the folder Set_Ups when 12d Model is installed on your computer.

To include definitions such as CHECK_MODEL_EXISTS in the program without having to type it
all in, we use the #include preprocessing command.
The command #include

#include “file_name”
in the program code tells the compile to include the “file_name” in the program code before the
compile takes place (see Preprocessing).
Important Note
For any files mentioned in the #include preprocessing command, 12dPL looks locally but also in
the folder User and then Set_Ups for the file so all you need is the program is

#include “set_ups.h”

After looking at creating the File_Box and building the panel, we’ll then look at Validating and
getting information out of the Model_Box.
12d Model Programming Language Training Notes Page 71

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.6.2 Creating a File_Box

The first thing you will notice is that the description for Create_file_box is very similar to
Create_model_box.
Again there is a Message_Box which must be created BEFORE we create the File_Box.

There is also a mode and set_ups.h must again be included for CHECK_FILE_NEW etc to be valid
but you only need include set_ups.h once.

16.6.3 More Events from Wait_on_widgets

16.6.4 Exercise 9
Start with program ten.4dm and make a copy as eleven.4dm.
Add a Model_Box and a File_Box to the panel in the program eleven.4dm.
Change the name of the panel to “Model Report”. Also change the button labelled “Test” to the
label “Write” and give it the reply “write_reply”.

Compile and run eleven.4dm.
Click and press on the widgets in the panel “Model Report” and see what messages are written
to the Output Window. In particular, type some text into the Model_Box and File_Box.

Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)
Name
File_Box Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)

Description
Create an input Widget of type File_Box for inputting and validating files.

The File_Box is created with the title title_text (see File_Box).
The Message_Box message is normally the message box for the panel and is used to display
File_Box validation messages.
If <enter> is typed into the File_Box, automatic validation is performed by the File_Box according to
mode. What the validation is, what messages are written to Message_Box, and what actions
automatically occur, depend on the value of mode.

For example,
CHECK_FILE_NEW 20 // if the file doesn’t exists, the message says "will be created"
 // if it exist, the messages says "ERROR"
The values for mode and their actions are listed in Appendix A (see File Mode).

If LB is clicked on the icon at the right hand end of the File_Box, a list of the files in the current area
which match the wild card text wild (for example, *.dat) Is placed in a pop-up. If a file is selected
from the pop-up (using LB), the file name is placed in the information area of the File_Box and
validation performed according to mode.
The function return value is the created File_Box.

Special Note:
#include "set_ups.h" must be in the macro code to define CHECK_FILE_NEW etc.
ID = 906
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Once you get all the compile errors out), you will get something like

If you are having any problems, see Eleven_1.4dm .

A few things to note are:

1. Strange sizes for Model_Box, File_Box and Message_Box
Nowhere in the definition of the Model_Box, File_Box and Message_Box was there a
parameter to give the size of each box. Instead 12d Model automatically sizes each box for
you. This is done because any hard wired sizes would not respond to changing screen
resolution or screen font sizes.
However the above widths and layout of the Boxes is not ideal, and we shortly look at using
Horizontal and Vertical Groups to control the panel layout.

2. Typing into the Model_Box
When you type “a” into the Model_Box, the message printed to the Output Window is:
 id= 131275432 cmd=<keystroke> msg=<a>

In fact, just clicking in and typing in the Model_Box creates a steady stream events returned
by Wait_on_widgets.

 id= 131275432 cmd=<left_button_up> msg=<>
 id= 131275432 cmd=<keystroke> msg=<a>
 id= 131275432 cmd=<keystroke> msg=< >
 id= 131275432 cmd=<keystroke> msg=<f>
 id= 131275432 cmd=<keystroke> msg=<i>
 id= 131275432 cmd=<keystroke> msg=<
 >
 id= 131275432 cmd=<model selected> msg=<a fi>
 id= 131275432 cmd=<kill_focus> msg=<>
 id= 131315488 cmd=<set_focus> msg=<>
 id= 131315488 cmd=<kill_focus> msg=<>

None of these events are currently checked for inside the while loop but they could be
checked for and acted upon if there was a need.

3. Write Button
In our program the Write button is going to be the trigger for the user to say that the panel has
been filled in and it is time to write out the report. That is, processing is only done when Write
is pressed.
12d Model Programming Language Training Notes Page 73

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.7 Horizontal and Vertical Groups

Before looking at how we make the program do the work when the Write button is pressed, we’ll first
get the panel looking better.
Nowhere in the definition of the Boxes and Buttons were there parameters giving the size of each
Widget. Instead 12d Model automatically sizes things for you.This is done because any hard wired
sizes would not respond to changing screen resolution or screen font sizes.
To size and set out the Widgets in the panel the way we want them, before adding the Widgets to the
panel we place them in Horizontal_Groups or Vertical_Groups to control the sizing and positioning
algorithms for the Widgets.

Working from the top, we would like to Model_Box, File_Box and Message_Box to be the same
widths. To do that, we first add them into a Vertical Group before adding them to the panel.

Vertical_Group vgroup = Create_vertical_group(0);

 Append(model_box,vgroup);
 Append(file_box,vgroup);
 Append(message_box,vgroup);
 Append(write_button,vgroup);
 Append(finish_button,vgroup);
 Append(vgroup,panel);

This will give you

This is fine if you want very wide Write and Finish buttons but normally we like to have them on the
same line. For this we will use a Horizontal Group .

So we’ll take the Write and Finish buttons out of the Vertical_Group and add them to a
Horizontal_Group, and then add the Horizontal_Group to the panel.

Vertical_Group vgroup = Create_vertical_group(0);

 Append(model_box,vgroup);
 Append(file_box,vgroup);
 Append(message_box,vgroup);
 Append(vgroup,panel);

 Horizontal_Group hgroup = Create_button_group();

 Append(write_button,hgroup);
 Append(finish_button,hgroup);
 Append(hgroup,panel);
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

This will give you

Close, but not the best look.
What we really want is the line containing the Write and Finish buttons to be as wide as the
previous three lines. So we want the Horizontal_Group to be sized width wise, the same as the
first three Widgets.
So to do that, we simply add the Horizontal_Group containing the Write and Finish buttons, to
the Vertical_Group rather than straight to the panel. That way the Horizontal_Group will be given
the same width as the other widgets in the Vertical Group, but unlike before, it is the entire
Horizontal_Group and not the individual buttons that is given the width.

 Vertical_Group vgroup = Create_vertical_group(0);
 Append(model_box,vgroup);
 Append(file_box,vgroup);
 Append(message_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(write_button,hgroup);
 Append(finish_button,hgroup);
 Append(hgroup,vgroup);

 Append(vgroup,panel);

16.7.1 Exercise 10
Compile and test your eleven.4dm code to make user you get the above panel (see
Eleven_2.4dm if are having problems).
Although at first it may appear confusing, once you have used Horizontal and Vertical Groups
are couple of times it becomes easy and creates good looking panels without you having to
do any sizing calculations.

Now that you have a larger Message_Box, test the panel to see what messages you get in
the Message_Box and again what events are monitored by Wait_on_widgets.

adding the Horizontal_Group
to the Vertical_Group means
that the whole Horizontal_Group
is the same width are the other
items in the Vertical_Group

Horizontal_Group
12d Model Programming Language Training Notes Page 75

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.8 Validating Boxes and Buttons

16.8.1 Model_Box Events
Typing characters into the Model_Box creates Widget events but these can be ignored. The
important event to track is when the <Enter> key is pressed, or a model is selected from the pop-
up list.
In both these cases for the Widget event, cmd = “model selected” and msg is the model name.
 id= 131275432 cmd=<model selected> msg=<boundary>

What messages are written to the Message_Box depends on the mode set when the Model_Box
was created.
So if you wanted to do something special when a name is entered into the Model_Box, you only
need to check for the id of the Model_Box in the switch statement, and when that occurs, check
for cmd equal to “model selected”

Otherwise you can simply ignore the events for the Model_Box.
Note that although the Model_Box is right there in front of user in the panel, at this stage there is
nothing forcing the user to do anything with the Model_Box. The user may simply go and click on
the Write button.

16.8.2 File_Box Events
Typing characters into the File_Box also creates many Widget events that can be ignored. The
important event to track is when the <Enter> key is pressed, or a file is selected from the pop-up
list.

In both these cases for the Widget event, cmd = “file selected” and msg is the file name.
 id= 131077296 cmd=<file selected> msg=<model.rpt>
What messages are written to the Message_Box depends on the mode set when the File_Box
was created.

So if you wanted to do something special when a name is entered into the File_Box, you only
need to check for the id of the File_Box in the switch statement, and when that occurs, check for
cmd equal to “file selected”.
Otherwise you can simply ignore the events for the File_Box.
Note that just like the Model_Box, the File_Box is right there in front of user in the pane but the
user may not touch it and just click on the Write button.

16.8.3 Write Button
The Write button is the trigger to say it is time to write out the report of all the strings in the
selected model.
Currently in eleven.4dm we are capturing clicking on the Write button but all we do is write out
the message “Write clicked” to the Message_Box. So we will look at the steps need to replace
this with writing the data out to the file.

Looking back at Exercise_8.4dm , we have already extracted the file writing code in eight.4dm
and turned it into the user defined function
 Integer write_out_model(Model model,File file)
so we will simply reuse that function so we don’t have to create it again.

But before we can call write_out_model, we need to create the handles for model and file.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

Now there is a Model_Box and a File_Box in the panel but not only do we NOT know if the
user entered anything sensible into Model_Box or File_Box, we have no idea if the user ever
went to the two boxes. So even though in the code we may have checked things when the
user clicked on the Model_Box and File_Box, we still have to check everything again after
the Write button is clicked.

This is where panels are different, and a bit trickier and slightly more difficult to code than
when using a Macro Console. But the power of panels quickly makes up for the extra
development time.
So after the Write button is clicked, we have to:

(a) Get the model details from the Model_Box and check that it exists otherwise we have no
elements to report on. If it doesn’t exist we need to write an error message out to the
Message_Box and stop further processing for the Write button.
To do this we use the Validate(Model_Box box,Integer mode,Model &result) call for the
Model_Box with the mode GET_MODEL_ERROR = 13 .

With Validate and this mode, if the model exists then the return code is MODEL_EXISTS
and the handle to the selected model is returned as the argument Model result.
If the model does not exist, then an error message “Error no model specified” is written to
the Message_Box and the return code is NO_MODEL.
So by just checking the return code you know if an existing model was selected, or no
existing model was selected and so you need to go back ask for an existing model.

So in the switch statement in the while loop, you would have in the case
Get_id(write_button):

// check that the model exists for the name in the model box
 Model model;

 if(Validate(model_box,GET_MODEL_ERROR,model)!= MODEL_EXISTS)break;

This says if the model does not exist (!= MODEL_EXISTS), break out of the switch
statement to go back and wait for further events with Wait_on_widgets.

If the model exists, the we have the handle to it returned as Model model.
(b) Get the file details from the File_Box.

If the file already exists then the person defining the behaviour of the program needs to tell
us what to do.
Do we say it must be a new file and stop further processing for the Write button?
Do we delete the existing file so we write a new file with that name?

Do we append to the end of the existing file?
There are File modes to help do each of these but we need to know in advance what is
required.
For this exercise, the requirements will be that if the file exists, it is alright to let the user say
to delete the file, or ask for a new file. We won’t allow the user to Append to an existing file.

To do this we use the Validate(File_Box box,Integer mode,Text &result) call for the File_Box
with the mode GET_FILE_CREATE = 15 .
With Validate and this mode, if the file does not exist then the return code is NO_FILE and
the text in the File_Box is returned in the Text result. Note that for the File_Box, no file
handle was returned but just the file name.

If no text is typed into the File_Box then the return code is NO_NAME
12d Model Programming Language Training Notes Page 77

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

If the file exists, then a Replace or Cancel panel is placed on the screen and if Replace is
selected, then the file is deleted and the return code is NO_FILE.

If Cancel is selected, then the message “overwrite aborted by user” the return code is
NO_FILE_ACCESS.
Once again, just checking the return code lets you know that the file doesn’t exist (NO_FILE),
or the user cancelled and needs to go back and give another file name (NO_FILE_ACCESS),
or nothing was typed into the file box (NO_NAME).
This time the only valid return we are looking for is NO_FILE.

So in the switch statement in the while loop, have in the case Get_id(write_button):
// check the file does not exist
 Text result; File file; Integer validate_return;

 validate_return = Validate(file_box,GET_FILE_CREATE,result);

 if(validate_return == NO_FILE){ //file doesn't exist
 File_open(result,"w","ccs=UNICODE",file); // create the file
 } else {
 Set_data(msg_box,"Choose another file name");
 break;
 }

This says that if the file with the name given the File_Box does not exist, then it is created.
For anything else, the message “Choose another file” is written to the Message_Box and then a
break out of the switch statement goes back to wait for further events with Wait_on_widgets.

(c) Write out the information about each element in the model to the file.
If we are still in the case Get_id(write_button) for the switch statement after the code above
then we have an existing model with Model handle model and a file to write the data to with the
File handle file.

The code to then write out the report is simply:
 write_out_model(model,file); // write out data
 Set_data(msg_box,"Data written out");

We really should also be checking the function return code for write_out_model just in case there
was an error in writing out the report. If an error is found, we could then write out an error
message like “Error writing out the data to the file ...”.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.8.4 Exercise 11
Copy the user defined function write_out_model from eight.4dm and put it into your
eleven.4dm, and also the above additions for the switch case Get_id(write_button).
Now compile and test your new eleven.4dm code. See Eleven_3.4dm if you are having
problems.

Try the different combinations of when file does and does not exit and when the model does
and does not exist.

case Get_id(write_button): {
// check that the model exists for the name in the model box
 Model model;
 if(Validate(model_box,GET_MODEL_ERROR,model)!= MODEL_EXISTS) break;

// check that the file does not exist
 Text result; File file; Integer validate_return;
 validate_return = Validate(file_box,GET_FILE_CREATE,result);

 if(validate_return == NO_FILE) { // file doesn't exist so can create it
 File_open(result,"w","ccs=UNICODE",file);
 } else {
 Set_data(msg_box,"Choose another file");
 break;
 }
 write_out_model(model,file); // write out data
 Set_data(msg_box,"Data written out");
 break
}

if the model does not exist
then an error message is
written to the message box

if the file exists you
are asked if you want to
replace it and if yes then
the fie is deleted and
NO_FILE is returned
12d Model Programming Language Training Notes Page 79

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

16.9 CHECK and GET Modes

In the Create and Validate calls for the Model_Box and File_Box there modes for controlling and
reporting on what the Boxes did (see Model Mode and File Mode).
The modes used in the Create calls determine what automatically happens when you enter
information into the created Box (for example, the File_Box) and so they are always used.
Whereas you may never use Validate calls in your code.
Some of these modes were CHECK modes and others GET modes.

The major difference between them is that the CHECK modes only check things and write
messages out to the Message_Box.
On the other hand, the GET modes may actually create and even delete things. We saw that with

 Validate(file_box,GET_FILE_CREATE,result)
where using GET_FILE_CREATE allows the user to delete an existing file.
Because users may click all over the place in a panel, and may even quit out of the panel without
ever pushing a Process button (the Write button in our eleven.4dm), when creating boxes you
should only use the CHECK modes.

An example of how problems could arise in eleven.4dm by using GET_FILE_CREATE mode
when creating the File_Box (Create_file_box("Report file",msg_box,GET_FILE_CREATE,"*.rpt"))
rather than CHECK_FILE_CREATE as we are now doing, is that when the user picks a file in the
File_Box and the file already exists, the GET_FILE_CREATE means at that time they would be
asked about overwriting the file and if they said yes, the file would be deleted. But the user may
then do the same thing and delete a number of files before they ever push the Write button.
Worse still is that they may simply finish the panel and never click on the Write button but the
files will of course still be deleted.
Although the same problem may occur with Validates, Validates usually only occur in the
associated with Process button and so the actual processing is happening.

16.10 Ignored Events
From the information being written to the Output Window after the Wait_on_widgets call, you will
notice lots of events that we are not processing.
Some of them are general events such as “kill focus”, “set focus”, left_button_up” and others are
events such as “model selected” and “file selected” that are generated by the Widgets we placed
in the panel.
Currently these events are not being processed in the while loop surrounding the
Wait_on_widgets call but it is good to know they exist in case you do need to use them in future
12dPL programs.
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
17.0 Working with 12d Model Strings
In Example 1 using a Macro_Console, we selected a string and wrote out how many vertices
there were in the string. We will now repeat this but with a Panel.
So we need to be able to select a string and there are two possible Boxes to use - the
Select_Box and the New_Select_Box .

To see the difference between the two Boxes, we’ll add them to a Panel. Also we’ll use two
Message_Box’s with the messages going to different Message_Box’s.
See Twelve_1.4dm .

Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
Name
Select_Box Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)

Description
Create an input Widget of type Select_Box.
The Select_Box is created with the title title_text.
The Select title displayed in the screen message area is select_title.

The value of mode is listed in the Appendix A - Select mode. See Select Mode .
The Message_Box message is normally the message box for the panel and is used to display string
select validation messages.
The function return value is the created Select_Box.

ID = 882

Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
Name
New_Select_Box Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)

Description
Create an input Widget of type New_Select_Box. See New_Select_Box .

The New_Select_Box is created with the title title_text.
The Select title displayed in the screen message area is select_title.

The value of mode is listed in the Appendix A - Select mode. See Select Mode .
The Message_Box message is normally the message box for the panel and is used to display
New_Select_Box validation messages.
The function return value is the created New_Select_Box.

ID = 2240
12d Model Programming Language Training Notes Page 81

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
Using either Box, we get many new Widget events like “motion event”, “pick select” and “accept
select”.

The “motion select” event occurs after a Select button is activated and then the cursor is over the
drawing area of a 12d Model View. Notice that the “motion select” event does not occur when you
are over a menu or panel that is covering the drawing area of a View. So the “motion select” only
occurs when you are able to pick something in a model on a View.
Create a Section View and profile a string and then move over the view with a Select running.

Also create a Perspective View, add some data to it and do a Fit, and move over the view with a
Select running.
At this stage we are not interested in the “motion select” and it is hard to see what other events are
being written to the Output Window so we will stop writing out the “motion select” events. To do this,
simply add a test for “motion select” before the Print statement.

 if(cmd == "motion select") continue;
 Print("id= "+To_text(id)+" cmd=<"+cmd+"> msg=<"+msg+">\n");

Now use the two selects for cursor picks, and also see what happens when Cancel is chosen from
the Pick Ops menu (click RB when in the 12d Model View to bring up the Pick Ops menu).

17.0.1 Exercise 12
Create a new 12dPL program called twelve.4dm by modifying twelve_1.4dm so that there is
just the New_Select_Box, and when a string is selected, the number of vertices in the string is
written out to the message box.

See Example 1b if you are having problems.

Select_Box

New_Select_Box

two Message_Box’s

view name
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

17.1 Types of Elements

We have been selecting string but there are more than string Elements. For example, there are
Tin, SuperTin, Plot Frame Elements. And even for strings, there is more than one type of string.
For example, string types include Super, Arc, Circle, Text, Super_Alignment, Drainage and
Pipeline.
Some information is common to all the Element types such as name and colour but other
information will depend on the Element type.
The full list of Element types is given in Types of Elements and the type is found by the call
Get_type(Element elt,Text &elt_type) .
12d Model Programming Language Training Notes Page 83

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

17.2 Dimensions of a Super String

The Super String is a very general string which was introduced to not only replace the string types
2d, 3d, 4d, interface, face, pipe and polyline, but also to allow for combinations that were never
allowed in the old strings. For example, to have a polyline string but with a pipe diameter, or a 2d
string with text at each vertex.
Different strings to cover every possible combination would have required hundreds of different
string types. A better solution was to have one string type that has information to cover all of the
properties of the other strings, and the ability to more easily add other properties now and in the
future. This flexible string is the Super String.

Having all possible combinations defined for every Super String would be very inefficient for
computer storage and processing speed, so the Super String uses the concept of dimensions to
refer to the different types of information that could be stored in the Super String.
Each dimension is well defined and is also optional so that no unnecessary information is required
to be stored.

A Super String always has an (x,y) value for each vertex but what other information exists for a
particular Super String depends on what optional dimensions are defined for that Super String.
For example, there are two Height dimensions called Att_ZCoord_Value and Att_ZCoord_Array. If
Att_ZCoord_Value is set then the super string has a constant height value for the entire string (2d
super string), and if Att_ZCoord_Array is set, then there is a z value for each vertex (3d super
string). If both are set then Att_ZCoord_Array takes precedence.
So the two Height dimensions cover the functionality of both the old 2d string (one height for the
entire string) and the old 3d string (different z value at each vertex). Plus the 2d super string only
requires the storage of one height like the old 2d string and not the additional storage required for a
z value at every vertex that the 3d string needs.

For each super string dimension, there are calls to check if a super string has that dimension set or
not set.
Note
If both Att_ZCoord_Array and Att_ZCoord_Value exist then Att_ZCoord_Array takes precedence but
it is also possible that NEITHER of them exist.

Get_super_use_2d_level(Element super,Integer &use)
Name
Integer Get_super_use_2d_level(Element super,Integer &use)

Description
Query whether the dimension height dimension Att_ZCoord_Value exists for the super string super.
See Height Dimensions for information on Height dimensions or Super String Dimensions for
information on all dimensions.
use is returned as 1 if the dimension exists, or 0 if the dimension doesn’t exist.

If the Element super is not a super string, then a non zero function return value is returned.
A return value of 0 indicates the function call was successful.
ID = 701
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
17.2.1 Exercise 13
Create a new 12dPL program called thirteen.4dm by modifying twelve.4dm so that the
program not only writes out the number of vertices in the selected string but also writes out if
the selected string has dimension Att_ZCoord_Array and if not, does it have the dimension
Att_ZCoord_Value.
Contour the tin and then check what dimension the contours have.

What happens when the Super Alignment m001 is selected?
See Thirteen.4dm if you are having problems.

Get_super_use_3d_level(Element super,Integer &use)
Name
Integer Get_super_use_3d_level(Element super,Integer &use)

Description
Query whether the height dimension Att_ZCoord_Array exists for the super string super.
See Height Dimensions for information on Height dimensions or Super String Dimensions for
information on all dimensions.
use is returned as 1 if the dimension exists, or 0 if the dimension doesn’t exist.

If the Element super is not a super string, then a non zero function return value is returned.
A return value of 0 indicates the function call was successful.
ID = 731
12d Model Programming Language Training Notes Page 85

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

17.3 Accessing (x,y,z) Data for a Super String

There are a number of ways of getting coordinate data from a Super String, but the simplest is the
Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)

So we can simply use Get_points(Element elt,Integer &num_verts) to get the number of vertices in
the string and then Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z) to
the coordinates of any of the string vertices.

17.3.1 Exercise 14
Create a new 12dPL program called fourteen.4dm by modifying thirteen.4dm so that it only
looks at Super Strings of type 2d and 3d and then

(a) writes out the same information to the message box.
(b) plus writes the name and model of the string to the Output Window, followed by the same

information as (a) except to the Output Window
(c) plus writes out the vertex index and the x,y and z coordinates of the string (one set per line) to

the Output Window.
See Fourteen.4dm if you are having problems.

Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)
Name
Integer Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)

Description
Get the coordinate data (x,y,z) for i’th vertex (the vertex with index number i) of the super Element
super.
The x coordinate is returned in Real x.
The y coordinate is returned in Real y.
The z coordinate is returned in Real z.
If the Element super is not of type Super, then the function return value is set to a non zero value.
A return value of 0 indicates the function call was successful.

ID = 733
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

17.4 Changing Element Header Properties

To date we have obtained Element handles to strings so could inquire on string properties such
as name, model containing the string and number of vertices. This type of information is often
referred to as the header information or header properties for an Element because such
information is common to all Elements. The functions we used to obtain the Element header
information were mainly in the section Element Header Functions .
So far we have used Get_name, Get_model, Get_id, Get_type and Get_points but there are
other routines such as
 Get_colour(Element elt,Integer &colour) to get the Element colour

 Get_style(Element elt,Text &elt_style) to get the Element style
 Get_chainage(Element elt,Real &start_chain) to get the start chainage of the Element

For most of these functions, there is an equivalent Set_ call that modifies that Element property.
For example Set_name:

One exception is Get_points, which returns the number of vertices in an Element, and there is no
simple Set_points.

We will now look at the tools required to write a12dPL program that changes the name and the
colour of a Super String. But we will add the twist that if either the name or colour is left blank
then that property is not changed. So we don’t have to supply a name or a colour - that is
optional.
In 12d Model, optional Boxes are identified by the title text being greyed out but the information
area and Browse button are not greyed out. And in 12dPL, you can easily do the same thing for
most Boxes.
To get the new name and colour, we use a Colour_Box and a Name_Box . And to indicate that
they are options, we use the Set_optional(Widget widget,Integer mode) call.

Set_name(Element elt,Text elt_name)
Name
Integer Set_name(Element elt,Text elt_name)

Description
Set the name of the Element elt to the Text elt_name.
A function return value of zero indicates the Element name was successfully set.
Note
This will not set the name of an Element of type Tin.
ID = 45
12d Model Programming Language Training Notes Page 87

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
And you can easily tell if nothing has been entered into an optional Box with the Validate call.

NO_NAME is returned if the Box is optional and the box is left empty.

17.4.1 Exercise 15
Create a new 12dPL program that allows the user to change the name, colour and model of a
selected string. If no new name is given then the name is not changed. if no new colour is given,
then the colour is not changed.

Set_optional(Widget widget,Integer mode)
Name
Integer Set_optional(Widget widget,Integer mode)
Description
Set the optional mode for the Widget widget.
That is, if the Widget field is blank, the title text to the left is greyed out, signifying that this Widget is
optional.
If mode = 1 the widget is optional
 mode = 0 the widget is not optional.
The default value for a Widget is mode = 0.

If this mode is used (i.e. 1), the widget must be able to accept a blank response for the field, or
assume a reasonable value.
A function return value of zero indicates the mode was successfully set.

ID = 1324

Set_optional mode = 0

Set_optional mode = 1Widget title
greyed out

Validate(Name_Box box,Text &result)
Name
Integer Validate(Name_Box box,Text &result)

Description
Validate the contents of Name_Box box and return the Text result.
The function returns the value of:
 NO_NAME if the Widget Name_Box is optional and the box is left empty
 TRUE (1) if no other return code is needed and result is valid.
 FALSE (0) if there is an error.

So a function return value of zero indicates that there is an error.
Warning this is the opposite of most 12dPL function return values
ID = 931
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

IMPORTANT NOTE
What happened when you changed the colour of a string?
Did it change straight away or only on a view redraw?
If only on a view redraw then you will want to know about the function Element_draw:

If you weren’t using this in your program then add it in now and try changing colours again.

See Fifteen.4dm if you are having problems.

Element_draw(Element elt)
Name
Integer Element_draw(Element elt)

Description
Draw the Element elt in its natural colour on all the views that elt is displayed on.
A function return value of zero indicates that elt was drawn successfully.

ID = 371
12d Model Programming Language Training Notes Page 89

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
18.0 Some Examples

18.1 Exercise_8.4dm
// --
// Macro: Exercise_8.4dm
// Author: ljg
// Organization: 12D Solutions - NSW
// Date: Wed August 21 00:59:41 2013
// --
 Integer write_out_model(Model model,File file) {
// --
// User Defined Function to write information about the
// elements in a model to a file
// --
 Text model_name;
 Dynamic_Element model_elts;
 Integer num_elts,ierr;

 ierr = Get_name(model,model_name);
 if(ierr != 0) return(ierr);

 Uid model_uid;
 Get_id(model,model_uid);
 File_write_line(file,"Model uid "+To_text(model_uid));

 Get_elements(model,model_elts,num_elts);
 File_write_line(file,"There are "+To_text(num_elts)+" elements in the model: "+ model_name);

 for(Integer i=1;i<=num_elts;i++) {
 Element element;
 Get_item(model_elts,i,element);

 Text line_out;
 Text element_name;
 Get_name(element,element_name);
 line_out = element_name+"\t";

 Uid element_uid;
 Get_id(element,element_uid);
 line_out += To_text(element_uid)+"\t";

 Text element_type;
 Get_type(element,element_type);
 line_out += element_type+"\t";

 Integer num_verts;
 Get_points(element,num_verts);
 line_out += To_text(num_verts);
 File_write_line(file,line_out);
 }
 File_flush(file);
 File_close(file);
 return(0);
}

void main(){
// --
// this is where the macro starts
// --
 Clear_console();
 Text my_model_name;
 Model my_model;
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

 Text file_name;
 File_prompt("Enter the file name","*.rpt",file_name);

 File my_file;
 File_open(file_name,"w","ccs=UNICODE",my_file);

 Integer ierr;

 ierr = write_out_model(my_model,my_file);
}

12d Model Programming Language Training Notes Page 91

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.2 Eleven_1.4dm

//--
// Partially completed macro to write out a report on a model.
// ---
#include "set_ups.h"

void main() {
 Panel panel = Create_panel("Model Report");
 Message_Box msg_box = Create_message_box("First message");
 Model_Box model_box = Create_model_box("Select model to report on",msg_box,CHECK_MODEL_EXISTS);
 File_Box file_box = Create_file_box("Report file",msg_box,CHECK_FILE_NEW,"*.rpt");
 Button write_button = Create_button("Write","write_reply");
 Button finish_button = Create_finish_button("Finish","finish_reply");

 Append(model_box,panel);
 Append(file_box,panel);
 Append(msg_box,panel);
 Append(write_button,panel);
 Append(finish_button,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel

 Print("id= "+To_text(id)+" cmd=<"+cmd+"> msg=<"+msg+">\n");

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(write_button): {
 Set_data(msg_box,"Write clicked");
 break;
 }
 }
 }
}

12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.3 Eleven_2.4dm

//--
// Partially completed macro to write out a report on a model.
// ---
#include "set_ups.h"

void main() {
 Panel panel = Create_panel("Model Report");
 Message_Box msg_box = Create_message_box("First message");
 Model_Box model_box = Create_model_box("Select model to report on",msg_box,CHECK_MODEL_EXISTS);
 File_Box file_box = Create_file_box("Report file",msg_box,CHECK_FILE_NEW,"*.rpt");
 Button write_button = Create_button("Write","write_reply");
 Button finish_button = Create_finish_button("Finish","finish_reply");

 Vertical_Group vgroup = Create_vertical_group(0);
 Append(model_box,vgroup);
 Append(file_box,vgroup);
 Append(msg_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(write_button,hgroup);
 Append(finish_button,hgroup);

 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel

 Print("id= "+To_text(id)+" cmd=<"+cmd+"> msg=<"+msg+">\n");

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(write_button): {
 Set_data(msg_box,"Write clicked");
 break;
 }
 }
 }
}

12d Model Programming Language Training Notes Page 93

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.4 Eleven_3.4dm

//--
// Partially completed macro to write out a report on a model.
// ---
#include "set_ups.h"

// --
 Integer write_out_model(Model model,File file) {
// --
// User Defined Function to write information about the
// elements in a model to a file
// --
 Text model_name;
 Dynamic_Element model_elts;
 Integer num_elts,ierr;

 ierr = Get_name(model,model_name);
 if(ierr != 0) return(ierr);

 Uid model_uid;
 Get_id(model,model_uid);
 File_write_line(file,"Model uid "+To_text(model_uid));

 Get_elements(model,model_elts,num_elts);
 File_write_line(file,"There are "+To_text(num_elts)+" elements in the model: "+ model_name);

 for(Integer i=1;i<=num_elts;i++) {
 Element element;
 Get_item(model_elts,i,element);

 Text line_out;
 Text element_name;
 Get_name(element,element_name);
 line_out = element_name+"\t";

 Uid element_uid;
 Get_id(element,element_uid);
 line_out += To_text(element_uid)+"\t";

 Text element_type;
 Get_type(element,element_type);
 line_out += element_type+"\t";

 Integer num_verts;
 Get_points(element,num_verts);
 line_out += To_text(num_verts);
 File_write_line(file,line_out);
 }
 File_flush(file);
 File_close(file);
 return(0);
}

void main() {
 Panel panel = Create_panel("Model Report");
 Message_Box msg_box = Create_message_box("First message");
 Model_Box model_box = Create_model_box("Select model to report on",msg_box,CHECK_MODEL_EXISTS);
 File_Box file_box = Create_file_box("Report file",msg_box,CHECK_FILE_NEW,"*.rpt");
 Button write_button = Create_button("Write","write_reply");
 Button finish_button = Create_finish_button("Finish","finish_reply");

 Vertical_Group vgroup = Create_vertical_group(0);
 Append(model_box,vgroup);
 Append(file_box,vgroup);
 Append(msg_box,vgroup);
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
 Horizontal_Group hgroup = Create_button_group();
 Append(write_button,hgroup);
 Append(finish_button,hgroup);

 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel

 Print("id= "+To_text(id)+" cmd=<"+cmd+"> msg=<"+msg+">\n");

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(write_button): {
// check that the model exists for the name in the model box
 Model model;
 if(Validate(model_box,GET_MODEL_ERROR,model)!= MODEL_EXISTS) break;

// check that the file does not exist
 Text result; File file; Integer validate_return;
 validate_return = Validate(file_box,GET_FILE_CREATE,result);

 if(validate_return == NO_FILE) { // file doesn't exist so can create it
 File_open(result,"w","ccs=UNICODE",file);
 } else {
 Set_data(msg_box,"Choose another file");
 break;
 }
 write_out_model(model,file); // write out data
 Set_data(msg_box,"Data written out");
 break;
 } // end of case write_button
 }
 }
}

12d Model Programming Language Training Notes Page 95

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.5 Twelve_1.4dm

//--
// Partially completed macro to look at Select_Box and New_Select_Box
// ---
#include "set_ups.h"

void main() {
 Panel panel = Create_panel("String Report");
 Message_Box msg_box = Create_message_box("");
 Message_Box new_msg_box = Create_message_box("");
 Select_Box select_box =Create_select_box("Select string","Select a string",
 SELECT_STRING,msg_box);
 New_Select_Box new_select_box = Create_new_select_box("New select string",
 "New select a string",SELECT_STRING,new_msg_box);
 Button write_button = Create_button("Write","write_reply");
 Button finish_button = Create_finish_button("Finish","finish_reply");

 Vertical_Group vgroup = Create_vertical_group(0);
 Append(select_box,vgroup);
 Append(new_select_box,vgroup);
 Append(msg_box,vgroup);
 Append(new_msg_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(write_button,hgroup);
 Append(finish_button,hgroup);

 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;
 Integer ret = Wait_on_widgets(id,cmd,msg);

// Process events from any of the Widgets on the panel

 Print("id= "+To_text(id)+" cmd=<"+cmd+"> msg=<"+msg+">\n");

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(write_button): {
 Set_data(msg_box,"Write clicked");
 break;
 }
 }
 }
12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.6 Thirteen.4dm

//--
// Programmer Lee Gregory
// Date 22/9/13
// Description of Macro
// Macro using a panel to select a string and when a string is
// selected, write out to the message box, the
// number of vertices there are in the string.
// Also write out if Att_ZCoord_Value or Att_ZCoord_Array is
// set for the selected string.
// The macro terminates when the Finish button, or X is selected.
//--
#include "set_ups.h"

void main() {
 Pane panel= Create_panel("Number of Vertices Report");
 Message_Box new_msg_box = Create_message_box("");
 New_Select_Box new_select_box = Create_new_select_box("Select string",
 "Select a string",SELECT_STRING,new_msg_box);
 Button finish_button = Create_finish_button("Finish","finish_reply");

 Vertical_Group vgroup = Create_vertical_group(BALANCE_WIDGETS_OVER_HEIGHT);
 Append(new_select_box,vgroup);
 Append(new_msg_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(finish_button,hgroup);

 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;
 Integer ret = Wait_on_widgets(id,cmd,msg);

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(new_select_box): {
 Set_data(new_msg_box,"");
 if(cmd == "accept select") {
 Element string; Integer ierr,no_verts;
 ierr = Validate(new_select_box,string);
 if(ierr != TRUE) {
 Set_data(new_msg_box,"Invalid pick.");
 break;
 }
 if(Get_points(string,no_verts)!=0) {
 Set_data(new_msg_box,"error in string");
 break;
 }
 Integer use;
 ierr = Get_super_use_3d_level(string,use);//check 3d first in case both 2d & 3d are set
12d Model Programming Language Training Notes Page 97

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

 if(ierr != 0) {
 Set_data(new_msg_box,To_text(no_verts) + " vertices in the string");
 break;
 }
 if(use ==1) {
 Set_data(new_msg_box,To_text(no_verts) +
 " vertices in the string - Att_ZCoord_Array");
 break;
 }

 ierr = Get_super_use_2d_level(string,use);
 if(ierr != 0) {
 Set_data(new_msg_box,To_text(no_verts) + " vertices in the string");
 break;
 }
 if(use == 1) {
 Set_data(new_msg_box,To_text(no_verts)+
 " vertices in the string - Att_ZCoord_Value");
 break;
 }
 Set_data(new_msg_box,To_text(no_verts) +
 " vertices in the string - no Att_ZCoord");
 }
 break;
 }
 }
 }
}

12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.7 Fourteen.4dm

//--
// Programmer Lee Gregory
// Date 22/9/13
// Description of Macro
// Macro using a panel to select a string and when a string is
// selected, write out to the message box, the
// number of vertices there are in the string.
// Also write out if Att_ZCoord_Value or Att_ZCoord_Array is
// set for the selected string.
// Also writes all this information and the string name and model,
// to the Output Window, plus the vertex index and the
// corresponding (x,y,z) for each vertex in the string
// The macro terminates when the Finish button, or X is selected.
//--
// ---
#include "set_ups.h"

void main() {
 Panel panel = Create_panel("Number of Vertices Report");
 Message_Box new_msg_box = Create_message_box("");
 New_Select_Box new_select_box = Create_new_select_box("Select string",
 "Select a string",SELECT_STRING,new_msg_box);
 Button finish_button =Create_finish_button("Finish","finish_reply");

 Vertical_Group vgroup = Create_vertical_group(BALANCE_WIDGETS_OVER_HEIGHT);
 Append(new_select_box,vgroup);
 Append(new_msg_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(finish_button,hgroup);

 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;
 Integer ret = Wait_on_widgets(id,cmd,msg);

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(new_select_box): {
 Set_data(new_msg_box,"");
 if(cmd == "accept select") {
 Element string; Integer ierr,num_verts;
 ierr = Validate(new_select_box,string);
 if(ierr != TRUE) {
 Set_data(new_msg_box,"Invalid pick.");
 break;
 }
 Text string_type;
 Get_type(string,string_type);
12d Model Programming Language Training Notes Page 99

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

 if(string_type != "Super") {
 Set_data(new_msg_box,"not a Super String");
 continue;
 }
 if(Get_points(string,num_verts)!=0) {
 Set_data(new_msg_box,"error in string");
 break;
 }
 Integer use_2d,use_3d; Text out;
 ierr = Get_super_use_3d_level(string,use_3d);
 if(ierr != 0) continue;
 ierr = Get_super_use_2d_level(string,use_2d);
 if(ierr != 0) continue;

 if((use_2d == 0)&&(use_3d == 0)){
 Set_data(new_msg_box,"not the correct string dimensions");
 continue;
 }

 out = To_text(num_verts) + " vertices in the string - ";
 if(use_3d == 1) {
 out = out + "Att_ZCoord_Array";
 } else if(use_2d == 1) {
 out = out + "Att_ZCoord_Value";
 }

 Text string_name,model_name; Model model;
 Get_name(string,string_name);
 Get_model(string,model);
 Get_name(model,model_name);

 Print("\nString name <" + string_name + "> Model name <" + model_name + ">\n");
 Set_data(new_msg_box,out);
 Print(out+"\n");

 Real x,y,z;
 for (Integer i=1;i<=num_verts;i++) {
 Get_super_vertex_coord(string,i,x,y,z);
 Print("vert index " + To_text(i) + " x = " + To_text(x) +
 " y = " + To_text(y) + " z = " + To_text(z) + "\n");
 }
 }
 break;
 }
 }
 }
}

12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

18.8 Fifteen.4dm

//--
// Programmer Lee Gregory
// Date 22/9/13
// Description of Macro
// Macro using a panel to have an optional Name and Colour Box
// Select a string and when a string is selected
// change the name and/or colour of the string
// ---
#include "set_ups.h"

void main() {
 Panel panel = Create_panel("Change String Name and Colour");
 Message_Box msg_box = Create_message_box("");
New_Select_Box new_select_box = Create_new_select_box("Select string",
 "Select a string",SELECT_STRING,msg_box);
 Button finish_button = Create_finish_button("Finish","finish_reply");

 Name_Box name_box = Create_name_box("New name",msg_box);
 Set_optional(name_box,1);

 Colour_Box colour_box = Create_colour_box("New colour",msg_box);
 Set_optional(colour_box,1);

 Vertical_Group vgroup = Create_vertical_group(BALANCE_WIDGETS_OVER_HEIGHT);
 Append(name_box,vgroup);
 Append(colour_box,vgroup);
 Append(new_select_box,vgroup);
 Append(msg_box,vgroup);

 Horizontal_Group hgroup = Create_button_group();
 Append(finish_button,hgroup);

 Append(hgroup,vgroup);
 Append(vgroup,panel);

 Show_widget(panel);
 Clear_console();

 Integer doit = 1;

 while(doit) {
 Integer id; Text cmd,msg;
 Integer ret = Wait_on_widgets(id,cmd,msg);

 switch(id) {
 case Get_id(panel): {
 if(cmd == "Panel Quit") doit = 0; // will end while loop
 break;
 }
 case Get_id(finish_button): {
 if(cmd == "finish_reply") doit = 0; // will end while loop
 break;
 }
 case Get_id(new_select_box): {
 Set_data(msg_box,"");
 if(cmd == "accept select") {
 Element string; Integer ierr,num_verts;
 ierr = Validate(new_select_box,string);
 if(ierr!= TRUE) {
 Set_data(msg_box,"Invalid pick.");
 break;
 }
 Text string_type,new_name; Integer new_colour;
12d Model Programming Language Training Notes Page 101

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language

// check string is a Super String
 Get_type(string,string_type);
 if(string_type!= "Super") {
 Set_data(msg_box,"not a Super String");
 continue;
 }
// check for errors in Name_Box
 Integer val_name_box = Validate(name_box,new_name);
 if(val_name_box == FALSE) {
 Set_data(msg_box,"error in new name");
 continue;
 }
// check for errors in Colour_Box
 Integer val_colour_box = Validate(colour_box,new_colour);
 if(val_colour_box == FALSE) {
 Set_data(msg_box,"error in new colour");
 continue;
 }
// modify the string
 if(val_name_box!= NO_NAME) Set_name(string,new_name);
 if(val_colour_box!= NO_NAME) {
 Set_colour(string,new_colour);
 Element_draw(string);
 }
 Set_data(msg_box,"changes made");
 }
 break;
 }
 }
 }
}

12d Model Programming Language Training Notes Page

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
19.0 Not Used

case Get_id(write_button): {
// check that the model exists for the name in the model box
Model model;

 if(Validate(model_box,GET_MODEL_ERROR,model)!= MODEL_EXISTS) break;

// check that the file does not model exist for the name in the file box
 Text result; File file; Integer validate_return;

 validate_return = Validate(file_box,GET_FILE_CREATE,result);

 if(validate_return == NO_FILE) { // file doesn't exist so can create it
 File_open(result,"w","ccs=UNICODE",file);
 ierr = write_out_model(model,file); // write out data
 Set_data(msg_box,"Data written out");
 } else if (validate_return == NO_FILE_ACCESS) {
 Set_data(msg_box,"Chose another file name");
 } else if (validate_return == NO_NAME){
 Set_data(msg_box,"No file name given");
 } else {
 Set_data(msg_box,"Give a file name");
 }
 break;
}

if the model does not exist
then an error message is
written to the message box

if the file exists you
are asked if you want to
replace it and if yes then
the fie is deleted and
NO_FILE is returned

if the file exists and you
say no to replacing it then
NO_FILE_ACCESS is
returned

if no file is given then
NO_NAME is returned
12d Model Programming Language Training Notes Page 103

12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

12d Model Programming Language
#include “set_ups.h”

void main()
{
 Panel panel = Create_panel("Test Panel");

 Message_Box msg_box = Create_message_box("");
 Button finish_button,write_button;

 write_button = Create_button("Write","write_reply");
 finish_button = Create_finish_button("Finish","finish_reply");

 Model_Box model_box = Create_model_box("Select model",
 msg_box,CHECK_MODEL_MUST_EXIST);

 Append(model_box,panel);
 Append(msg_box,panel);
 Append(write_button,panel);
 Append(finish_button,panel);

 Show_widget(panel);
 Error_prompt("Is there anything on the screen");
}

Message_Box appended first

Button appended second

Finish Button appended third

panel_3.4dm
12d Model Programming Language Training Notes Page

	12d Model Programming Language Manual
	1 Introduction
	1.1 The Mouse
	1.2 Compiling and Running a 12dPL Program

	2 Basic Language Structure
	2.1 Names
	2.2 Reserved Names
	2.3 White Space
	2.4 Comments
	2.5 Variables
	2.5.1 Variable Names
	2.5.2 Variable Declarations
	2.5.3 Variable Types
	2.5.3.1 Mathematical Variable Types
	Integer
	Integer64
	Real
	Text
	Vector2
	Vector3
	Vector4
	Matrix3
	Matrix4

	2.5.3.2 Geometric Construction Variable Types
	Point
	Line
	Arc
	Spiral (Transition)
	Parabola
	Segment

	2.5.3.3 12d Model Database Handles
	Element
	Model
	View
	Macro_Function or Function

	2.5.3.4 12d Internal Variable Types
	Uid
	Guid
	Attributes
	SDR_Attribute
	Blob
	Screen_text
	Textstyle_Data
	Equality_Label
	Undo
	Undo_List

	2.5.3.5 12d Model Interface Variable Types
	Widget
	Menu
	Panel
	Overlay_Widget
	Sheet_Panel
	Vertical_Group
	Horizontal_Group
	Widget_Pages
	Button
	Select_Button
	Angle_Box
	Attributes_Box
	Billboard_Box
	Bitmap_Fill_Box
	Bitmap_List_Box
	Chainage_Box
	Choice_Box
	Colour_Box
	Colour_Message_Box
	Date_Time_Box
	Directory_Box
	Draw_Box
	File_Box
	Function_Box
	Graph_Box
	GridCtrl_Box
	HyperLink_Box
	Input_Box
	Integer_Box
	Justify_Box
	Linestyle_Box
	List_Box
	ListCtrl_Box
	Map_File_Box
	Message_Box
	Model_Box
	Name_Box
	Named_Tick_Box
	New_Select_Box
	New_XYZ_Box
	Plotter_Box
	Polygon_Box
	Real_Box
	Report_Box
	Select_Box
	Select_Boxes
	Sheet_Size_Box
	Source_Box
	Symbol_Box
	Tab_Box
	Target_Box
	Template_Box
	Text_Edit_Box
	Text_Style_Box
	Texture_Box
	Tree_Box
	Tree_Page ??
	Tick_Box
	Tin_Box
	View_Box
	XYZ_Box

	2.5.3.6 File Interface Variable Types
	File
	Map_File
	Plot_Parameter_File
	XML_Document
	XML_Node

	2.5.3.7 ODBC Database Variable Types
	Connection
	Select_Query
	Insert_Query
	Update_Query
	Delete_Query
	Database_Results
	Transactions
	Parameter_Collection
	Query_Condition
	Manual_Condition

	2.5.3.8 Array Types
	Fixed Arrays
	Dynamic Arrays

	2.5.3.9 Summary of 12dPL Variable Types

	2.5.4 Constants
	2.5.4.1 Integer and 64bit Integer Constant
	2.5.4.2 Real Constant
	2.5.4.3 Text Constant

	2.6 Assignment and Operators
	2.6.1 Assignment
	2.6.2 Binary Arithmetic Operators
	2.6.3 Binary Arithmetic Operators for Vectors and Matrices
	2.6.4 Relational Operations
	2.6.5 Logical Operators
	2.6.6 Increment and Decrement Operators
	2.6.7 Bitwise Operators
	2.6.8 Assignment Operators

	2.7 Statements and Blocks
	2.8 Flow Control
	2.8.1 Logical Expressions
	2.8.2 12dPL Flow Controls
	2.8.3 if, else, else if
	2.8.4 Conditional Expression
	2.8.5 Switch
	2.8.6 While Loop
	2.8.7 For Loop
	2.8.8 Do While Loop
	2.8.9 Continue
	2.8.10 Break
	2.8.11 Goto and Labels

	2.9 Precedence of Operators
	2.10 Preprocessing

	3 Functions
	3.1 Functions
	3.2 Main Function
	3.3 User Defined Functions
	3.4 Return Statement
	3.5 Array Variables as Function Arguments
	3.6 Function Prototypes
	3.7 Automatic Promotions
	3.8 Passing by Value or by Reference
	3.9 Overloading of Function Names
	3.10 Recursion
	3.11 Assignments Within Function Arguments
	3.12 Blocks and Scopes

	4 Locks
	5 12dPL Library Calls
	5.1 Creating a List of Prototypes
	5.2 Function Argument Promotions
	5.2.1 Automatic Promotions

	5.3 Function Return Codes
	5.4 Command Line-Arguments
	Get_number_of_command_arguements()
	Get_command_argument(Integer i,Text &argument)

	5.5 Array Bound Checking
	5.6 Exit
	Exit(Integer exit_code)
	Exit(Text msg)
	Destroy_on_exit()
	Retain_on_exit()

	5.7 Angles
	5.7.1 Pi
	5.7.2 Types of Angles

	5.8 Text
	5.8.1 Text and Operators
	5.8.2 General Text
	Text_length(Text text)
	Numchr(Text text)
	Text_upper(Text text)
	Text_lower(Text text)
	Text_justify(Text text)
	Find_text(Text text,Text tofind)
	Get_subtext(Text text,Integer start,Integer end)
	Set_subtext(Text &text,Integer start,Text sub)
	Insert_text(Text &text,Integer start,Text sub)
	Any_escape_characters(Text text)
	Convert_escape_characters(Text text)

	5.8.3 Text Conversion
	From_text(Text text, Integer &value)
	From_text(Text text, Integer &value,Text format)
	From_text(Text text, Integer64 &value)
	From_text(Text text, Integer64 &value,Text format)
	From_text(Text text, Real &value)
	From_text(Text text, Real &value,Text format)
	From_text(Text text, Guid &value)
	From_text(Text text, Attribute_Blob &value)
	From_text(Text text,Text &value,Text format)
	From_text(Text text,Dynamic_Text &dtext)
	From_text(Text text,Integer delimiter,Integer separator,Dynamic_Text &text)
	To_text(Integer value)
	To_text(Integer value,Text format)
	To_text(Real value,Integer no_dec)
	To_text(Real value,Text format)
	To_text(Real value)
	To_text(Text text,Text format)
	To_text(Guid value)
	To_text(Attribute_Blob value)
	Get_char(Text t,Integer pos,Integer &c)
	Set_char(Text &t,Integer n,Integer c)
	To_text(Integer64 value)
	To_text(Integer64 value,Text format)

	5.9 Textstyle Data
	Null(Textstyle_Data textdata)
	Null(Textstyle_Data textdata,Integer mode)
	Set_data(Textstyle_Data textdata,Text text_data)
	Get_data(Textstyle_Data textstyle,Text &text_data)
	Set_textstyle(Textstyle_Data textdata,Text style)
	Get_textstyle(Textstyle_Data textdata,Text &style)
	Set_colour(Textstyle_Data textdata,Integer colour_num)
	Get_colour(Textstyle_Data textdata,Integer &colour_num)
	Set_text_type(Textstyle_Data textdata,Integer type)
	Get_text_type(Textstyle_Data textdata,Integer &type)
	Set_size(Textstyle_Data textdata,Real height)
	Get_size(Textstyle_Data textdata,Real &height)
	Set_offset(Textstyle_Data textdata,Real offset)
	Get_offset(Textstyle_Data textdata,Real &offset)
	Set_raise(Textstyle_Data textdata,Real raise)
	Get_raise(Textstyle_Data textdata,Real &raise)
	Set_justify(Textstyle_Data textdata,Integer justify)
	Get_justify(Textstyle_Data textdata,Integer &justify)
	Set_angle(Textstyle_Data textdata,Real angle)
	Get_angle(Textstyle_Data textdata,Real &angle)
	Set_angle2(Textstyle_Data textdata,Real angle2)
	Get_angle2(Textstyle_Data textdata,Real &angle2)
	Set_angle3(Textstyle_Data textdata,Real angle3)
	Get_angle3(Textstyle_Data textdata,Real &angle3)
	Set_slant(Textstyle_Data textdata,Real slant)
	Get_slant(Textstyle_Data textdata,Real &slant)
	Set_x_factor(Textstyle_Data textdata,Real xfactor)
	Get_x_factor(Textstyle_Data textdata,Real &xfactor)
	Set_name(Textstyle_Data textdata,Text name)
	Get_name(Textstyle_Data textdata,Text &name)
	Set_whiteout(Textstyle_Data textdata,Integer colour)
	Get_whiteout(Textstyle_Data textdata,Integer &colour)
	Set_border(Textstyle_Data textdata,Integer colour)
	Get_border(Textstyle_Data textdata,Integer &colour)
	Set_border_style(Textstyle_Data textdata,Integer border_style)
	Get_border_style(Textstyle_Data textdata,Integer &border_style)
	Set_ttf_underline(Textstyle_Data textdata,Integer underline)
	Get_ttf_underline(Textstyle_Data textdata,Integer &underline)
	Set_ttf_strikeout(Textstyle_Data textdata,Integer strikeout)
	Get_ttf_strikeout(Textstyle_Data textdata,Integer &strikeout)
	Set_ttf_italic(Textstyle_Data textdata,Integer italic)
	Get_ttf_italic(Textstyle_Data textdata,Integer &italic)
	Set_ttf_outline(Textstyle_Data textdata,Integer outline)
	Get_ttf_outline(Textstyle_Data textdata,Integer &outline)
	Set_ttf_weight(Textstyle_Data textdata,Integer weight)
	Get_ttf_weight(Textstyle_Data textdata,Integer &weight)

	5.10 Maths
	5.11 Random Numbers
	Set_random_number(Integer seed,Integer method)
	Get_random_number()
	Get_random_number_closed()
	Get_random_number_open()

	5.12 Vectors and Matrices
	Set_vector(Vector2 &vect,Real value)
	Set_vector(Vector3 &vect,Real value)
	Set_vector(Vector4 &vect,Real value)
	Set_vector(Vector2 &vect,Real x,Real y)
	Set_vector(Vector3 &vect,Real x,Real y,Real z)
	Set_vector(Vector4 &vect,Real x,Real y,Real z,Real w)
	Get_vector(Vector2 &vect,Real &x,Real &y)
	Get_vector(Vector3 &vect,Real &x,Real &y,Real &z)
	Get_vector(Vector4 &vect,Real &x,Real &y,Real &z,Real &w)
	Set_vector(Vector2 &vect,Integer index,Real value)
	Set_vector(Vector3 &vect,Integer index,Real value)
	Set_vector(Vector4 &vect,Integer index,Real value)
	Get_vector(Vector2 &vect,Integer index,Real &value)
	Get_vector(Vector3 &vect,Integer index,Real &value)
	Get_vector(Vector4 &vect,Integer index,Real &value)
	Get_vector(Vector2 &vect,Integer index)
	Get_vector(Vector3 &vect,Integer index)
	Get_vector(Vector4 &vect,Integer index)
	Get_vector_length(Vector2 &vect,Real &value)
	Get_vector_length(Vector3 &vect,Real &value)
	Get_vector_length(Vector4 &vect,Real &value)
	Get_vector_length(Vector2 &vect)
	Get_vector_length(Vector3 &vect)
	Get_vector_length(Vector4 &vect)
	Get_vector_length_squared(Vector2 &vect,Real &value)
	Get_vector_length_squared(Vector3 &vect,Real &value)
	Get_vector_length_squared(Vector4 &vect,Real &value)
	Get_vector_length_squared(Vector2 &vect)
	Get_vector_length_squared(Vector3 &vect)
	Get_vector_length_squared(Vector4 &vect)
	Get_vector_normalize(Vector2 &vect,Vector2 &normalised)
	Get_vector_normalize(Vector3 &vect,Vector3 &normalised)
	Get_vector_normalize(Vector4 &vect,Vector4 &normalised)
	Get_vector_normalize(Vector2 &vect)
	Get_vector_normalize(Vector3 &vect)
	Get_vector_normalize(Vector4 &vect)
	Get_vector_homogenize(Vector3 &vect,Vector3 &homogenized)
	Get_vector_homogenize(Vector4 &vect,Vector4 &homogenized)
	Get_vector_homogenize(Vector3 &vect)
	Get_vector_homogenize(Vector4 &vect)
	Set_matrix_zero(Matrix3 &matrix)
	Set_matrix_zero(Matrix4 &matrix)
	Set_matrix_identity(Matrix3 &matrix)
	Set_matrix_identity(Matrix4 &matrix)
	Set_matrix(Matrix3 &matrix,Real value)
	Set_matrix(Matrix4 &matrix,Real value)
	Set_matrix(Matrix3 &matrix,Integer row,Integer col,Real value)
	Set_matrix(Matrix4 &matrix,Integer row,Integer col,Real value)
	Get_matrix(Matrix3 &matrix,Integer row,Integer col,Real &value)
	Get_matrix(Matrix4 &matrix,Integer row,Integer col,Real &value)
	Get_matrix(Matrix3 &matrix,Integer row,Integer col)
	Get_matrix(Matrix4 &matrix,Integer row,Integer col)
	Set_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)
	Set_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
	Get_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)
	Get_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
	Get_matrix_row(Matrix3 &matrix,Integer row)
	Get_matrix_row(Matrix4 &matrix,Integer row)
	Get_matrix_transpose(Matrix3 &source,Matrix3 &target)
	Get_matrix_transpose(Matrix4 &source,Matrix4 &target)
	Get_matrix_transpose(Matrix3 &source)
	Get_matrix_transpose(Matrix4 &source)
	Get_matrix_inverse(Matrix3 &source,Matrix3 &target)
	Get_matrix_inverse(Matrix4 &source,Matrix4 &target)
	Get_matrix_inverse(Matrix3 &source)
	Get_matrix_inverse(Matrix4 &source)
	Swap_matrix_rows(Matrix3 &matrix,Integer row1,Integer row2)
	Swap_matrix_rows(Matrix4 &matrix,Integer row1,Integer row2)
	Swap_matrix_cols(Matrix3 &matrix,Integer col1,Integer col2)
	Swap_matrix_cols(Matrix4 &matrix,Integer col1,Integer col2)
	Get_translation_matrix(Vector2 &vect,Matrix3 &matrix)
	Get_translation_matrix(Vector3 &vect,Matrix4 &matrix)
	Get_translation_matrix(Vector2 &vect)
	Get_translation_matrix(Vector3 &vect)
	Get_rotation_matrix(Vector2 ¢re,Real angle,Matrix3 &matrix)
	Get_rotation_matrix(Vector3 &axis,Real angle,Matrix4 &matrix)
	Get_rotation_matrix(Vector2 ¢re,Real angle)
	Get_rotation_matrix(Vector3 &axis,Real angle)
	Get_scaling_matrix(Vector2 &scale,Matrix3 &matrix)
	Get_scaling_matrix(Vector3 &scale,Matrix4 &matrix)
	Get_scaling_matrix(Vector2 &scale)
	Get_scaling_matrix(Vector3 &scale)
	Get_perspective_matrix(Real d,Matrix4 &matrix)
	Get_perspective_matrix(Real d)

	5.13 Triangles
	Triangle_normal(Real xarray[],Real yarray[],Real zarray[],Real Normal[])
	Triangle_normal(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real &xn,Real &yn,Real &zn)
	Triangle_slope(Real xarray[],Real yarray[],Real zarray[],Real &slope)
	Triangle_slope(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real &slope)
	Triangle_aspect(Real xarray[],Real yarray[],Real zarray[],Real &aspect)
	Triangle_aspect(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real &aspect)

	5.14 System
	System(Text msg)
	Date(Text &date)
	Date(Integer &d,Integer &m,Integer &y)
	Time(Integer &time)
	Time(Real &time)
	Time(Text &time)
	Time(Integer &h,Integer &m,Real &sec)
	Convert_time(Integer t1,Text &t2)
	Convert_time(Text &t1,Integer t2)
	Convert_time(Integer t1,Text format,Text &t2)
	Get_macro_name()
	Recalc_chain_running()
	Create_macro(Text macro_name,Integer run_now)
	Get_user_name(Text &name)
	Get_host_id()
	Get_module_license(Text module_name)
	Getenv(Text env)
	Find_system_file(Text new_file_name,Text old_file_name,Text env)
	Get_4dmodel_version(Integer &major,Integer &minor,Text &patch)
	Is_practise_version()
	Create_process(Text program_name,Text command_line,Text start_directory, Integer flags,Integer wait,Integer inherit)
	Create_process(Text program_name,Text command_line,Text start_directory,Integer flags,Integer inherit,Unknown &handle)
	Process_exists(Unknown handle)
	Shell_execute(Widget widget,Text operation,Text file,Text parameters, Text directory,Integer showcmd)
	Get_display_resolution(Integer &width,Integer &height)
	Is_12d_exe_64bit()

	5.15 Ids, Uids and Guids
	Guid’s
	Id’s
	Uid
	5.15.1 Uid Arithmetic
	5.15.2 Uid Functions
	Get_next_uid()
	Get_next_id()
	Get_last_uid()
	Get_last_id()
	void Print(Uid uid)
	Convert_uid(Uid uid,Text &txt)
	Convert_uid(Uid uid,Integer &id)
	Convert_uid(Text txt,Uid &uid)
	Convert_uid(Integer id,Uid &uid)
	To_text(Uid uid)
	From_text(Text txt,Uid &uid)
	Null(Uid &uid)
	Is_null(Uid uid)
	Is_contour(Uid uid)
	Is_plot(Uid uid)
	Is_function(Uid uid)
	Function_exists(Integer id)
	Is_valid(Uid uid)
	Is_unknown(Uid uid)
	Is_global(Uid uid)
	Convert_guid(Guid guid,Text &txt)
	Convert_guid(Text txt,Guid &guid)
	void Print(Guid guid)
	Null(Guid &guid)
	Is_valid(Guid guid)
	Is_same(Guid guid1,Guid guid2)
	GUID_Gen(Integer format,Integer classic,Integer comment,Text &guid)
	GUID_Gen(Guid guid,Integer format,Integer comment,Text &guid_text)

	5.16 Input/Output
	5.16.1 Output Window
	Print(Text msg)
	Print(Integer value)
	Print(Integer64 value)
	Print(Real value)
	Print(Attribute_Blob value)
	Print()
	Clear_console()
	Show_console(Integer show)
	Is_console_visible()
	Is_console_floating()

	5.16.2 Clipboard
	Console_to_clipboard()
	Set_clipboard_text(Text txt)
	Get_clipboard_text(Text &txt)

	5.16.3 Files
	File_exists(Text file_name)
	File_open(Text file_name,Text mode,Text ccs_text,File &file)
	File_open(Text file_name,Text mode,File &file)
	File_read_line(File file,Text &text_in)
	File_write_line(File file,Text text_out)
	File_tell(File file,Integer &pos)
	File_seek(File file,Integer pos)
	File_flush(File file)
	File_rewind(File file)
	File_read(File file,Integer &value)
	File_write(File file,Integer value)
	File_read(File file,Real &value)
	File_write(File file,Real value)
	File_read_unicode(File file,Integer length,Text &value)
	File_write_unicode(File file,Integer length,Text value)
	File_read(File file,Integer length,Text &value)
	File_write(File file,Integer length,Text value)
	File_read(File file,Integer length,Integer array[])
	File_write(File file,Integer length,Integer array[])
	File_read(File file,Integer length,Real array[])
	File_write(File file,Integer length,Real array[])
	File_read_short(File file,Integer &value)
	File_write_short(File file,Integer value)
	File_read_short(File file,Real &value)
	File_write_short(File file,Real value)
	File_close(File file)
	File_delete(Text file_name)
	File_copy(Text new_name,Text old_name)
	File_set_endian(File file,Integer big)
	File_get_endian(File file,Integer &big)
	File_redirect(Text input_file_path,Integer read_write,Integer use_cache,Text &output_file_path)
	Read_PDF(Text pdf_file,Text output_12da)

	5.16.4 12d Ascii
	Read_4d_ascii(Text filename,Text prefix)
	Read_4d_ascii(Text filename,Dynamic_Element &list)
	5.16.4.1 MACRO_CALL_WRITE_FULL_TIN_4D
	Write_4d_ascii(Element elt,Text filename,Integer precision,Integer output_model_name)

	5.16.4.2 Write_Panel_Flags
	Write_4d_ascii(Element elt,Text filename,Integer precision,Integer output_model_name,Integer bool_flags,Real null_value)
	Write_4d_ascii(Dynamic_Element list,Text filename,Integer precision,Integer output_model_name)
	Write_4d_ascii(Dynamic_Element list,Text filename,Integer precision,Integer output_model_name,Integer bool_flags,Real null_value)
	Write_4d_ascii(Model model,Text filename,Integer precision,Integer output_model_name)
	Write_4d_ascii(Model model,Text filename,Integer precision,Integer output_model_name,Integer bool_flags,Real null_value)
	Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level)
	Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Integer bool_flags,Real null_value)
	Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Text header)
	Write_4d_ascii(Element elt,File file,Integer precision,Integer indent_level,Text header,Integer bool_flags,Real null_value)

	5.17 Menus
	Create_menu(Text menu_title)
	Menu_delete(Menu menu)
	Create_button(Menu menu,Text button_text,Text button_reply)
	Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply)
	Display_relative(Menu menu,Integer &across_rel,Integer &down_rel,Text &reply)

	5.18 Dynamic Arrays
	5.18.1 Dynamic Element Arrays
	Append(Dynamic_Element from_de,Dynamic_Element &to_de)
	Null(Dynamic_Element &delt)
	Get_number_of_items(Dynamic_Element &delt,Integer &no_items)
	Get_item(Dynamic_Element &delt,Integer i,Element &elt)
	Set_item(Dynamic_Element &delt,Integer i,Element elt)
	Null_item(Dynamic_Element &delt,Integer i)

	5.18.2 Dynamic Text Arrays
	Append(Text text,Dynamic_Text &dt)
	Append(Dynamic_Text from_dt,Dynamic_Text &to_dt)
	Null(Dynamic_Text &dt)
	Get_number_of_items(Dynamic_Text &dt,Integer &no_items)
	Get_item(Dynamic_Text &dt,Integer i,Text &text)
	Set_item(Dynamic_Text &dt,Integer i,Text text)
	Get_all_linestyles(Dynamic_Text &linestyles)
	Get_all_textstyles(Dynamic_Text &textstyles)
	Get_all_symbols(Dynamic_Text &symbols)
	Get_all_patterns(Dynamic_Text &patterns)

	5.18.3 Dynamic Real Arrays
	Append(Real value,Dynamic_Real &real_list)
	Append(Dynamic_Real from_dr,Dynamic_Real &to_dr)
	Null(Dynamic_Real &real_list)
	Get_number_of_items(Dynamic_Real &real_list,Integer &no_items)
	Set_item(Dynamic_Real &real_list,Integer i,Real value)
	Get_item(Dynamic_Real &real_list,Integer i,Real &value)

	5.18.4 Dynamic Integer Arrays
	Append(Integer value,Dynamic_Integer &integer_list)
	Append(Dynamic_Integer from_di,Dynamic_Integer &to_di)
	Null(Dynamic_Integer &integer_list)
	Get_number_of_items(Dynamic_Integer &integer_list,Integer &count)
	Set_item(Dynamic_Integer &integer_list,Integer i,Integer value)
	Get_item(Dynamic_Integer &integer_list,Integer i,Integer &value)

	5.19 Points
	Get_x(Point pt)
	Get_y(Point pt)
	Get_z(Point pt)
	Set_x(Point &pt,Real x)
	Set_y(Point &pt,Real y)
	Set_z(Point &pt,Real z)

	5.20 Lines
	Get_start(Line line)
	Get_end(Line line)
	Set_start(Line &line, Point pt)
	Set_end(Line &line, Point pt)
	Reverse(Line line)

	5.21 Arcs
	Get_centre(Arc arc)
	Get_radius(Arc arc)
	Get_start(Arc arc)
	Get_end(Arc arc)
	Set_centre(Arc &arc,Point pt)
	Set_radius(Arc &arc,Real rad)
	Set_start(Arc &arc,Point start)
	Set_end(Arc &arc,Point end)
	Reverse(Arc arc)

	5.22 Spirals and Transitions
	Set_type(Spiral spiral,Integer type)
	Set_leading(Spiral transition,Integer leading)
	Set_length(Spiral transition,Real length)
	Set_radius(Spiral trans,Real radius)
	Set_direction(Spiral trans,Real angle)
	Set_anchor(Spiral trans,Real point)
	Set_start_length(Spiral trans,Real start_length)
	Set_end_length(Spiral trans,Real length)
	Set_start_height(Spiral trans,Real height)
	Set_end_height(Spiral trans,Real height)
	Get_valid(Spiral trans)
	Get_type(Spiral trans)
	Get_leading(Spiral trans)
	Get_length(Spiral trans)
	Get_radius(Spiral trans)
	Get_direction(Spiral trans)
	Get_anchor(Spiral trans)
	Get_start_length(Spiral trans)
	Get_end_length(Spiral trans)
	Get_start_height(Spiral trans)
	Get_end_height(Spiral trans)
	Get_start_point(Spiral trans)
	Get_end_point(Spiral trans)
	Get_local_point(Spiral trans,Real len)
	Get_point(Spiral trans,Real len)
	Get_local_angle(Spiral trans,Real len)
	Get_angle(Spiral trans,Real len)
	Get_radius(Spiral trans,Real len)
	Get_shift_x(Spiral trans)
	Get_shift_y(Spiral trans)
	Get_shift(Spiral trans)
	Reverse(Spiral trans)

	5.23 Parabolas
	5.24 Segments
	Get_type(Segment segment)
	Get_point(Segment segment,Point &point)
	Get_line(Segment segment,Line &line)
	Get_arc(Segment segment,Arc &arc)
	Get_spiral(Segment segment,Spiral &trans)
	Get_start(Segment segment,Point &point)
	Get_end(Segment segment,Point &point)
	Set_point(Segment &segment,Point point)
	Set_line(Segment &segment,Line line)
	Set_arc(Segment &segment,Arc arc)
	Set_spiral(Segment &segment,Spiral trans)
	Get_curve(Segment segment,Curve &curve)
	Set_curve(Segment &segment,Curve curve)
	Set_start(Segment &segment,Point point)
	Set_end(Segment &segment,Point point)
	Reverse(Segment segment)
	Get_segments(Element elt,Integer &nsegs)
	Get_segment(Element elt,Integer i,Segment &seg)

	5.25 Curve
	Set_type(Curve curve,Integer type)
	Get_type(Curve curve)
	Set_leading(Curve curve,Integer leading)
	Get_leading(Curve curve)
	Set_start_length(Curve curve,Real length)
	Real Get_start_length(Curve curve)
	Set_end_length(Curve curve,Real length)
	Real Get_end_length(Curve curve)
	Set_direction(Curve curve,Real angle)
	Real Get_direction(Curve curve)
	Set_anchor(Curve curve,Point point)
	Point Get_anchor(Curve curve)
	Set_start_height(Curve curve,Real height)
	Set_end_height(Curve curve,Real height)
	Set_offset(Curve curve,Real offset)
	Real Get_offset(Curve curve)
	Get_valid(Curve curve)
	Point Get_start_point(Curve curve)
	Point Get_end_point(Curve curve)
	Point Get_point(Curve curve,Real l)
	Real Get_angle(Curve curve,Real l)
	Real Get_radius(Curve curve,Real l)
	Real Get_mvalue(Curve curve)
	Real Get_length(Curve curve)
	Real Get_end_length(Curve curve)
	Real Get_radius(Curve curve)
	Real Get_shift_x(Curve curve)
	Real Get_shift_y(Curve curve)
	Real Get_shift(Curve curve)
	Reverse(Curve curve)

	5.26 Segment Geometry
	5.26.1 Length and Area
	Get_length(Segment segment,Real &length)
	Get_length_3d(Segment segment,Real &length)
	Plan_area(Segment segment,Real &plan_area)

	5.26.2 Parallel
	Parallel(Line line,Real distance,Line ¶llelled)
	Parallel(Arc arc,Real distance,Arc ¶llelled)
	Parallel(Segment segment,Real dist,Segment ¶llelled)
	Fit Arcs (fillets)
	Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet)
	Fitarc(Segment seg_1,Segment seg_2,Real rad,Point cpt,Arc &fillet)
	Fitarc(Segment seg_1,Segment seg_2,Point start_tp,Arc &fillet)

	5.26.3 Tangents
	Tangent(Segment seg_1,Segment seg_2,Line &line)

	5.26.4 Intersections
	Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)
	Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)

	5.26.5 Offset Intersections
	Offset_intersect(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point &p1,Point &p2)
	Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point &p1,Point &p2)

	5.26.6 Angle Intersect
	Angle_intersect(Point pt_1,Real ang_1,Point pt_2, Real ang_2,Point &p)

	5.26.7 Distance
	Get_distance(Point p1,Point p2)
	Get_distance_3d(Point p1,Point p2)

	5.26.8 Locate Point
	Locate_point(Point from,Real ang,Real dist,Point &to)

	5.26.9 Drop Point
	Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt)
	Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt,Real &dist)

	5.26.10 Projection
	Projection(Segment segment,Real dist,Point &projected_pt)
	Projection(Segment segment,Point start_point, Real dist,Point &projected_pt)

	5.26.11 Change Of Angles
	Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real &angle)
	Change_of_angle(Line L1,Line L2,Real &angle)

	5.27 Colours
	Colour_exists(Text col_name)
	Colour_exists(Integer col_number)
	Convert_colour(Text col_name,Integer &col_number)
	Convert_colour(Integer col_number,Text &col_name)
	Convert_colour(Integer value,Integer &red,Integer &green,Integer &blue)
	Get_project_colours(Dynamic_Text &colours)

	5.28 User Defined Attributes
	Attribute_exists(Attributes attr,Text att_name)
	Attribute_exists(Attributes attr,Text name,Integer &no)
	Attribute_delete(Attributes attr,Text att_name)
	Attribute_delete(Attributes attr,Integer att_no)
	Attribute_delete_all(Attributes attr)
	Get_number_of_attributes(Attributes attr,Integer &no_atts)
	Get_attribute(Attributes attr,Text att_name,Text &att)
	Get_attribute(Attributes attr,Text att_name,Integer &att)
	Get_attribute(Attributes attr,Text att_name,Real &att)
	Get_attribute(Attributes attr,Text att_name,Uid &att)
	Get_attribute(Attributes attr,Text att_name,Attributes &att)
	Get_attribute(Attributes attr,Text att_name,Integer64 &att)
	Get_attribute(Attributes attr,Text att_name,Guid &att)
	Get_attribute(Attributes attr,Text att_name,Attribute_Blob &att)
	Get_attribute(Attributes attr,Integer att_no,Text &att)
	Get_attribute(Attributes attr,Integer att_no,Integer &att)
	Get_attribute(Attributes attr,Integer att_no,Real &att)
	Get_attribute(Attributes attr,Integer att_no,Uid &att)
	Get_attribute(Attributes attr,Integer att_no,Attributes &att)
	Get_attribute(Attributes attr,Integer att_no,Integer64 &att)
	Get_attribute(Attributes attr,Integer att_no,Guid &att)
	Get_attribute(Attributes attr,Integer att_no,Attribute_Blob &att)
	Get_attribute_name(Attributes attr,Integer att_no,Text &name)
	Get_attribute_type(Attributes attr,Text att_name,Integer &att_type)
	Get_attribute_type(Attributes attr,Integer att_num,Integer &att_type)
	Get_attribute_length(Attributes attr,Text att_name,Integer &att_len)
	Get_attribute_length(Attributes attr,Integer att_no,Integer &att_len)
	Set_attribute(Attributes attr,Text att_name,Text att)
	Set_attribute(Attributes attr,Text att_name,Integer att)
	Set_attribute(Attributes attr,Text att_name,Real att)
	Set_attribute(Attributes attr,Text att_name,Uid att)
	Set_attribute(Attributes attr,Text att_name,Attributes att)
	Set_attribute(Attributes attr,Text att_name,Integer64 att)
	Set_attribute(Attributes attr,Text att_name,Guid att)
	Set_attribute(Attributes attr,Text att_name,Attribute_Blob att)
	Set_attribute(Attributes attr,Integer att_no,Text att)
	Set_attribute(Attributes attr,Integer att_no,Integer att)
	Set_attribute(Attributes attr,Integer att_no,Real att)
	Set_attribute(Attributes attr,Integer att_no,Uid att)
	Set_attribute(Attributes attr,Integer att_no,Attributes att)
	Set_attribute(Attributes attr,Integer att_no,Integer64 att)
	Set_attribute(Attributes attr,Integer att_no,Guid att)
	Set_attribute(Attributes attr,Integer att_no,Attribute_Blob att)
	Attribute_debug(Attributes attr)
	Get_attribute_by_type(Attributes attr,Text att_name,Text &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Integer &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Real &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Uid &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Attributes &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Integer64 &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Guid &att)
	Get_attribute_by_type(Attributes attr,Text att_name,Attribute_Blob &att)
	Set_attribute_by_type(Attributes attr,Text att_name,Text att)
	Set_attribute_by_type(Attributes attr,Text att_name,Integer att)
	Set_attribute_by_type(Attributes attr,Text att_name,Real att)
	Set_attribute_by_type(Attributes attr,Text att_name,Uid att)
	Set_attribute_by_type(Attributes attr,Text att_name,Attributes att)
	Set_attribute_by_type(Attributes attr,Text att_name,Integer64 att)
	Set_attribute_by_type(Attributes attr,Text att_name,Guid att)
	Set_attribute_by_type(Attributes attr,Text att_name,Attribute_Blob att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Text att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Integer att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Real att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Uid att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Attributes att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Attribute_Blob att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Integer64 att)
	Insert_attribute_at_position(Attributes attr,Text att_name,Integer position,Guid att)

	5.29 Folders
	Directory_exists(Text folder_name)
	Get_file_size(Text file_name,Integer &size)
	Get_file_encoding(Text file_name,Integer &encode)
	Directory_create(Text folder_name)
	Directory_create_recursive(Text folder_name)
	Directory_delete(Text folder_name)
	Directory_delete_recursive(Text folder_name)

	5.30 12d Model Program and Folders
	Get_program_version_number()
	Get_program_major_version_number()
	Get_program_minor_version_number()
	Get_program_folder_version_number()
	Get_program_build_number()
	Get_program_special_build_name()
	Get_program_patch_version_name()
	Get_program_full_title_name()
	Get_program()
	Get_program_name()
	Get_program_folder()
	Get_program_parent_folder()
	Get_project_folder(Text &name)
	Get_temporary_directory(Text &folder_name)
	Get_temporary_12d_directory(Text &folder_name)
	Get_temporary_project_directory(Text &folder_name)

	5.31 Control bar
	Set_cad_controlbar(Text name,Model model,Integer colour,Real z,Text linestyle,Real weight,Integer tinable)
	Get_cad_controlbar(Text &name,Model &model,Integer &colour,Real &z,Text &linestyle,Real &weight,Integer &tinable)
	Set_text_controlbar(Text textstyle_name,Real size)
	Get_text_controlbar(Text &textstyle_name,Real &size)
	Set_text_controlbar(Textstyle_Data textstyle_data)
	Get_text_controlbar(Textstyle_Data &textstyle_data)
	Set_symbol_controlbar(Text symbol_name,Real size)
	Get_symbol_controlbar(Text &symbol_name,Real &size)
	Set_symbol_controlbar(Integer use_flag,Text symbol_name,Integer colour,Real size,Real offset,Real raise,Real angle)
	Get_symbol_controlbar(Integer &use_flag,Text &symbol_name,Integer &colour,Real &size,Real &offset,Real &raise,Real &angle)
	Set_pipe_controlbar(Integer shape,Integer justify,Real size1,Real size2)
	Get_pipe_controlbar(Integer &shape,Integer &justify,Real &size1,Real &size2)
	Set_attributes_controlbar(Attributes att)
	Get_attributes_controlbar(Attributes &att)

	5.32 Project
	Get_project_name(Text &name)
	Project_save()
	Program_exit(Integer ignore_save)
	Get_project_functions(Dynamic_Text &function_names)
	Sleep(Integer milli)
	Set_project_attributes(Attributes att)
	Get_project_attributes(Attributes &att)
	Get_project_attribute(Text att_name,Uid &att)
	Get_project_attribute(Text att_name,Attributes &att)
	Get_project_attribute(Integer att_no,Uid &uid)
	Get_project_attribute(Integer att_no,Attributes &att)
	Set_project_attribute(Text att_name,Uid uid)
	Set_project_attribute(Text att_name,Attributes att)
	Set_project_attribute(Integer att_no,Uid uid)
	Set_project_attribute(Integer att_no,Attributes att)
	Project_attribute_exists(Text att_name)
	Project_attribute_exists(Text name,Integer &no)
	Project_attribute_delete(Text att_name)
	Project_attribute_delete(Integer att_no)
	Project_attribute_delete_all(Element elt)
	Project_attribute_dump()
	Project_attribute_debug()
	Get_project_number_of_attributes(Integer &no_atts)
	Get_project_attribute_name(Integer att_no,Text &name)
	Get_project_attribute_length(Integer att_no,Integer &att_len)
	Get_project_attribute_length(Text att_name,Integer &att_len)
	Get_project_attribute_type(Text att_name,Integer &att_type)
	Get_project_attribute_type(Integer att_no,Integer &att_type)
	Get_project_attribute(Text att_name,Real &att)
	Set_project_attribute(Text att_name,Real att)
	Get_project_attribute(Text att_name,Integer &att)
	Set_project_attribute(Text att_name,Integer att)
	Get_project_attribute(Integer att_no,Text &att)
	Set_project_attribute(Integer att_no,Text att)
	Get_project_attribute(Integer att_no,Integer &att)
	Set_project_attribute(Integer att_no,Integer att)
	Get_project_attribute(Integer att_no,Real &att)
	Set_project_attribute(Integer att_no,Real att)
	Get_project_attribute(Text att_name,Text &att)
	Set_project_attribute(Text att_name,Text att)
	Project_attribute_delete_all()

	5.33 Models
	Create_model(Text model_name)
	Get_model_create(Text model_name)
	Get_number_of_items(Model model,Integer &num)
	Get_elements(Model model,Dynamic_Element &de,Integer &total_no)
	Model_exists(Text model_name)
	Model_exists(Model model)
	Get_project_models(Dynamic_Text &model_names)
	Get_model(Text model_name)
	Get_name(Model model,Text &model_name)
	Get_time_created(Model model,Integer &time)
	Get_time_updated(Model model,Integer &time)
	Set_time_updated(Model model,Integer time)
	Get_id(Model model,Uid &id)
	Get_id(Model model,Integer &id)
	Get_model(Uid model_id,Model &model)
	Get_model(Integer model_id,Model &model)
	Get_element(Uid model_id,Uid element_id,Element &elt)
	Get_element(Integer model_id,Integer element_id,Element &elt)
	Get_extent_x(Model model,Real &xmin,Real &xmax)
	Get_extent_y(Model model,Real &ymin,Real &ymax)
	Get_extent_z(Model model,Real &zmin,Real &zmax)
	Calc_extent(Model model)
	Model_duplicate(Model model,Text dup_name)
	Model_rename(Text original_name,Text new_name)
	Model_draw(Model model)
	Model_draw(Model model,Integer col_num)
	Null(Model model)
	Model_delete(Model model)
	Model_clean(Model model,Integer raster_mode)
	Get_model_attributes(Model model,Attributes &att)
	Set_model_attributes(Model model,Attributes att)
	Get_model_attribute(Model model,Text att_name,Uid &uid)
	Get_model_attribute(Model model,Text att_name,Attributes &att)
	Get_model_attribute(Model model,Integer att_no,Uid &uid)
	Get_model_attribute(Model model,Integer att_no,Attributes &att)
	Set_model_attribute(Model model,Text att_name,Uid att)
	Set_model_attribute(Model model,Text att_name,Attributes att)
	Set_model_attribute(Model model,Integer att_no,Uid uid)
	Set_model_attribute(Model model,Integer att_no,Attributes att)
	Model_attribute_exists(Model model,Text att_name)
	Model_attribute_exists(Model model,Text name,Integer &no)
	Model_attribute_delete(Model model,Text att_name)
	Model_attribute_delete(Model model,Integer att_no)
	Model_attribute_delete_all(Model model,Element elt)
	Model_attribute_dump(Model model)
	Model_attribute_debug(Model model)
	Get_model_attribute(Model model,Text att_name,Text &att)
	Get_model_attribute(Model model,Text att_name,Integer &att)
	Get_model_attribute(Model model,Text att_name,Real &att)
	Get_model_attribute(Model model,Integer att_no,Text &att)
	Get_model_attribute(Model model,Integer att_no,Integer &att)
	Get_model_attribute(Model model,Integer att_no,Real &att)
	Set_model_attribute(Model model,Integer att_no,Real att)
	Set_model_attribute(Model model,Integer att_no,Integer att)
	Set_model_attribute(Model model,Integer att_no,Text att)
	Set_model_attribute(Model model,Text att_name,Real att)
	Set_model_attribute(Model model,Text att_name,Integer att)
	Set_model_attribute(Model model,Text att_name,Text att)
	Get_model_attribute_name(Model model,Integer att_no,Text &name)
	Get_model_attribute_type(Model model,Text att_name,Integer &att_type)
	Get_model_attribute_type(Model model,Integer att_name,Integer &att_type)
	Get_model_attribute_length(Model model,Text att_name,Integer &att_len)
	Get_model_attribute_length(Model model,Integer att_no,Integer &att_len)
	Get_model_number_of_attributes(Model model,Integer &no_atts)

	5.34 Views
	View_exists(Text view_name)
	View_exists(View view)
	Get_name(View view,Text &view_name)
	Null(View view)
	Get_project_views(Dynamic_Text &view_names)
	Get_view(Text view_name)
	Get_type(View view,Text &type)
	Get_type(View view,Integer &view_num)
	Model_get_views(Model model,Dynamic_Text &view_names)
	View_get_models(View view,Dynamic_Text &model_names)
	View_add_model(View view,Model model)
	View_remove_model(View view,Model model)
	View_redraw(View view)
	View_fit(View view)
	Section_view_profile(View view,Element string,Integer fit_view)
	View_get_size(View view,Integer &width,Integer &height)
	View_get_draw_area_size(Integer &width,Integer &height)
	View_set_draw_area_size(Integer width,Integer height)
	View_set_draw_area_size(View view,Integer width,Integer height)
	View_get_draw_area_size(View view,Integer &width,Integer &height)
	Calc_extent(View view)
	View_maximize(View v)
	View_minimize(View v)
	View_restore(View v)
	View_delete(View v)
	View_clone(View v,Text clone_name)
	View_create(Integer type,Text name,Integer left,Integer top,Integer width,Integer height,Integer engine_type)
	View_move_resize(View v,Integer left,Integer top,Integer width,Integer height)
	Plan_view_set_rotation(View v,Real rotation_angle)
	Plan_view_get_rotation(View v,Real &rotation_angle)
	View_set_name(View v,Text name)
	View_get_background_colour(View v,Integer &colour)
	View_set_background_colour(View v,Integer colour)
	Plan_view_set_plot_scale(View v,Real scale)
	Plan_view_get_plot_scale(View v,Real &scale)
	View_get_grid_settings(View v,Integer &draw_mode,Integer &text_x_mode,Integer &text_y_mode,Integer &grid_mode,Real &space_x,Real &space_y,Real &level,Integer &colour,Real &text_height,Real &text_plot_height,Integer &text_clour,Integer &cross_mode,Rea...
	View_set_grid_settings(View v,Integer draw_mode,Integer text_x_mode,Integer text_y_mode,Integer grid_mode,Real space_x,Real space_y,Real level,Integer colour,Real text_height,Real text_plot_height,Integer text_colour,Integer cross_mode,Real cross_siz...
	View_set_engine_type(View v,Integer engine_type)
	View_get_engine_type(View v,Integer &engine_type)
	View_set_attribute(View view,Text attribute_name,Integer value,Integer &internal_return)
	View_set_attribute(View view,Text attribute_name,Real value,Integer &internal_return)
	View_set_attribute(View view,Text attribute_name,Text value,Integer &internal_return)
	View_set_attribute(View view,Text model_name,Text attribute_name,Integer value,Integer &internal_return)
	View_set_attribute(View view,Text model_name,Text attribute_name,Real value,Integer &internal_return)
	View_set_attribute(View view,Text model_name,Text attribute_name,Text value,Integer &internal_return)
	View_get_attribute(View view,Text attribute_name,Integer &value,Integer &internal_return)
	View_get_attribute(View view,Text attribute_name,Real &value,Integer &internal_return)
	View_get_attribute(View view,Text attribute_name,Text &value,Integer &internal_return)
	View_get_attribute(View view,Text model_name,Text attribute_name,Integer &value,Integer &internal_return)
	View_get_attribute(View view,Text model_name,Text attribute_name,Real &value,Integer &internal_return)
	View_get_attribute(View view,Text model_name,Text attribute_name,Text &value,Integer &internal_return)
	View_remove_attribute(View view,Text attribute_name)
	View_remove_attribute(View view,Text model_name,Text attribute_name)
	View_remove_draw_data_textstyle(View view,Text model_name,Text prefix,Integer &internal_return)
	View_remove_plot_data_textstyle(View view,Text model_name,Text prefix,Integer &internal_return)
	View_get_draw_data_textstyle_merge(View view,Text model_name,Text prefix,Textstyle_Data &d,Integer &internal_return)
	View_remove_plot_data_textstyle(View view,Text model_name,Text prefix,Integer &internal_return)
	View_get_draw_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data &d,Integer &internal_return)
	View_get_plot_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data &d,Integer &internal_return)
	View_set_draw_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data d,Integer &internal_return)
	View_set_plot_data_textstyle(View view,Text model_name,Text prefix,Textstyle_Data d,Integer &internal_return)
	View_apply_favourite(View v,Text file_name,Text &return_message)
	View_apply_position(View v,Text file_name,Text &return_message)
	View_write_favourite_file(View v,Text favourite_name,Integer add_file_extension)
	View_write_position_file(View v,Text position_name,Integer add_file_extension)
	View_favourite_file_exists(View v,Text favourite_name,Integer &exists)
	View_position_file_exists(View v,Text position_name,Integer &exists)
	Get_last_view(Text &view_name)
	Section_view_regenerate(View section_view,Integer fit)
	Get_section_profile_string(View section_view,Element &profile_string)

	5.35 Elements
	5.35.1 Types of Elements
	5.35.2 Parts of 12d Elements
	5.35.2.1 Element Header Functions
	Element_exists(Element elt)
	Get_points(Element elt,Integer &num_verts)
	Get_data(Element elt,Integer i,Real &x,Real &y,Real &z)
	Set_name(Element elt,Text elt_name)
	Get_name(Element elt,Text &elt_name)
	Set_colour(Element elt,Integer colour)
	Get_colour(Element elt,Integer &colour)
	Set_model(Element elt,Model model)
	Set_model(Dynamic_Element de,Model model)
	Get_model(Element elt,Model &model)
	Set_breakline(Element elt,Integer break_type)
	Get_breakline(Element elt,Integer &break_type)
	Get_type(Element elt,Text &elt_type)
	Get_type(Element elt,Integer &elt_type)
	Set_style(Element elt,Text elt_style)
	Get_style(Element elt,Text &elt_style)
	Set_weight(Element elt,Real weight)
	Get_weight(Element elt,Real &weight)
	Set_chainage(Element elt,Real start_chain)
	Get_chainage(Element elt,Real &start_chain)
	Get_end_chainage(Element elt,Real &chainage)
	Get_id(Element elt,Uid &uid)
	Get_id(Element elt,Integer &id)
	Get_time_created(Element elt,Integer &time)
	Get_time_updated(Element elt,Integer &time)
	Set_time_updated(Element elt,Integer time)
	Integer Null(Element elt)
	Get_extent_x(Element elt,Real &xmin,Real &xmax)
	Get_extent_y(Element elt,Real &ymin,Real &ymax)
	Get_extent_z(Element elt,Real &zmin,Real &zmax)
	Calc_extent(Element elt)
	Element_duplicate(Element elt,Element &dup_elt)
	Element_delete(Element elt)

	5.35.2.2 Element Attributes Functions
	Get_attributes(Element elt,Attributes &att)
	Set_attributes(Element elt,Attributes att)
	Get_attribute(Element elt,Text att_name,Uid &uid)
	Get_attribute(Element elt,Text att_name,Attributes &att)
	Get_attribute(Element elt,Integer att_no,Uid &uid)
	Get_attribute(Element elt,Integer att_no,Attributes &att)
	Set_attribute(Element elt,Text att_name,Uid uid)
	Set_attribute(Element elt,Text att_name,Attributes att)
	Set_attribute(Element elt,Integer att_no,Uid uid)
	Set_attribute(Element elt,Integer att_no,Attributes att)
	Attribute_exists(Element elt,Text att_name)
	Attribute_exists(Element elt,Text att_name,Integer &att_no)
	Attribute_delete(Element elt,Text att_name)
	Attribute_delete(Element elt,Integer att_no)
	Attribute_delete_all(Element elt)
	Get_number_of_attributes(Element elt,Integer &no_atts)
	Get_attribute(Element elt,Text att_name,Text &att)
	Get_attribute(Element elt,Text att_name,Integer &att)
	Get_attribute(Element elt,Text att_name,Real &att)
	Get_attribute(Element elt,Integer att_no,Text &att)
	Get_attribute(Element elt,Integer att_no,Integer &att)
	Get_attribute(Element elt,Integer att_no,Real &att)
	Get_attribute_name(Element elt,Integer att_no,Text &name)
	Get_attribute_type(Element elt,Text att_name,Integer &att_type)
	Get_attribute_type(Element elt,Integer att_no,Integer &att_type)
	Get_attribute_length(Element elt,Text att_name,Integer &att_len)
	Get_attribute_length(Element elt,Integer att_no,Integer &att_len)
	Set_attribute(Element elt,Text att_name,Text att)
	Set_attribute(Element elt,Text att_name,Integer att)
	Set_attribute(Element elt,Text att_name,Real att)
	Set_attribute(Element elt,Integer att_no,Text att)
	Set_attribute(Element elt,Integer att_no,Integer att)
	Set_attribute(Element elt,Integer att_no,Real att)
	Attribute_dump(Element elt)
	Attribute_debug(Element elt)

	5.36 Tin Element
	5.36.1 Triangulate Data
	Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer preserve,Integer bubbles,Tin &tin)
	Triangulate(Dynamic_Text list,Text tin_name,Integer colour,Integer preserve,Integer bubbles,Tin &tin)

	5.36.2 Tin Functions
	Tin_exists(Text tin_name)
	Tin_exists(Tin tin)
	Get_project_tins(Dynamic_Text &tins)
	Get_tin(Text tin_name)
	Get_tin(Element elt)
	Get_name(Tin tin,Text &tin_name)
	Tin_models(Tin tin, Dynamic_Text &models_used)
	Get_time_created(Tin tin,Integer &time)
	Get_time_updated(Tin tin,Integer &time)
	Set_time_updated(Tin tin,Integer time)
	Tin_number_of_points(Tin tin,Integer ¬ri)
	Tin_number_of_triangles(Tin tin,Integer ¬ri)
	Tin_number_of_duplicate_points(Tin tin,Integer ¬ri)
	Tin_number_of_items(Tin tin,Integer &num_items)
	Tin_colour(Tin tin,Real x,Real y,Integer &colour)
	Tin_height(Tin tin,Real x,Real y,Real &height)
	Tin_slope(Tin tin,Real x,Real y,Real &slope)
	Tin_aspect(Tin tin,Real x,Real y,Real &aspect)
	Tin_duplicate(Tin tin,Text dup_name)
	Tin_rename(Text original_name,Text new_name)
	Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de)
	Tin_delete(Tin tin)
	Tin_get_point(Tin tin,Integer np,Real &x,Real &y,Real &z)
	Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3)
	Tin_get_triangle_neighbours(Tin tin,Integer nt,Integer &n1,Integer &n2, Integer &n3)
	Tin_get_point_from_point(Tin tin,Real x,Real y,Integer &np)
	Tin_get_triangles_about_point(Tin tin,Integer n,Integer &no_triangles)
	Tin_get_triangles_about_point(Tin tin,Integer n,Integer max_triangles,Integer &no_triangles,Integer triangles[],Integer points[],Integer status[])
	Tin_get_triangle_inside(Tin tin,Integer triangle,Integer &Inside)
	Tin_get_triangle(Tin tin,Integer triangle,Integer &p1,Integer &p2,Integer &p3,Integer &n1,Integer &n2,Integer &n3,Real &x1,Real &y1,Real &z1,Real &x2,Real &y2,Real &z2,Real &x3,Real &y3,Real &z3)
	Tin_get_triangle_from_point(Tin tin,Real x,Real y,Integer &triangle)
	Draw_triangle(Tin tin,Integer tri,Integer c)
	Draw_triangles_about_point(Tin tin,Integer pt,Integer c)
	Triangles_clip(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real x4,Real y4,Real z4,Real x5,Real y5,Real z5,Real x6,Real y6,Real z6, Integer &npts_out,Real xarray_out[],Real yarray_out[],Real zarray_out[])
	Retriangulate(Tin tin)
	Breakline(Tin tin,Integer p1,Integer p2)
	Flip_triangles(Tin tin,Integer t1,Integer t2)
	Set_height(Tin tin,Integer pt,Real ht)
	Tin_drop_point_3d(Tin tin,Real px,Real py,Real pz,Real &dx,Real &dy,Real &dz,Real &distance,Integer &above_tin,Integer &triangle,Integer &status)
	Supertin_number_of_tins(Tin supertin,Integer &ntins)
	Supertin_get_tin(Tin supertin,Integer pos,Text &name,Integer &mode,Integer &active)

	5.36.3 Null Triangles
	Null(Tin tin)
	Null_triangles(Tin tin,Element poly,Integer mode)
	Reset_null_triangles(Tin tin,Element poly,Integer mode)
	Reset_null_triangles(Tin tin)
	Null_by_angle_length(Tin tin,Real l1,Real a1,Real l2,Real a2)
	Tin_null_by_colour(Tin tin, Integer colour, Integer is_colour, Integer is_null)
	Tin_null_by_colours(Tin tin, Dynamic_Integer colours, Integer in_colours_list, Integer is_null)

	5.36.4 Colour Triangles
	Tin_get_triangle_colour(Tin tin,Integer triangle,Integer &colour)
	Colour_triangles(Tin tin,Integer col_num,Element poly,Integer mode)
	Colour_triangle(Tin tin,Integer triangle_number,Integer colour)
	Colour_triangle(Tin tin,Dynamic_Integer triangle_numbers,Integer colour)
	Reset_colour_triangles(Tin tin,Element poly,Integer mode)
	Reset_colour_triangles(Tin tin)

	5.37 Super String Element
	5.37.1 Super String Dimensions
	5.37.1.1 Dimension Combinations and Super String Flags

	5.37.2 Basic Super String Functions
	5.37.2.1 Super String Create Functions
	Create_super(Integer flag1,Integer num_pts)
	Create_super(Integer flag1,Integer flag2,Integer npts)
	Create_super(Integer num_pts,Element seed)
	Create_super(Integer flag1,Segment seg)
	Create_super(Integer flag1,Integer flag2,Segment seg)
	Create_super(Integer flag1,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_pts)
	Create_super(Integer flag1,Integer flag2,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_pts)

	5.37.2.2 Inserting and Deleting Vertices
	Super_insert_vertex(Element super,Integer where,Integer count)
	Super_remove_vertex(Element super,Integer where,Integer count)

	5.37.2.3 Loading and Retrieving X, Y, Z, Radius and Bulge Data
	Set_super_vertex_coord(Element super,Integer i,Real x,Real y,Real z)
	Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)
	Set_super_data(Element super,Integer i,Real x,Real y,Real z,Real r,Integer b)
	Get_super_data(Element super,Integer i,Real &x,Real &y,Real &z,Real &r, Integer &b)
	Set_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[], Integer num_pts)
	Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer max_pts,Integer &num_pts)
	Set_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_pts,Integer start_pt)
	Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer b[], Integer max_pts,Integer &num_pts,Integer start_pt)

	5.37.2.4 Getting Forward and Backward Vertex Direction
	Get_super_vertex_forward_direction(Element super,Integer vert,Real &ang)
	Get_super_vertex_backward_direction(Element super,Integer vert,Real &ang)

	5.37.2.5 Getting Super String Type and Type Like
	Get_type_like(Element super,Integer &type)
	Get_type_like(Element elt,Text &type)

	5.37.3 Super String Height Functions
	5.37.3.1 Super String Use Height Functions
	Set_super_use_2d_level(Element super,Integer use)
	Get_super_use_2d_level(Element super,Integer &use)
	Set_super_use_3d_level(Element super,Integer use)
	Get_super_use_3d_level(Element super,Integer &use)
	Super_vertex_level_value_to_array(Element super)

	5.37.3.2 Setting Super String Height Values
	Get_super_2d_level(Element elt,Real &level)
	Set_super_2d_level(Element elt,Real level)

	5.37.4 Super String Tinability Functions
	5.37.4.1 Super String Combined Tinability
	Set_super_use_tinability(Element super,Integer use)
	Get_super_use_tinability(Element super,Integer &use)

	5.37.4.2 Super String Vertex Tinability
	Set_super_use_vertex_tinability_value(Element super,Integer use)
	Get_super_use_vertex_tinability_value(Element super,Integer &use)
	Set_super_use_vertex_tinability_array(Element super,Integer use)
	Get_super_use_vertex_tinability_array(Element super,Integer &use)
	Set_super_vertex_tinability(Element super,Integer vert,Integer tinability)
	Get_super_vertex_tinability(Element super,Integer vert,Integer &tinability)

	5.37.4.3 Super String Segment Tinability
	Set_super_use_segment_tinability_value(Element super,Integer use)
	Get_super_use_segment_tinability_value(Element super,Integer &use)
	Set_super_use_segment_tinability_array(Element super,Integer use)
	Get_super_use_segment_tinability_array(Element super,Integer &use)
	Set_super_segment_tinability(Element super,Integer seg,Integer tinability)
	Get_super_segment_tinability(Element super,Integer seg,Integer &tinability)

	5.37.5 Super String Segment Radius Functions
	Set_super_use_segment_radius(Element super,Integer use)
	Get_super_use_segment_radius(Element super,Integer &use)
	Set_super_segment_radius(Element super,Integer seg,Real rad)
	Get_super_segment_radius(Element super,Integer seg,Real &rad)
	Set_super_segment_major(Element super,Integer seg,Integer bulge)
	Get_super_segment_major(Element super,Integer seg,Integer &bulge)

	5.37.6 Super String Segment Linestyle Functions
	Set_super_use_segment_linestyle(Element super,Integer use)
	Get_super_use_segment_linestyle(Element super,Integer &use)
	Set_super_segment_linestyle(Element super,Integer seg,Text linestyle_name)
	Get_super_segment_linestyle(Element super,Integer seg,Text &linestyle_name)

	5.37.7 Super String Point Id Functions
	Set_super_use_vertex_point_number(Element super,Integer use)
	Get_super_use_vertex_point_number(Element super,Integer &use)
	Set_super_vertex_point_number(Element super,Integer vert,Integer point_number)
	Get_super_vertex_point_number(Element super,Integer vert,Integer &point_number)
	Set_super_vertex_point_number(Element super,Integer vert,Text point_id
	Get_super_vertex_point_number(Element super,Integer vert,Text &point_id)

	5.37.8 Super String Vertex Symbol Functions
	5.37.8.1 Definitions of Super String Vertex Symbol Dimensions and Parameters
	5.37.8.2 Super String Use Vertex Symbol Functions
	Set_super_use_symbol(Element super,Integer use)
	Get_super_use_symbol(Element super,Integer &use)
	Set_super_use_vertex_symbol(Element super,Integer use)
	Get_super_use_vertex_symbol(Element super,Integer &use)
	Super_vertex_symbol_value_to_array(Element super)

	5.37.8.3 Setting Super String Vertex Symbol Parameters
	Set_super_vertex_symbol_style(Element super,Integer vert,Text sym)
	Get_super_vertex_symbol_style(Element super,Integer vert,Text &sym)
	Set_super_vertex_symbol_colour(Element super,Integer vert,Integer col)
	Get_super_vertex_symbol_colour(Element super,Integer vert,Integer &col)
	Set_super_vertex_symbol_offset_width(Element super,Integer vert,Real x_offset)
	Get_super_vertex_symbol_offset_width(Element super,Integer vert,Real &x_offset)
	Set_super_vertex_symbol_offset_height(Element super,Integer vert,Real y_offset)
	Get_super_vertex_symbol_offset_height(Element super,Integer vert,Real &y_offset)
	Set_super_vertex_symbol_rotation(Element super,Integer vert,Real ang)
	Get_super_vertex_symbol_rotation(Element super,Integer vert,Real &angle)
	Set_super_vertex_symbol_size(Element super,Integer vert,Real sz)
	Get_super_vertex_symbol_size(Element super,Integer vert,Real &sz)

	5.37.9 Super String Pipe/Culvert Functions
	5.37.9.1 Definitions of Super String Pipe and Culvert Dimensions and Parameters
	5.37.9.2 Super String Use Pipe Functions
	Set_super_use_pipe(Element elt,Integer use) for V10 onwards
	Set_super_use_diameter(Element elt,Integer use) for V9
	Get_super_use_pipe(Element elt,Integer &use) for V10 onwards
	Get_super_use_diameter(Element elt,Integer &use) for V9
	Set_super_use_segment_pipe(Element elt,Integer use) for V10 onwards
	Set_super_use_segment_diameter(Element elt,Integer use) for V9
	Get_super_use_segment_pipe(Element elt,Integer &use) for V10 onward
	Get_super_use_segment_diameter(Element elt,Integer &use) for V9
	Set_super_use_culvert(Element super,Integer use)
	Get_super_use_culvert(Element super,Integer &use)
	Set_super_use_segment_culvert(Element super,Integer use)
	Get_super_use_segment_culvert(Element super,Integer &use)
	Set_super_use_pipe_justify(Element super,Integer use)
	Get_super_use_pipe_justify(Element super,Integer &use)

	5.37.9.3 Setting Super String Pipe/Culvert Parameters
	Integer Set_super_pipe_justify(Element super,Integer justify)
	Get_super_pipe_justify(Element super,Integer &justify)
	Set_super_pipe(Element super,Real diameter,Real thickness,Integer internal_diameter)
	Get_super_pipe(Element super,Real &diameter,Real thickness,Integer internal_diameter)
	Set_super_segment_pipe(Element super,Integer seg,Real diameter, Real thickness,Integer internal_diameter)
	Get_super_segment_pipe(Element super,Integer seg,Real &diameter, Real &thickness,Integer &internal_diameter)
	Set_super_culvert(Element super,Real width,Real height,Real left_thickness,Real right_thickness,Real top_thickness,Real bottom_thickness, Integer internal_width_height)
	Get_super_culvert(Element super,Real &width,Real &height,Real &left_thickness,Real &right_thickness,Real &top_thickness, Real &bottom_thickness,Integer &internal_width_height)
	Set_super_segment_culvert(Element super,Integer seg,Real width,Real height, Real left_thickness,Real right_thickness,Real top_thickness, Real bottom_thickness,Integer internal_width_height)
	Get_super_segment_culvert(Element super,Integer seg,Real &width,Real &height,Real &left_thickness,Real &right_thickness,Real &top_thickness, Real &bottom_thickness,Integer &internal_width_height) For V10 only
	Set_super_pipe(Element super,Real diameter) for V10 and above
	Set_super_diameter(Element super,Real diameter) for V9
	Get_super_pipe(Element super,Real &diameter) for V10 onwards
	Get_super_diameter(Element super,Real &diameter) for V9
	Set_super_segment_pipe(Element super,Integer seg,Real diameter) for V10 onwards
	Set_super_segment_diameter(Element super,Integer seg,Real diameter) for V9
	Get_super_segment_pipe(Element super,Integer seg,Real &diameter) for V10 onward
	Get_super_segment_diameter(Element super,Integer seg,Real &diameter) for V9
	Set_super_culvert(Element super,Real w,Real h)
	Get_super_culvert(Element super,Real &w,Real &h)
	Set_super_segment_culvert(Element super,Integer seg,Real w,Real h)
	Get_super_segment_culvert(Element super,Integer seg,Real &w,Real &h)

	5.37.10 Super String Vertex Text and Annotation Functions
	5.37.10.1 Definitions of Super String Vertex Text Dimensions, Units and Annotation Parameters
	5.37.10.2 Super String Use Vertex Text Functions
	Set_super_use_vertex_text_value(Element super,Integer use)
	Get_super_use_vertex_text_value(Element super,Integer &use)
	Set_super_use_vertex_text_array(Element super,Integer use)
	Get_super_use_vertex_text_array(Element super,Integer &use)
	Super_vertex_text_value_to_array(Element super)

	5.37.10.3 Super String Use Vertex Annotation Functions
	Set_super_use_vertex_annotation_value(Element super,Integer use)
	Get_super_use_vertex_annotation_value(Element super,Integer &use)
	Set_super_use_vertex_annotation_array(Element super,Integer use)
	Get_super_use_vertex_annotation_array(Element super,Integer &use)
	Super_vertex_annotate_value_to_array(Element elt)

	5.37.10.4 Setting Super String Vertex Text and Annotation Parameters
	Set_super_vertex_text(Element super,Integer vert,Text txt)
	Get_super_vertex_text(Element super,Integer vert,Text &txt)
	Set_super_vertex_world_text(Element super)
	Set_super_vertex_device_text(Element super)
	Set_super_vertex_paper_text(Element super)
	Set_super_vertex_text_type(Element super,Integer type)
	Get_super_vertex_text_type(Element super,Integer &type)
	Set_super_vertex_text_justify(Element super,Integer vert,Integer just)
	Get_super_vertex_text_justify(Element super,Integer vert,Integer &just)
	Set_super_vertex_text_offset_width(Element super,Integer vert,Real offset)
	Get_super_vertex_text_offset_width(Element super,Integer vert,Real &offset)
	Set_super_vertex_text_offset_height(Element super,Integer vert,Real raise)
	Get_super_vertex_text_offset_height(Element super,Integer vert,Real &raise)
	Set_super_vertex_text_colour(Element super,Integer vert,Integer col)
	Get_super_vertex_text_colour(Element super,Integer vert,Integer &col)
	Set_super_vertex_text_angle(Element super,Integer vert,Real ang)
	Get_super_vertex_text_angle(Element super,Integer vert,Real &ang)
	Set_super_vertex_text_angle2(Element super,Integer vert,Real ang)
	Get_super_vertex_text_angle2(Element super,Integer vert,Real &ang)
	Set_super_vertex_text_angle3(Element super,Integer vert,Real ang)
	Get_super_vertex_text_angle3(Element super,Integer vert,Real &ang)
	Set_super_vertex_text_size(Element super,Integer vert,Real sz)
	Get_super_vertex_text_size(Element super,Integer vert,Real &sz)
	Set_super_vertex_text_x_factor(Element super,Integer vert,Real xf)
	Get_super_vertex_text_x_factor(Element super,Integer vert,Real &xf)
	Set_super_vertex_text_slant(Element super,Integer vert,Real sl)
	Get_super_vertex_text_slant(Element super,Integer vert,Real &sl)
	Set_super_vertex_text_style(Element super,Integer vert,Text ts)
	Get_super_vertex_text_style(Element super,Integer vert,Text &ts)
	Set_super_vertex_text_ttf_underline(Element super,Integer vert,Integer underline)
	Get_super_vertex_text_ttf_underline(Element super,Integer vert, Integer &underline)
	Set_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer strikeout)
	Get_super_vertex_text_ttf_strikeout(Element super,Integer vert, Integer &strikeout)
	Set_super_vertex_text_ttf_italic(Element super,Integer vert,Integer italic)
	Get_super_vertex_text_ttf_italic(Element super,Integer vert,Integer &italic)
	Set_super_vertex_text_ttf_outline(Element elt,Integer vert,Integer outline)
	Get_super_vertex_text_ttf_outline(Element elt,Integer vert,Integer &outline)
	Set_super_vertex_text_ttf_weight(Element super,Integer vert,Integer weight)
	Get_super_vertex_text_ttf_weight(Element super,Integer vert,Integer &weight)
	Set_super_vertex_text_whiteout(Element superstring,Integer vert,Integer c)
	Get_super_vertex_text_whiteout(Element superstring,Integer vert,Integer &c)
	Set_super_vertex_text_border(Element superstring,Integer vert,Integer c)
	Get_super_vertex_text_border(Element superstring,Integer vert,Integer &c)
	Set_super_vertex_text_border_style(Element superstring,Integer vert,Integer s)
	Get_super_vertex_text_border_style(Element superstring,Integer vert,Integer &s)
	Set_super_vertex_textstyle_data(Element super,Integer vert,Textstyle_Data d)
	Get_super_vertex_textstyle_data(Element elt,Integer vert,Textstyle_Data &d)

	5.37.11 Super String Segment Text and Annotation Functions
	5.37.11.1 Definitions of Super String Segment Text Dimensions, Units and Annotation Parameters
	5.37.11.2 Super String Use Segment Text Functions
	Set_super_use_segment_text_value(Element super,Integer use)
	Get_super_use_segment_text_value(Element super,Integer &use)
	Set_super_use_segment_text_array(Element super,Integer use)
	Get_super_use_segment_text_array(Element super,Integer &use)
	Super_segment_text_value_to_array(Element super)

	5.37.11.3 Super String Use Segment Annotation Functions
	Set_super_use_segment_annotation_value(Element super,Integer use)
	Get_super_use_segment_annotation_value(Element super,Integer &use)
	Set_super_use_segment_annotation_array(Element super,Integer use)
	Get_super_use_segment_annotation_array(Element super,Integer &use)
	Super_segment_annotate_value_to_array(Element super)

	5.37.11.4 Setting Super String Segment Text and Annotation Parameters
	Set_super_segment_text(Element super,Integer seg,Text text)
	Get_super_segment_text(Element super,Integer seg,Text &text)
	Set_super_segment_world_text(Element super)
	Set_super_segment_device_text(Element super)
	Set_super_segment_paper_text(Element super)
	Set_super_segment_text_type(Element super,Integer type)
	Get_super_segment_text_type(Element super,Integer &type)
	Set_super_segment_text_justify(Element super,Integer seg,Integer just)
	Get_super_segment_text_justify(Element super,Integer seg,Integer &just)
	Set_super_segment_text_offset_width(Element super,Integer seg,Real off)
	Get_super_segment_text_offset_width(Element super,Integer seg,Real &off)
	Set_super_segment_text_offset_height(Element super,Integer seg,Real raise)
	Get_super_segment_text_offset_height(Element super,Integer seg,Real &raise)
	Set_super_segment_text_colour(Element super,Integer seg,Integer col)
	Get_super_segment_text_colour(Element super,Integer seg,Integer &col)
	Set_super_segment_text_angle(Element super,Integer seg,Real ang)
	Get_super_segment_text_angle(Element super,Integer seg,Real &ang)
	Set_super_segment_text_angle2(Element super,Integer seg,Real ang)
	Get_super_segment_text_angle2(Element super,Integer seg,Real &ang)
	Set_super_segment_text_angle3(Element super,Integer seg,Real ang)
	Get_super_segment_text_angle3(Element super,Integer seg,Real &ang)
	Set_super_segment_text_size(Element super,Integer seg,Real sz)
	Get_super_segment_text_size(Element super,Integer seg,Real &sz)
	Set_super_segment_text_x_factor(Element super,Integer seg,Real xf)
	Get_super_segment_text_x_factor(Element super,Integer seg,Real &xf)
	Set_super_segment_text_slant(Element super,Integer seg,Real sl)
	Get_super_segment_text_slant(Element super,Integer seg,Real &sl)
	Set_super_segment_text_style(Element super,Integer seg,Text ts)
	Get_super_segment_text_style(Element super,Integer seg,Text &ts)
	Set_super_segment_text_ttf_underline(Element super,Integer seg, Integer underline)
	Get_super_segment_text_ttf_underline(Element super,Integer seg, Integer &underline)
	Set_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer strikeout)
	Get_super_segment_text_ttf_strikeout(Element super,Integer seg, Integer &strikeout)
	Set_super_segment_text_ttf_italic(Element super,Integer seg,Integer italic)
	Get_super_segment_text_ttf_italic(Element super,Integer seg,Integer &italic)
	Set_super_segment_text_ttf_outline(Element elt,Integer seg,Integer outline)
	Get_super_segment_text_ttf_outline(Element elt,Integer seg,Integer &outline)
	Set_super_segment_text_ttf_weight(Element super,Integer seg,Integer weight)
	Get_super_segment_text_ttf_weight(Element super,Integer seg,Integer &weight)
	Set_super_segment_text_whiteout(Element superstring,Integer seg,Integer c)
	Get_super_segment_text_whiteout(Element superstring,Integer seg,Integer &c)
	Set_super_segment_text_border(Element superstring,Integer seg,Integer c)
	Get_super_segment_text_border(Element superstring,Integer seg,Integer &c)
	Set_super_segment_text_border_style(Element superstring,Integer seg,Integer s)
	Get_super_segment_text_border_style(Element superstring,Integer seg,Integer &s)
	Set_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data d)
	Get_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data &d)

	5.37.12 Super String Fills - Hatch/Solid/Bitmap/Pattern/ ACAD Pattern Functions
	5.37.12.1 Super String Hatch Functions
	Set_super_use_hatch(Element super,Integer use)
	Get_super_use_hatch(Element super,Integer &use)
	Set_super_hatch_colour(Element super,Integer col_1,Integer col_2)
	Get_super_hatch_colour(Element super,Integer &col_1,Integer &col_2)
	Set_super_hatch_angle(Element super,Real ang_1,Real ang_2)
	Get_super_hatch_angle(Element super,Real &ang_1,Real &ang_2)
	Set_super_hatch_spacing(Element super,Real dist_1,Real dist_2)
	Get_super_hatch_spacing(Element super,Real &dist_1,Real &dist_2)
	Set_super_hatch_plot_spacing(Element super,Real dist_1,Real dist_2)
	Get_super_hatch_plot_spacing(Element super,Real &dist_1,Real &dist_2)
	Set_super_hatch_origin(Element super,Real x,Real y)
	Get_super_hatch_origin(Element super,Real &x,Real &y)
	Set_super_hatch_device(Element super)
	Set_super_hatch_world(Element super)
	Set_super_hatch_type(Element super,Integer type)
	Get_super_hatch_type(Element super,Integer &type)
	Set_super_hatch_view_angle(Element super,Integer is_relative)
	Get_super_hatch_view_angle(Element super,Integer &is_relative)

	5.37.12.2 Super String Solid Fill Functions
	Set_super_use_solid(Element super,Integer use)
	Get_super_use_solid(Element super,Integer &use)
	Set_super_solid_colour(Element super,Integer colour)
	Get_super_solid_colour(Element super,Integer &colour)
	Set_super_solid_blend(Element super,Real blend)
	Get_super_solid_blend(Element super,Real &blend)

	5.37.12.3 Super String Bitmap Functions
	Set_super_use_bitmap(Element super,Integer use)
	Get_super_use_bitmap(Element super,Integer &use)
	Set_super_bitmap(Element super,Text filename)
	Get_super_bitmap(Element super,Text &filename)
	Set_super_bitmap_origin(Element super,Real x,Real y)
	Get_super_bitmap_origin(Element super,Real &x,Real &y)
	Set_super_bitmap_transparent(Element super,Integer colour)
	Get_super_bitmap_transparent(Element super,Integer &colour)
	Set_super_bitmap_device(Element super)
	Set_super_bitmap_world(Element super)
	Set_super_bitmap_type(Element super,Integer type)
	Get_super_bitmap_type(Element super,Integer &type)
	Set_super_bitmap_angle(Element super,Real ang)
	Get_super_bitmap_angle(Element super,Real &ang)
	Set_super_bitmap_size(Element super,Real w,Real h)
	Get_super_bitmap_size(Element super,Real &w,Real &h)
	Set_super_bitmap_space(Element super,Real x,Real y)
	Get_super_bitmap_space(Element super,Real &x,Real &y)
	Set_super_bitmap_stagger(Element super,Real stagger)
	Get_super_bitmap_stagger(Element super,Real &stagger)
	Set_super_bitmap_paper(Element super)
	Set_super_bitmap_view_angle(Element super,Integer is_relative)
	Get_super_bitmap_view_angle(Element super,Integer &is_relative)

	5.37.12.4 Super String Patterns Functions
	Set_super_use_pattern(Element super,Integer use)
	Get_super_use_pattern(Element super,Integer &use)
	Set_super_pattern(Element super,Text name)
	Get_super_pattern(Element super,Text &name)
	Set_super_pattern_colour(Element super,Integer colour)
	Get_super_pattern_colour(Element super,Integer &colour)
	Set_super_pattern_angle(Element super,Real angle)
	Get_super_pattern_angle(Element super,Real &angle)
	Set_super_pattern_size(Element super,Real size)
	Get_super_pattern_size(Element super,Real &size)
	Set_super_pattern_plot_size(Element super,Real size)
	Get_super_pattern_plot_size(Element super,Real &s)
	Set_super_pattern_origin(Element super,Real x,Real y)
	Get_super_pattern_origin(Element super,Real &x,Real &y)
	Set_super_pattern_type(Element super,Integer type)
	Get_super_pattern_type(Element super,Integer &type)
	Set_super_pattern_view_angle(Element super,Integer is_relative)
	Get_super_pattern_view_angle(Element super,Integer &is_relative)
	Set_super_pattern_stagger(Element super,Real stagger)
	Get_super_pattern_stagger(Element super,Real &stagger)
	Set_super_pattern_space(Element super,Real xspace,Real yspace)
	Get_super_pattern_space(Element super,Real &xspace,Real &yspace)
	Set_super_pattern_solid_colour(Element super,Integer colour)
	Get_super_pattern_solid_colour(Element super,Integer &colour)
	Set_super_pattern_blend(Element super,Real blend)
	Get_super_pattern_blend(Element super,Real &blend)

	5.37.12.5 Super String ACAD Patterns Functions
	Set_super_use_acad_pattern(Element super,Integer use)
	Get_super_use_acad_pattern(Element super,Integer &use)
	Set_super_acad_pattern(Element super,Text name)
	Get_super_acad_pattern(Element super,Text &name)
	Set_super_acad_pattern_colour(Element super,Integer colour)
	Get_super_acad_pattern_colour(Element super,Integer &colour)
	Set_super_acad_pattern_angle(Element super,Real angle)
	Get_super_acad_pattern_angle(Element super,Real &angle)
	Set_super_acad_pattern_size(Element super,Real size)
	Get_super_acad_pattern_size(Element super,Real &size)
	Set_super_acad_pattern_device(Element super)
	Set_super_acad_pattern_world(Element super)
	Set_super_acad_pattern_paper(Element super)
	Set_super_acad_pattern_type(Element super,Integer type)
	Get_super_acad_pattern_type(Element super,Integer &type)
	Set_super_acad_pattern_view_angle(Element super,Integer is_relative)
	Get_super_acad_pattern_view_angle(Element super,Integer &is_relative)

	5.37.13 Super String Hole Functions
	Set_super_use_hole(Element super,Integer use)
	Get_super_use_hole(Element super,Integer &use)
	Super_add_hole(Element super,Element hole)
	Get_super_holes(Element super,Integer &numberless)
	Super_get_hole(Element super,Integer hole_no,Element &hole)
	Super_delete_hole(Element super,Element hole)
	Super_delete_hole(Element super,Integer hole_no)
	Super_delete_all_holes(Element super)

	5.37.14 Super String Segment Colour Functions
	Set_super_use_segment_colour(Element super,Integer use)
	Get_super_use_segment_colour(Element super,Integer &use)
	Set_super_segment_colour(Element super,Integer seg,Integer colour)
	Get_super_segment_colour(Element super,Integer seg,Integer &colour)

	5.37.15 Super String Segment Geometry Functions
	Set_super_use_segment_geometry(Element super,Integer use)
	Get_super_use_segment_geometry(Element super,Integer &use)
	Set_super_segment_spiral(Element elt,Integer seg,Spiral trans)
	Get_super_segment_spiral(Element elt,Integer seg,Spiral &trans)
	Set_super_segment_spiral(Element elt,Integer seg,Real l1,Real r1,Real a1,Real l2,Real r2,Real a2,Integer leading,Integer type)
	Get_super_segment_spiral(Element elt,Integer seg,Real &l1,Real &r1,Real &a1,Real &l2,Real &r2,Real &a2,Integer &leading,Integer &type)
	Set_super_segment_geometry(Element elt,Integer seg,Segment geom)
	Get_super_segment_geometry(Element elt,Integer seg,Segment &geom)
	Set_super_segment_geometry(Element elt,Integer seg)
	Set_super_segment_curve(Element,Integer seg,Curve curve)
	Get_super_segment_curve(Element,Integer seg,Curve &curve)

	5.37.16 Super String Extrude Functions
	Set_super_use_extrude(Element super,Integer use)
	Get_super_use_extrude(Element super,Integer &use)
	Super_append_string_extrude(Element super,Element shape)
	Super_append_extrude(Element super,Text extrude_name)
	Super_append_string_extrude(Element string,Element shape,Integer use_string_colour,Integer shape_mirror,Real start_chainage,Real final_chainage)
	Get_super_extrudes(Element super,Integer &num_extrudes)
	Super_insert_extrude(Element super,Text extrude_name,Integer where)
	Super_delete_extrude(Element super,Integer extrude_num)
	Super_delete_all_extrudes(Element super)
	Set_super_extrude(Element super,Element shape)
	Get_super_extrude(Element super,Element &shape)

	5.37.17 Super String Interval Functions
	Set_super_use_interval(Element super,Integer use)
	Get_super_use_interval(Element super,Integer &use)
	Set_super_interval_distance(Element super,Real value)
	Get_super_interval_distance(Element super,Real &value)
	Set_super_interval_chord_arc(Element super,Real value)
	Get_super_interval_chord_arc(Element super,Real &value)

	5.37.18 Super String Vertex Attributes Functions
	Set_super_use_vertex_attribute(Element super,Integer use)
	Get_super_use_vertex_attribute(Element super,Integer &use)
	Set_super_vertex_attributes(Element super,Integer vert,Attributes att)
	Get_super_vertex_attributes(Element super,Integer vert,Attributes &att)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Uid &uid)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Attributes &att)
	Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid &uid)
	Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes &att)
	Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Uid uid)
	Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Attributes att)
	Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid uid)
	Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes att)
	Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name,Integer &num)
	Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name)
	Super_vertex_attribute_delete(Element super,Integer vert,Integer att_no)
	Super_vertex_attribute_delete(Element super,Integer vert,Text att_name)
	Super_vertex_attribute_delete_all(Element super,Integer vert)
	Super_vertex_attribute_dump(Element super,Integer vert)
	Super_vertex_attribute_debug(Element super,Integer vert)
	Get_super_vertex_number_of_attributes(Element super,Integer vert,Integer &no_atts)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Text &txt)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer &int)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Real &real)
	Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text &txt)
	Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer &int)
	Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real &real)
	Get_super_vertex_attribute_name(Element super,Integer vert,Integer att_no,Text &txt)
	Get_super_vertex_attribute_length(Element super,Integer vert,Text att_name,Integer &att_len)
	Get_super_vertex_attribute_length(Element super,Integer vert,Integer att_no,Integer &att_len)
	Get_super_vertex_attribute_type(Element super,Integer vert,Text att_name,Integer &att_type)
	Get_super_vertex_attribute_type(Element super,Integer vert,Integer att_no,Integer &att_type)
	Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Text txt)
	Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer int)
	Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Real real)
	Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text txt)
	Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer int)
	Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real real)

	5.37.19 Super String Segment Attributes Functions
	Set_super_use_segment_attribute(Element super,Integer use)
	Get_super_use_segment_attribute(Element super,Integer &use)
	Get_super_segment_attributes(Element elt,Integer seg,Attributes &att)
	Set_super_segment_attributes(Element elt,Integer seg,Attributes att)
	Get_super_segment_attribute(Element super,Integer seg,Text att_name,Uid &uid)
	Get_super_segment_attribute(Element super,Integer seg,Text att_name, Attributes &att)
	Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid &uid)
	Get_super_segment_attribute(Element super,Integer seg,Integer att_no, Attributes &att)
	Set_super_segment_attribute(Element super,Integer seg,Text att_name,Uid uid)
	Set_super_segment_attribute(Element super,Integer seg,Text att_name, Attributes att)
	Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid uid)
	Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes att)
	Super_segment_attribute_exists(Element elt,Integer seg,Text att_name)
	Super_segment_attribute_exists(Element elt,Integer seg,Text att_name,Integer &num)
	Super_segment_attribute_delete (Element super,Integer seg,Text att_name)
	Super_segment_attribute_delete (Element super,Integer seg,Integer att_no)
	Super_segment_attribute_delete_all (Element super,Integer seg)
	Super_segment_attribute_dump (Element super,Integer seg)
	Super_segment_attribute_debug (Element super,Integer seg)
	Get_super_segment_number_of_attributes(Element super,Integer seg,Integer &no_atts)
	Get_super_segment_attribute (Element super,Integer seg,Text att_name,Text &text)
	Get_super_segment_attribute (Element super,Integer seg,Text att_name,Integer &int)
	Get_super_segment_attribute (Element super,Integer seg,Text att_name,Real &real)
	Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Text &txt)
	Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer &int)
	Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Real &real)
	Get_super_segment_attribute_name (Element super,Integer seg,Integer att_no,Text &txt)
	Get_super_segment_attribute_type (Element super,Integer seg,Text att_name,Integer &att_type)
	Get_super_segment_attribute_type (Element super,Integer seg,Integer att_no,Integer &att_type)
	Get_super_segment_attribute_length(Element super,Integer seg,Text att_name,Integer &att_len)
	Get_super_segment_attribute_length(Element super,Integer seg,Integer att_no,Integer &att_len)
	Set_super_segment_attribute (Element super,Integer seg,Text att_name,Text txt)
	Set_super_segment_attribute (Element super,Integer seg,Text att_name,Integer in)
	Set_super_segment_attribute (Element super,Integer seg,Text att_name,Real real)
	Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Text txt)
	Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer in)
	Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Real real)

	5.37.20 Super String Uid Functions
	5.37.20.1 Super String Vertex Uid
	Set_super_use_vertex_uid(Element super,Integer use)
	Get_super_use_vertex_uid(Element super,Integer &use)
	Set_super_vertex_uid(Element super,Integer vert,Integer num)
	Get_super_vertex_uid(Element super,Integer vert,Integer &num)

	5.37.20.2 Super String Segment Uid
	Set_super_use_segment_uid(Element super,Integer use)
	Get_super_use_segment_uid(Element super,Integer &use)
	Set_super_segment_uid(Element super,Integer seg,Integer num)
	Get_super_segment_uid(Element super,Integer seg,Integer &num)

	5.37.21 Super String Vertex Image Functions
	5.37.21.1 Super String Use Vertex Image Functions
	Set_super_use_vertex_image_value(Element super,Integer use)
	Get_super_use_vertex_image_value(Element super,Integer &use)
	Set_super_use_vertex_image_array(Element super,Integer use)
	Get_super_use_vertex_image_array(Element super,Integer &use)
	Super_vertex_image_value_to_array(Element super)

	5.37.21.2 Setting Super String Vertex Image Functions
	Super_vertex_image_delete(Element elt,Integer vertex_num,Integer image_num)
	Super_vertex_image_delete_all(Element super,Integer vertex_num)
	Get_super_vertex_number_of_images(Element super,Integer vertex_num,Integer &num_images)
	Get_super_vertex_image_type(Element elt,Integer vertex,Integer image_no,Text &image_type)
	Super_vertex_add_URL(Element super,Integer vertex,Text url)
	Get_super_vertex_URL(Element elt,Integer vertex,Integer image_no,Text &url)
	Get_Super_vertex_plan_image(Element super,Integer vertex,Integer image_no,Text &url,Real &width,Real &height,Real &angle,Real &offset_x,Real &offset_y)

	5.37.22 Super String Visibility Functions
	5.37.22.1 Super String Combined Visibility
	Set_super_use_visibility(Element super,Integer use)
	Get_super_use_visibility(Element super,Integer &use)

	5.37.22.2 Super String Vertex Visibility
	Set_super_use_vertex_visibility_value(Element super,Integer use)
	Get_super_use_vertex_visibility_value(Element super,Integer &use)
	Set_super_use_vertex_visibility_array(Element super,Integer use)
	Get_super_use_vertex_visibility_array(Element super,Integer &use)
	Set_super_vertex_visibility(Element super,Integer vert,Integer visibility)
	Get_super_vertex_visibility(Element super,Integer vert,Integer &visibility)

	5.37.22.3 Super String Segment Visibility
	Set_super_use_segment_visibility_value(Element super,Integer use)
	Get_super_use_segment_visibility_value(Element super,Integer &use)
	Set_super_use_segment_visibility_array(Element super,Integer use)
	Get_super_use_segment_visibility_array(Element super,Integer &use)
	Set_super_segment_visibility(Element super,Integer seg,Integer visibility)
	Get_super_segment_visibility(Element super,Integer seg,Integer &visibility)

	5.38 Examples of Setting Up Super Strings
	5.38.1 2d Super String
	5.38.2 2d Super String with Arcs
	5.38.3 3d Super String
	5.38.4 Polyline Super String
	5.38.5 Pipe Super String
	5.38.6 Culvert Super String
	5.38.7 Polyline Pipe Super String
	5.38.8 4d Super String

	5.39 Super Alignment String Element
	Element Create_super_align()
	Create_super_align(Element seed)
	Is_super_alignment_solved(Element super_alignment)
	Get_super_alignment_style(Element super_alignment,Text &style)
	Set_super_alignment_style(Element super_alignment,Text style)
	Get_super_alignment_valid_horizontal(Element super_alignment,Integer &valid)
	Get_super_alignment_valid_vertical(Element super_alignment,Integer &valid)
	Get_super_alignment_valid(Element super_alignment,Integer &valid)
	Get_super_alignment_horizontal_string(Element super_alignment)
	Get_super_alignment_valid_vertical(Element super_alignment)
	Get_super_alignment_vertical_position(Element super_alignment,Real chainage,Real &level,Real &grade,Real &mvalue)
	Get_super_alignment_widening_left_side(Element super_alignment)
	Get_super_alignment_widening_right_side(Element super_alignment)
	Get_super_alignment_super_elevation_left_side(Element super_alignment)
	Get_super_alignment_super_elevation_right_side(Element super_alignment)
	Get_super_alignment_sight_distance_forward(Element super_alignment)
	Get_super_alignment_sight_distance_reverse(Element super_alignment)
	Get_super_alignment_number_of_profiles(Element alignment,Integer &count)
	Get_super_alignment_profile(Element alignment,Integer &index)
	Get_super_alignment_profile(Element alignment,Text name)
	Get_super_alignment_named_parts(Element alignment,Integer vert_hori,Dynamic_Text &names)
	Get_super_alignment_named_positions(Element alignment,Dynamic_Text &names)
	Get_super_alignment_named_part_chainage(Element alignment,Integer vert_hori,Text name,Real &ch)
	Get_super_alignment_named_position_chainage(Element alignment,Text name,Real &ch)
	Get_super_alignment_named_part_segments(Element alignment,Integer vert_hori,Text name,Dynamic_Integer &segment_indices)
	Get_super_alignment_named_part_segment(Element alignment,Integer vert_hori,Text name,Segment &segment)
	Get_super_alignment_named_chainage(Element alignment,Integer vert_hori,Real ch,Text &name,Real &extension)
	Get_super_alignment_named_segment(Element alignment,Integer vert_hori,Real ch,Text &name)
	Set_super_alignment_use_equalities(Element alignment,Integer use)
	Get_super_alignment_use_equalities(Element alignment,Integer &use)
	Set_super_alignment_equalities_active(Element alignment,Integer active)
	Get_super_alignment_equalities_active(Element alignment,Integer &active)
	Super_alignment_equality_part_append(Element alignment,Text part)
	Super_alignment_equality_part_insert(Element alignment,Integer position,Text part)
	Super_alignment_equality_part_delete(Element alignment,Integer position)
	Get_super_alignment_equality_parts(Element alignment,Integer &num_parts)
	Get_super_alignment_equality_part_id(Element alignment,Integer position,Integer &id)
	Get_super_alignment_equality_part_type(Element alignment,Integer position,Text &type)
	Get_super_alignment_equality_part(Element alignment,Integer position,Text &name)
	Calc_super_alignment_equalities(Element alignment)
	Get_super_alignment_equality_chainage(Element alignment,Real raw_chainage,Text &equality_name,Integer &equality_zone,Real &equality_offset)
	Get_super_alignment_raw_chainage(Element alignment,Text equality_name,Integer equality_zone,Real equality_offset,Real &raw_chainage)
	Get_super_alignment_number_of_equalities(Element alignment,Integer &count)
	Get_super_alignment_equality_data(Element align,Integer index,Real &raw_chainage,Integer &mode,Text &equality_name,Integer &equality_zone,Real &equality_offset,Text &pre_equality_name,Integer &pre_equality_zone,Real &equality_before)
	Get_super_alignment_equality_info(Element alignment,Real chainage,Equality_Info &equality_info)
	Get_equality_info_valid(Equality_Info &info,Integer &valid)
	Get_equality_info_name(Equality_Info &info,Text &name)
	Get_equality_info_zone(Equality_Info &info,Integer &zone)
	Get_equality_info_offset(Equality_Info &info,Real &offset)
	Get_equality_info_prevalid(Equality_Info &info,Integer &prevalid)
	Get_equality_info_prename(Equality_Info &info,Text &prename)
	Get_equality_info_prezone(Equality_Info &info,Integer &prezone)
	Get_equality_info_preoffset(Equality_Info &info,Real &preoffset)
	Set_equality_label_data(Equality_Label &label,Text name,Integer value)
	Set_equality_label_data(Equality_Label &label,Text name,Text value)
	Get_equality_label_data(Equality_Label &label,Text name,Integer &value)
	Get_equality_label_data(Equality_Label &label,Text name,Text &value)
	Create_equality_label(Real raw_chainage,Equality_Info &equality_info,Equality_Label &equality_label,Text &text_label)
	Get_super_alignment_equality_chainage(Element alignment,Integer item,Real &chainage)
	Get_super_alignment_equality_info(Element alignment,Real chainage,Equality_Info &equality_info)

	5.40 Arc String Element
	Create_arc(Arc arc)
	Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)
	Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)
	Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)
	Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep)
	Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze,Integer dir)
	Create_arc_2(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real start_angle)
	Create_arc_3(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real chord_angle)
	Set_arc_centre(Element elt,Real xc,Real yc,Real zc)
	Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc)
	Set_arc_radius(Element elt,Real rad)
	Get_arc_radius(Element elt,Real &rad)
	Set_arc_start(Element elt,Real xs,Real ys,Real zs)
	Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs)
	Set_arc_end(Element elt,Real xe,Real ye,Real ze)
	Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze)
	Set_arc_data(Element elt,Real xc,Real yc,Real zc, Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)
	Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad,Real &xs,Real &ys,Real &zs,Real &xe,Real &ye,Real &ze)
	Set_arc_interval(Element elt,Real interval)
	Get_arc_interval(Element elt,Real &interval)
	Set_arc_chord_arc(Element elt,Real chord_arc)
	Get_arc_chord_arc(Element elt,Real &chord_arc)

	5.41 Circle String Element
	Create_circle(Real xc,Real yc,Real zc,Real rad)
	Create_circle(Real xc,Real yc,Real zc, Real xp,Real yp,Real zp)
	Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)
	Set_circle_data(Element elt,Real xc,Real yc,Real zc,Real rad)
	Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad)

	5.42 Text String Element
	Create_text(Text text,Real x,Real y,Real size,Integer colour)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif, Integer size_mode)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer size_mode,Real offset_distance,Real rise_distance)
	Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer size_mode,Real offset_distance,Real rise_distance)
	Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer &colour,Real &ang,Integer &justification,Integer &size_mode,Real &offset_dist,Real &rise_dist)
	Set_text_value(Element elt,Text text)
	Get_text_value(Element elt,Text &text)
	Set_text_textstyle_data(Element elt,Textstyle_Data d)
	Get_text_textstyle_data(Element elt,Textstyle_Data &d)
	Get_text_length(Element elt,Real &length)
	Set_text_xy(Element elt,Real x,Real y)
	Get_text_xy(Element elt,Real &x,Real &y)
	Set_text_xyz(Element elt,Real x,Real y,Real z)
	Get_text_xyz(Element elt,Real &x,Real &y,Real &z)
	Set_text_units(Element elt,Integer units_mode)
	Get_text_units(Element elt,Integer &units_mode)
	Set_text_size(Element elt,Real size)
	Get_text_size(Element elt,Real &size)
	Set_text_justify(Element elt,Integer justify)
	Get_text_justify(Element elt,Integer &justify)
	Set_text_angle(Element elt,Real ang)
	Get_text_angle(Element elt,Real &ang)
	Set_text_angle2(Element elt,Real ang2)
	Get_text_angle2(Element elt,Real &ang2)
	Set_text_angle3(Element elt,Real ang3)
	Get_text_angle3(Element elt,Real &ang3)
	Set_text_offset(Element elt,Real offset)
	Get_text_offset(Element elt,Real &offset)
	Set_text_rise(Element elt,Real rise)
	Get_text_rise(Element elt,Real &rise)
	Set_text_height(Element elt,Real height)
	Get_text_height(Element elt,Real &height)
	Set_text_slant(Element elt,Real slant)
	Get_text_slant(Element elt,Real &slant)
	Set_text_style(Element elt,Text style)
	Get_text_style(Element elt,Text &style)
	Set_text_x_factor(Element elt,Real xfact)
	Get_text_x_factor(Element elt,Real &xfact)
	Set_text_ttf_underline(Element elt,Integer underline)
	Get_text_ttf_underline(Element elt,Integer &underline)
	Set_text_ttf_strikeout(Element elt,Integer strikeout)
	Get_text_ttf_strikeout(Element elt,Integer &strikeout)
	Set_text_ttf_italic(Element elt,Integer italic)
	Get_text_ttf_italic(Element elt,Integer &italic)
	Set_text_ttf_outline(Element elt,Integer outline)
	Get_text_ttf_outline(Element elt,Integer &outline)
	Set_text_ttf_weight(Element elt,Integer weight)
	Get_text_ttf_weight(Element elt,Integer &weight)
	Set_text_whiteout(Element text,Integer colour)
	Get_text_whiteout(Element text,Integer &colour)
	Set_text_border(Element text,Integer colour)
	Get_text_border(Element text,Integer &colour)
	Set_text_border_style(Element text,Integer style)
	Get_text_border_style(Element text,Integer &style)

	5.43 Pipeline String Element
	Integer Create_pipeline()
	Create_pipeline(Element seed)
	Set_pipeline_diameter(Element pipeline,Real diameter)
	Get_pipeline_diameter(Element pipeline,Real &diameter)
	Set_pipeline_length(Element pipeline,Real length)
	Get_pipeline_length(Element pipeline,Real &length)
	Set_pipeline_shape(Element pipeline,Integer shape)
	Get_pipeline_shape(Element pipeline,Integer &shape)
	Set_pipeline_justification(Element pipeline,Integer justification)
	Get_pipeline_justification(Element pipeline,Integer &justification)
	Set_pipeline_culvert(Element pipeline,Real w,Real h)
	Get_pipeline_culvert(Element pipeline,Real &w,Real &h)

	5.44 Drainage String Element
	5.44.1 Underlying Drainage String Functions
	Create_drainage(Integer num_verts,Integer num_pits)
	Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts, Integer num_pits)
	Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts)
	Get_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer max_verts,Integer &num_verts)
	Set_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer num_verts,Integer start_vert)
	Get_drainage_data(Element drain,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer max_verts,Integer &num_verts,Integer start_vert)
	Set_drainage_data(Element drain,Integer i,Real x,Real y,Real z,Real r,Integer b)
	Get_drainage_data(Element drain,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &b)

	5.44.2 General Drainage String Functions
	Set_drainage_outfall_height(Element drain,Real ht)
	Get_drainage_outfall_height(Element drain,Real &ht)
	Set_drainage_ns_tin(Element drain,Tin tin)
	Get_drainage_ns_tin(Element drain,Tin &tin)
	Set_drainage_fs_tin(Element drain,Tin tin)
	Get_drainage_fs_tin(Element drain,Tin &tin)
	Set_drainage_flow(Element drain,Integer dir)
	Get_drainage_flow(Element drain,Integer &dir)
	Set_drainage_float(Element drain,Integer string_pit_float)
	Get_drainage_float(Element drain,Integer &string_pit_float)
	Get_drainage_trunk(Element drain,Element &trunk)
	Drainage_default_grading_to_end(Element drain,Integer pipe_num)
	Drainage_grade_to_end(Element drain,Integer pipe_num,Real slope)
	Set_drainage_sewer(Element drainage,Integer type)
	Get_drainage_sewer(Element drainage,Integer &type)

	5.44.3 Drainage String Pits
	Get_drainage_pits(Element drain,Integer &npits)
	Set_drainage_pit(Element drain,Integer p,Real x,Real y,Real z)
	Get_drainage_pit(Element drain,Integer p,Real &x,Real &y,Real &z)
	Get_drainage_pit_area(Element element,Integer pit,Integer elev,Real &sump_area,Dynamic_Real &depth-elev,Dynamic_Real &area,Integer &ret_num)
	Set_drainage_pit_name(Element drain,Integer p,Text name)
	Get_drainage_pit_name(Element drain,Integer p,Text &name)
	Set_drainage_pit_colour(Element drain,Integer p,Integer colour)
	Get_drainage_pit_colour(Element drain,Integer p,Integer &colour)
	Set_drainage_pit_diameter(Element drain,Integer p,Real diameter)
	Get_drainage_pit_diameter(Element drain,Integer p,Real &diameter)
	Set_drainage_pit_symbol_angle(Element drain,Integer p,Real angle)
	Get_drainage_pit_symbol_angle(Element drain,Integer pit,Real &angle)
	Set_drainage_pit_width(Element drain,Integer p,Real width)
	Get_drainage_pit_width(Element drain,Integer p,Real &width)
	Set_drainage_pit_length(Element drain,Integer p,Real length)
	Get_drainage_pit_length(Element drain,Integer p,Real &length)
	Set_drainage_pit_float_sump(Element drain,Integer pit,Integer sump_float)
	Get_drainage_pit_float_sump(Element element,Integer pit,Integer &sump_float)
	Set_drainage_pit_sump_level(Element drain,Integer pit,Real level)
	Get_drainage_pit_sump_level(Element drain,Integer pit,Real &level)
	Set_drainage_pit_thickness(Element drain,Integer p,Real bottom,Real front,Real back,Real left,Real right)
	Get_drainage_pit_thickness(Element drain,Integer p,Real &bottom,Real &front,Real &back,Real &left,Real &right)
	Set_drainage_use_connection_points(Element drain,Integer use_connection_points)
	Get_drainage_use_connection_points(Element drain,Integer &use_connection_points)
	Set_drainage_pit_connection_points_mode(Element drainage,Integer pit,Integer mode)
	Get_drainage_pit_connection_points_mode(Element drainage,Integer pit,Integer &mode)
	Set_drainage_pit_symbol_angle_mode(Element drainage,Integer pit,Integer mode)
	Get_drainage_pit_symbol_angle_mode(Element drainage,Integer pit,Integer &mode)
	Set_drainage_pit_2d_connection_mode(Element drainage,Integer pit,Integer mode)
	Get_drainage_pit_2d_connection_mode(Element drainage,Integer pit,Integer &mode)
	Get_drainage_pit_connection(Element drainage,Integer mh_index,Integer &mh_con_type,Element &con_string,Integer &con_mh_index,Integer &con_type)
	Drainage_Adjust_Pit_Connection_Points(Element drain,Integer pit)
	Drainage_Adjust_Pit_Connection_Points_All(Element drain)
	Get_drainage_pit_connection_points(Element drain,Integer pit,Real &lx,Real &ly,Real &rx,Real &ry)
	Set_drainage_pit_inverts(Element drain,Integer p,Real lhs,Real rhs)
	Get_drainage_pit_inverts(Element drain,Integer p,Real &lhs,Real &rhs)
	Get_drainage_pit_angle(Element drain,Integer p,Real &ang)
	Get_drainage_pit_angle (Element drain,Integer p,Real &ang,Integer trunk)
	Get_drainage_pit_chainage(Element drain,Integer p,Real &chainage)
	Get_drainage_pit_chainages(Element drain,Integer pit,Real &ch_lcp,Real &ch_centre,Real &ch_rcp)
	Get_drainage_pit_shape(Element drain,Integer pit,Integer mode,Element &super_inside,Element &super_outside)
	Set_drainage_pit_float(Element drain,Integer pit,Integer pit_float)
	Get_drainage_pit_float(Element drain,Integer pit,Integer &pit_float)
	Set_drainage_pit_hgl(Element drain,Integer p,Real hgl)
	Get_drainage_pit_hgl(Element drain,Integer p,Real &hgl)
	Set_drainage_pit_surface_hgl(Element element,Integer pit,Real surface_hgl)
	Get_drainage_pit_surface_hgl(Element element,Integer pit,Real &surface_hgl
	Set_drainage_pit_hgls(Element drain,Integer p,Real lhs,Real rhs)
	Get_drainage_pit_hgls(Element drain,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pit_road_chainage(Element drain,Integer p,Real chainage)
	Get_drainage_pit_road_chainage(Element drain,Integer p,Real &chainage)
	Set_drainage_pit_road_name(Element drain,Integer p,Text name)
	Get_drainage_pit_road_name(Element drain,Integer p,Text &name)
	Set_drainage_pit_type(Element drain,Integer p,Text type)
	Get_drainage_pit_type(Element drain,Integer p,Text &type)
	Get_drainage_pit_branches(Element drain,Integer p,Dynamic_Element &branches)
	Get_drainage_pit_depth(Element drain,Integer p,Real &depth)
	Get_drainage_pit_drop(Element drain,Integer p,Real &drop)
	Get_drainage_pit_ns(Element drain,Integer n,Real &ns_ht)
	Get_drainage_pit_fs(Element drain,Integer n,Real &fs_ht)

	5.44.4 Drainage Pit Type Information in the drainage.4d File
	Get_drainage_number_of_manhole_types(Integer &num_types)
	Get_drainage_manhole_type(Integer i,Text &type)
	Get_drainage_manhole_length(Text type,Real &length)
	Get_drainage_manhole_width(Text type,Real &width)
	Get_drainage_manhole_description(Text type,Text &description)
	Get_drainage_manhole_notes(Text type,Text ¬es)
	Get_drainage_manhole_group(Text type,Text &group)
	Get_drainage_manhole_capacities(Text type,Real &multi,Real &fixed, Real &percent,Real &coeff,Real &power)
	Get_drainage_number_of_sag_curves(Text type,Integer &n)
	Get_drainage_sag_curve_name(Text type,Text &name)
	Get_drainage_manhole_capacities_sag(Text type,Real &multi,Real &fixed,Real &percent,Real &coeff,Real &power)
	Get_drainage_number_of_sag_curve_coords(Text type,Integer &n)
	Get_drainage_sag_curve_coords(Text type,Real Depth[],Real Qin[],Integer nmax,Integer &num)
	Get_drainage_number_of_grade_curves(Text type,Integer &n)
	Get_drainage_grade_curve_name(Text type,Integer i,Text &name)
	Get_drainage_grade_curve_threshold(Text type,Text name,Integer &by_grade,Real &road_grade,Integer &by_xfall,Real &road_xfall)
	Get_drainage_manhole_capacities_grade(Text type,Text name,Real &multi,Real &fixed,Real &percent,Real &coeff,Real &power)
	Get_drainage_number_of_grade_curve_coords(Text type,Text name,Integer &n)
	Get_drainage_grade_curve_coords(Text type,Text name,Real Qa[],Real Qin[],Integer nmax,Integer &n)
	Get_drainage_manhole_config(Text type,Text &cap_config)
	Get_drainage_manhole_diam(Text type,Real &diameter)
	Get_drainage_manhole_types(Text water_type,Dynamic_Text &types)

	5.44.5 Drainage String Pit Attributes
	Get_drainage_pit_attribute_length(Element drain,Integer pit,Integer att_no,Integer &att_len)
	Get_drainage_pit_attribute_length(Element drain,Integer pit,Text att_name,Integer &att_len)
	Get_drainage_pit_attribute_type(Element drain,Integer pit,Integer att_no,Integer &att_type)
	Get_drainage_pit_attribute_type(Element drain,Integer pit,Text att_name,Integer &att_type)
	Get_drainage_pit_attribute_name(Element drain,Integer pit,Integer att_no,Text &name)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real &real)
	Get_drainage_pit_attribute (Element drain,Integer pit,Integer att_no,Integer &int)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text &txt)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real &real)
	Get_drainage_pit_number_of_attributes(Element drain,Integer pit,Integer &no_atts)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text &txt)
	Get_drainage_pit_attribute (Element drain,Integer pit,Text att_name,Integer &int)
	Get_drainage_pit_attributes(Element drain,Integer pit,Attributes &att)
	Set_drainage_pit_attributes(Element drain,Integer pit,Attributes att)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid &uid)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes &att)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid &uid)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes &att)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid uid)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes att)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid uid)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes att)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real real)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Integer int)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text txt)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real real)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Integer int)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text txt)
	Drainage_pit_attribute_exists(Element drain,Integer pit,Text att_name)
	Drainage_pit_attribute_exists (Element drain,Integer pit,Text name,Integer &no)
	Drainage_pit_attribute_delete (Element drain,Integer pit,Text att_name)
	Drainage_pit_attribute_delete (Element drain,Integer pit,Integer att_no)
	Drainage_pit_attribute_delete_all (Element drain,Integer pit)
	Drainage_pit_attribute_dump (Element drain,Integer pit)
	Drainage_pit_attribute_debug (Element drain,Integer pit)

	5.44.6 Drainage String Pipes
	Set_drainage_pipe_inverts(Element drain,Integer p,Real lhs,Real rhs)
	Get_drainage_pipe_inverts(Element drain,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer n)
	Get_drainage_pipe_number_of_pipes(Element drain,Integer pipe,Integer &n)
	Set_drainage_pipe_colour(Element drain,Integer p,Integer colour)
	Get_drainage_pipe_colour(Element drain,Integer p,Integer &colour)
	Set_drainage_pipe_name(Element drain,Integer p,Text name)
	Get_drainage_pipe_name(Element drain,Integer p,Text &name)
	Set_drainage_pipe_type(Element drain,Integer p,Text type)
	Get_drainage_pipe_type(Element drain,Integer p,Text &type)
	Set_drainage_pipe_cover(Element drain,Integer pipe,Real cover)
	Get_drainage_pipe_cover(Element drain,Integer pipe,Real &minc,Real &maxc)
	Set_drainage_pipe_diameter(Element drain,Integer p,Real diameter)
	Set_drainage_pipe_width(Element drain,Integer pipe,Real &width)
	Set_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)
	Get_drainage_pipe_diameter(Element drain,Integer p,Real &diameter)
	Get_drainage_pipe_width(Element drain,Integer pipe,Real &width)
	Get_drainage_pipe_top_width(Element drain,Integer pipe,Real &top_width)
	Get_drainage_pipe_thickness(Element drain,Integer pipe,Real &top,Real &bottom,Real &left,Real &right)
	Set_drainage_pipe_thickness(Element drain,Integer pit,Real top,Real bottom,Real left,Real right)
	Get_drainage_pipe_intersects_pit(Element drain,Integer pipe,Real offset,Real &lx,Real &ly,Real &lch,Real &rx,Real &ry,Real &rch)
	Get_drainage_pipe_shape(Element element,Integer pipe,Integer mode,Dynamic_Element &super_inside,Dynamic_Element &super_outside)
	Get_drainage_pipe_shape(Element drain,Integer pipe,Integer mode,Real offset,Element &super_inside,Element &super_outside)
	Set_drainage_pipe_hgls(Element drain,Integer p,Real lhs,Real rhs)
	Get_drainage_pipe_hgls(Element drain,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pipe_velocity(Element drain,Integer p,Real velocity)
	Get_drainage_pipe_velocity(Element drain,Integer p,Real &velocity)
	Set_drainage_pipe_flow(Element drain,Integer p,Real flow)
	Set_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real nominal_diameter)
	Set_drainage_pipe_separation(Element drainage,Integer pipe,Real separation)
	Get_drainage_pipe_flow(Element drain,Integer p,Real &flow)
	Get_drainage_pipe_length(Element drain,Integer p,Real &length)
	Get_drainage_pipe_grade(Element drain,Integer p,Real &grade)
	Get_drainage_pipe_ns(Element drain,Integer p,Real ch[],Real ht[],Integer max_pts,Integer &npts)
	Get_drainage_pipe_fs(Element drain,Integer p,Real ch[],Real ht[],Integer max_pts,Integer &npts)
	Get_drainage_pipe_nominal_diameter(Element drainage,Integer pipe,Real &nominal_diameter)
	Get_drainage_pipe_separation(Element drainage,Integer pipe,Real &separation)

	5.44.7 Drainage Pipe Type Information in the drainage.4d File
	Get_drainage_number_of_pipe_types(Integer &n)
	Get_drainage_pipe_type(Integer i,Text &type)
	Get_drainage_pipe_roughness(Text type,Real &roughness,Integer &roughness_type)
	Get_drainage_pipe_types(Text water_type,Dynamic_Text &types)

	5.44.8 Drainage String Pipe Attributes
	Set_drainage_pipe_attributes(Element drain,Integer pipe,Attributes att)
	Get_drainage_pipe_attributes(Element drain,Integer pipe,Attributes &att)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid &uid)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes &att)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid &uid)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no, Attributes &att)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid uid)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name, Attributes att)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid uid)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no, Attributes att)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text &txt)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer &int)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Real &real)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text &txt)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Integer &int)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Real &real)
	Drainage_pipe_attribute_exists(Element drain,Integer pipe,Text att_name)
	Drainage_pipe_attribute_exists (Element drain, Integer pipe,Text name,Integer &no)
	Drainage_pipe_attribute_delete (Element drain,Integer pipe,Text att_name)
	Drainage_pipe_attribute_delete (Element drain,Integer pipe,Integer att_no)
	Drainage_pipe_attribute_delete_all (Element drain,Integer pipe)
	Drainage_pipe_attribute_dump (Element drain,Integer pipe)
	Drainage_pipe_attribute_debug (Element drain,Integer pipe)
	Get_drainage_pipe_number_of_attributes(Element drain,Integer pipe,Integer &no_atts)
	Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Text att_name,Integer &att_len)
	Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Integer att_no,Integer &att_len)
	Get_drainage_pipe_attribute_name(Element drain,Integer pipe,Integer att_no,Text &name)
	Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Text att_name,Integer &att_type)
	Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Integer att_no,Integer &att_type
	Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text txt)
	Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer int)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Real real)
	Set_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text txt)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Integer int)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Real real)

	5.44.9 Drainage String House Connections - For Sewer Module Only
	Get_drainage_hcs(Element drain,Integer &no_hcs)
	Get_drainage_hc(Element drain,Integer h,Real &x,Real &y,Real &z)
	Set_drainage_hc_adopted_level(Element drain,Integer hc,Real level)
	Get_drainage_hc_adopted_level(Element drain,Integer h,Real &level)
	Set_drainage_hc_bush(Element drain,Integer hc,Text bush)
	Get_drainage_hc_bush(Element drain,Integer h,Text &bush)
	Set_drainage_hc_colour(Element drain,Integer hc,Integer colour)
	Get_drainage_hc_colour(Element drain,Integer h,Integer &colour)
	Set_drainage_hc_depth(Element drain,Integer hc,Real depth)
	Get_drainage_hc_depth(Element drain,Integer h,Real &depth)
	Set_drainage_hc_diameter(Element drain,Integer hc,Real diameter)
	Get_drainage_hc_diameter(Element drain,Integer h,Real &diameter)
	Set_drainage_hc_grade(Element drain,Integer hc,Real grade)
	Get_drainage_hc_grade(Element drain,Integer h,Real &grade)
	Set_drainage_hc_hcb(Element drain,Integer hc,Integer hcb)
	Get_drainage_hc_hcb(Element drain,Integer h,Integer &hcb)
	Set_drainage_hc_length(Element drain,Integer hc,Real length)
	Get_drainage_hc_length(Element drain,Integer h,Real &length)
	Set_drainage_hc_level(Element drain,Integer hc,Real level)
	Get_drainage_hc_level(Element drain,Integer h,Real &level)
	Set_drainage_hc_material(Element drain,Integer hc,Text material)
	Get_drainage_hc_material(Element drain,Integer h,Text &material)
	Set_drainage_hc_name(Element drain,Integer hc,Text name)
	Get_drainage_hc_name(Element drain,Integer h,Text &name)
	Set_drainage_hc_side(Element drain,Integer hc,Integer side)
	Get_drainage_hc_side(Element drain,Integer h,Integer &side)
	Set_drainage_hc_type(Element drain,Integer hc,Text type)
	Get_drainage_hc_type(Element drain,Integer h,Text &type)
	Get_drainage_hc_chainage(Element drain,Integer h,Real &chainage)
	Get_drainage_hc_ip(Element drain,Integer h,Integer &ip)

	5.45 Feature String Element
	Create_feature()
	Create_feature(Element seed)
	Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real rad)
	Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc)
	Set_feature_centre(Element elt,Real xc,Real yc,Real zc)
	Get_feature_radius(Element elt,Real &rad)
	Set_feature_radius(Element elt,Real rad)

	5.46 Interface String Element
	Create_interface(Real x[],Real y[],Real z[],Integer f[],Integer num_pts)
	Create_interface(Integer num_pts)
	Create_interface(Integer num_pts,Element seed)
	Get_interface_data(Element elt,Real x[],Real y[],Real z[], Integer f[],Integer max_pts,Integer &num_pts)
	Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f)
	Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts)
	Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts,Integer start_pt)
	Set_interface_data(Element elt,Integer i,Real x,Real y,Real z,Integer flag)

	5.47 Grid String and Grid Tin Element
	Create_grid_string()
	Create_grid_tin(Text name)
	Can_edit_grid_data(Element elt,Integer &result)
	Set_grid_geometry(Element elt,Real origin_x,Real origin_y,Real spacing_x,Real spacing_y,Real angle)
	Get_grid_geometry(Element elt,Real &origin_x,Real &origin_y,Real &spacing_x,Real &spacing_y,Real &angle)
	Set_grid_range(Element elt,Integer xmin,Integer ymin,Integer xmax,Integer ymax)
	Get_grid_range(Element elt,Integer &xmin,Integer &ymin,Integer &xmax,Integer &ymax)
	Grid_get_x_points(Element elt,Integer &count)
	Grid_get_x_count(Element elt,Integer &count)
	Grid_get_y_points(Element elt,Integer &count)
	Grid_get_y_count(Element elt,Integer &count)
	Grid_get_x_cells(Element elt,Integer &count)
	Grid_get_x_range(Element elt,Integer &count)
	Grid_get_y_cells(Element elt,Integer &count)
	Grid_get_y_range(Element elt,Integer &count)
	Grid_world_to_grid(Element elt,Real world_x,Real world_y,Real &grid_x,Real &grid_y)
	Grid_world_to_cell(Element elt,Real world_x,Real world_y,Real &cell_x,Real &cell_y)
	Grid_world_to_cell(Element elt,Real world_x,Real world_y,Integer &cell_x,Integer &cell_y)
	Grid_grid_to_world(Element elt,Real grid_x,Real grid_y,Real &world_x,Real &world_y)
	Grid_grid_to_cell(Element elt,Real grid_x,Real grid_y,Real &cell_x,Real &cell_y)
	Grid_grid_to_cell(Element elt,Real grid_x,Real grid_y,Integer &cell_x,Integer &cell_y)
	Grid_cell_to_world(Element elt,Real cell_x,Real cell_y,Real &world_x,Real &world_y)
	Grid_cell_to_world(Element elt,Integer cell_x,Integer cell_y,Real &world_x,Real &world_y)
	Grid_cell_to_grid(Element elt,Real cell_x,Real cell_y,Real &grid_x,Real &grid_y)
	Grid_cell_to_grid(Element elt,Integer cell_x,Integer cell_y,Real &grid_x,Real &grid_y)
	Shift_grid_range(Element elt,Integer xshift,Integer yshift)
	Set_grid_heights(Element elt)
	Set_grid_heights(Element elt,Real value)
	Set_grid_heights(Element elt,Tin tin)
	Set_grid_heights(Element elt,Dynamic_Element list)
	Set_grid_height(Element elt,Integer xc,Integer yc,Real ht)
	Get_grid_height(Element elt,Integer xc,Integer yc,Real &ht)
	Convert_grid_string_to_grid_tin(Element elt,Text tin_name,Tin &tin)
	Convert_grid_tin_to_grid_string(Element tin,Element &elt)
	Convert_grid_to_strings(Element elt,Dynamic_Element &list)
	Convert_grid_to_tin(Element elt,Text tin_name,Tin &tin)
	Compute_merged_grid(Dynamic_Element list,Real &origin_x,Real &origin_y,Real &spacing_x,Real &spacing_y,Real &angle,Integer &xmin,Integer &ymin,Integer &xmax,Integer &ymax)
	Merge_grids(Dynamic_Element list,Element &grid)

	5.48 Face String Element
	Create_face(Real x[],Real y[],Real z[],Integer num_pts)
	Create_face(Integer num_npts)
	Create_face(Integer num_npts,Element seed)
	Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)
	Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
	Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)
	Get_face_data(Element elt,Integer i,Real &x,Real &y,Real &z)
	Set_face_data(Element elt,Integer i,Real x,Real y,Real z)
	Get_face_hatch_distance(Element elt,Real &dist)
	Set_face_hatch_distance(Element elt,Real dist)
	Get_face_hatch_angle(Element elt,Real &ang)
	Set_face_hatch_angle(Element elt,Real ang)
	Get_face_hatch_colour(Element elt,Integer &colour)
	Set_face_hatch_colour(Element elt,Integer colour)
	Get_face_edge_colour(Element elt,Integer &colour)
	Set_face_edge_colour(Element elt,Integer colour)
	Get_face_hatch_mode(Element elt,Integer &mode)
	Set_face_hatch_mode(Element elt,Integer mode)
	Get_face_fill_mode(Element elt,Integer &mode)
	Set_face_fill_mode(Element elt,Integer mode)
	Get_face_edge_mode(Element elt,Integer &mode)
	Set_face_edge_mode(Element elt,Integer mode)

	5.49 Drafting Elements
	5.49.1 Dimension Functions
	DRF_dimension_horizontal_points_create(Text style_name,Text format_text,Real sx,Real sy,Real ex,Real ey,Real dx,Real dy,Model &model,Element &out)
	DRF_dimension_vertical_points_create(Text style_name,Text format_text,Real sx,Real sy,Real ex,Real ey,Real dx,Real dy,Model &model,Element &out)
	DRF_dimension_aligned_points_create(Text style_name,Text format_text,Real sx,Real sy,Real ex,Real ey,Real dx,Real dy,Model &model,Element &out)
	DRF_dimension_aligned_points_fixoffset_create(Text style_name,Text format_text,Real sx,Real sy,Real ex,Real ey,Real dx,Real dy,Real fix_offset,Model &model,Element &out)
	DRF_dimension_rotated_points_create(Text style_name,Text format_text,Real sx,Real sy,Real ex,Real ey,Real dx,Real dy,Real rotation_angle,Model &model,Element &out)
	DRF_dimension_horizontal_segment_create(Text style_name,Text format_text,Segment base_segment,Real dx,Real dy,Model &model,Element &out)
	DRF_dimension_vertical_segment_create(Text style_name,Text format_text,Real sx,Segment base_segment,Real dy,Model &model,Element &out)
	DRF_dimension_aligned_segment_create(Text style_name,Text format_text,Segment base_segment,Real dx,Real dy,Model &model,Element &out)
	DRF_dimension_aligned_segment_fixoffset_create(Text style_name,Text format_text,Segment base_segment,Real dx,Real dy,Real fix_offset,Model &model,Element &out)
	DRF_dimension_rotated_segment_create(Text style_name,Text format_text,Segment base_segment,Real dx,Real dy,Real rotation_angle,Model &model,Element &out)
	DRF_dimension_drop_perpendicular_create(Text style_name,Text format_text,Real sx,Real sy,Segment base_segment,Real dx,Real dy,Real fix_offset,Model &model,Element &out)
	DRF_dimension_length_create(Text style_name,Text format_text,Segment base_seg,Real dx,Real dy,Model &model,Element &out)
	DRF_dimension_length_fixoffset_create(Text style_name,Text format_text,Segment base_seg,Real dx,Real dy,Real fix_offset,Model &model,Element &out)
	DRF_dimension_angular_points_create(Text style_name,Text format_text,Real sx,Real sy,Real ax,Real ay,Real ex,Real ey,Real dx,Real dy,Integer dir,Model &model,Element &out);
	DRF_dimension_angular_segment_create(Text style_name,Text format_text,Segment line1,Segment line2,Real dx,Real dy,Integer i1,Integer i2,Integer ir,Model &model,Element &out)
	DRF_dimension_radial_create(Text style_name,Text format_text,Segment base_arc,Real dx,Real dy,Integer float_dim,Model &model,Element &out)
	DRF_dimension_diameter_create(Text style_name,Text format_text,Segment base_arc,Real dx,Real dy,Integer float_dim,Model &model,Element &out)
	DRF_dimension_area_create(Text style_name,Text format_text,Element polygon,Model &model,Element &out)
	DRF_dimension_edit_move_dim(Real dx,Real dy,Element &dimension,Integer move_mode)
	DRF_dimension_edit_move_start(Real dx,Real dy,Element &dimension,Integer move_mode)
	DRF_dimension_edit_move_end(Real dx,Real dy,Element &dimension,Integer move_mode)
	ID = 2977
	DRF_get_dimension_styles(Dynamic_Text &styles)
	ID = 3378
	DRF_dimension_style_property(Text style_name,Text property_name,Integer &value)
	DRF_dimension_style_property(Text style_name,Text property_name,Real &value)
	DRF_dimension_style_property(Text style_name,Text property_name,Text &value)

	5.49.2 Leader Functions
	DRF_leader_create(Text style_name,Text leader_text,Real ax,Real ay,Real hx,Real hy,Model &model,Element &out)
	DRF_leader_edit_move_hook(Real hx,Real hy,Element &leader,Integer move_mode)
	DRF_leader_edit_move_arrow(Real hx,Real hy,Element &leader,Integer move_mode)
	DRF_get_leader_arrow(Element leader,Real &arrow_x,Real &arrow_y)
	DRF_get_leader_hook(Element leader,Real &hook_x,Real &hook_y)
	DRF_get_leader_text(Element leader,Text &leader_text)
	DRF_set_leader_hook_angle(Element leader,Real hook_angle)
	DRF_get_leader_hook_angle(Element leader,Real &hook_angle)
	DRF_get_leader_styles(Dynamic_Text &styles)
	ID = 3379
	DRF_leader_style_property(Text style_name,Text property_name,Integer &value)
	DRF_leader_style_property(Text style_name,Text property_name,Real &value)
	DRF_leader_style_property(Text style_name,Text property_name,Text &value)

	5.49.3 Table Functions
	DRF_table_create(Text table_name,Text style_name,Integer auto_size,Integer nr,Integer nc,Real cw,Real rh,Integer ti,Integer hi,Real px,Real py,Real ar,Model &model,Element &table)
	DRF_table_edit_cell(Integer row, Integer column, Text value, Element &table)
	DRF_table_edit_cell(Integer row, Integer column, Real value, Element &table)
	DRF_table_edit_cell(Integer row, Integer column, Integer value, Element &table)
	DRF_table_get_cell(Element table,Integer row,Integer column,Integer &cell_type,Integer &int_val,Real &real_val,Text &text_val)
	DRF_table_get_number_row_column(Element table,Integer &nr,Integer &nc)
	DRF_table_get_row_height(Element table,Integer row_number,Real &row_height)
	DRF_table_get_column_width(Element table,Integer col_number,Real &col_width)
	DRF_table_get_origin(Element table,Real &x_origin,Real &y_origin)
	DRF_table_get_offset(Element table,Real &x_offset,Real &y_offset)
	DRF_table_get_rotation(Element table,Real &rotation)
	DRF_table_set_row_height(Element table,Integer row_number,Real row_height)
	DRF_table_set_column_width(Element table,Integer col_number,Real col_width)
	DRF_table_set_origin(Element table,Real x_origin,Real y_origin)
	DRF_table_set_offset(Element table,Real x_offset,Real y_offset)
	DRF_table_set_rotation(Element table,Real rotation)
	DRF_get_table_styles(Dynamic_Text &styles)
	ID = 3380
	DRF_table_style_property(Text style_name,Text property_name,Integer &value)
	DRF_table_style_property(Text style_name,Text property_name,Real &value)
	DRF_table_style_property(Text style_name,Text property_name,Text &value)
	DRF_table_edit_resize(Integer nr,Integer nc,Element &table)
	DRF_table_edit_resize_column(Integer nc,Element &table)
	DRF_table_edit_resize_row(Integer nr,Element &table)

	5.49.4 Common Draft Functions
	DRF_recalc(Element &draft)
	DRF_get_style(Element draft,Text &style)
	DRF_drafting_edit_set_style(Text style_name,Element &draft)
	DRF_drafting_edit_set_format_text(Text new_text,Element &draft)
	DRF_get_override_names(Element drf,Integer &count,Dynamic_Text &names,Dynamic_Integer &types)
	DRF_get_override_value(Element drf,Text name,Integer &value)
	DRF_get_override_value(Element drf,Text name,Real &value)
	DRF_get_override_value(Element drf,Text name,Text &value)
	DRF_set_override_value(Element drf,Text name,Integer value)
	DRF_set_override_value(Element drf,Text name,Real value)
	DRF_set_override_value(Element drf,Text name,Text value)
	DRF_clear_overrides(Element drf)

	5.50 Trimesh Element
	Trimesh_number_of_points(Element trimesh,Integer &number_points)
	Trimesh_number_of_triangles(Element trimesh,Integer &number_triangles)
	Trimesh_number_of_edges(Element e,Integer &number_edges)
	Trimesh_get_point_coord(Element trimesh,Integer point_index,Real &x,Real &y,Real &z)
	Trimesh_get_triangle_points(Element trimesh,Integer triangle_index,Integer &p1_index,Integer &p2_index,Integer &p3_index)
	Trimesh_get_triangle_points_coords(Element trimesh,Integer triangle_index,Integer &p1_index,Integer &p2_index,Integer &p3_index,Real &x1,Real &y1,Real &z1,Real &x2,Real &y2,Real &z2,Real &x3,Real &y3,Real &z3)
	Trimesh_get_triangle_edges(Element trimesh,Integer triangle_index,Integer &e1_index,Integer &e2_index,Integer &e3_index)
	Trimesh_get_edge_triangles_points(Element e,Integer edge_index,Integer &triangles_count,Integer &triangle1_index,Integer &triangle2_index,Integer &vertex1_index,Integer &vertex2_index)
	Is_trimesh(Element e)
	Get_trimesh_centroid(Element trimesh,Real ¢roid_x,Real ¢roid_y,Real ¢roid_z)
	Get_trimesh_surface_area(Element trimesh,Real &area)
	Get_trimesh_volume(Element trimesh,Real &volume)
	Trimesh_closed(Element trimesh,Integer &is_closed)
	Form_trimesh_from_tin(Tin tin,Text mesh_name,Real mesh_offset,Real mesh_depth,Integer colour,Element &trimesh_out)
	Form_trimeshes_from_tin(Tin tin,Text mesh_name,Real mesh_offset,Real mesh_depth,Integer colour,Dynamic_Element &trimeshes_out)
	Form_trimesh_from_points(Dynamic_Real xyzs,Dynamic_Integer face_ix,Element &trimesh_out)
	Form_trimesh_from_points(Dynamic_Real xyzs,Dynamic_Integer face_ix,Dynamic_Integer colour_lists,Dynamic_Integer colour_ix,Element &trimesh_out)
	Trimesh_get_face_colour(Element trimesh,Integer face_index,Integer &colour)
	Form_trimeshes_from_element(Element e,Integer flags,Integer copy_attributes,Text name_prepost,Dynamic_Element &trimeshes_list)
	Form_trimesh_from_polygons(Dynamic_Element polygons, Integer vertex_info, Integer edge_info, Integer face_info, Text mesh_name, Integer mesh_colour, Element &trimesh_out, Text &return_message)
	Trimesh_section(Element trimesh,Real point_x,Real point_y,Real point_z,Real point_direction,Real point_grade,Real width, Real height,Integer &internal_return, Integer &result_closed,Integer &size_section_points,Dynamic_Real §ion_xs,Dynamic_Real &...
	Trimesh_get_blend_factor(Element trimesh,Real &blend_factor)
	Trimesh_set_blend_factor(Element trimesh,Real blend_factor)
	Trimesh_get_face_infos_count(Element e,Integer &infos_count)
	Trimesh_get_face_info_by_index(Element e,Integer info_index,Integer &colour,Text &name)
	Trimesh_set_face_info_by_index(Element e,Integer info_index,Integer colour,Text name)
	Trimesh_append_face_info(Element e,Integer colour,Text name)
	Trimesh_get_face_info_index(Element e,Integer face_number,Integer &info_index)
	Trimesh_set_face_info_index(Element e,Integer face_number,Integer info_index)
	Trimesh_set_face_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text names,Dynamic_Integer flags)
	Trimesh_get_edge_infos_count(Element e,Integer &infos_count)
	Trimesh_get_edge_info_by_index(Element e,Integer info_index,Integer &colour,Text &name)
	Trimesh_set_edge_info_by_index(Element e,Integer info_index,Integer colour,Text name)
	Trimesh_append_edge_info(Element e,Integer colour,Text name)
	Trimesh_get_edge_info_index(Element e,Integer edge_number,Integer &info_index)
	Trimesh_set_edge_info_index(Element e,Integer edge_number,Integer info_index)
	Trimesh_set_edge_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text names,Dynamic_Integer flags)
	Trimesh_get_vertex_infos_count(Element e,Integer &infos_count)
	Trimesh_get_vertex_info_by_index(Element e,Integer info_index,Integer &colour,Text &name)
	Trimesh_set_vertex_info_by_index(Element e,Integer info_index,Integer colour,Text name)
	Trimesh_append_vertex_info(Element e,Integer colour,Text name)
	Trimesh_get_vertex_info_index(Element e,Integer vertex_number,Integer &info_index)
	Trimesh_set_vertex_info_index(Element e,Integer vertex_number,Integer info_index)
	Trimesh_set_vertex_infos_flags(Element e,Dynamic_Integer colours,Dynamic_Text names,Dynamic_Integer flags)
	Trimesh_drop_point_3d(Element trimesh,Real point_x,Real point_y,Real point_z,Integer &vert_ix,Real &vert_o,Real &vert_dr_x,Real &vert_dr_y,Real &vert_dr_z,Integer &edge_ix,Real &edge_o,Real &edge_dr_x,Real &edge_dr_y,Real &edge_dr_z,Integer &face_ix,...
	Trimesh_edit_set_vertex(Element e,Integer i,Real x,Real y,Real z,Text &error)
	Trimesh_edit_move_vertex(Element e,Integer i,Real x,Real y,Real z,Text &error)
	Trimesh_edit_move_edge(Element e,Integer i,Real x,Real y,Real z,Text &error)
	Trimesh_edit_move_face(Element e,Integer i,Real x,Real y,Real z,Text &error)
	Trimesh_edit_move_vertices(Element e,Dynamic_Integer is,Real dx,Real dy,Real dz,Text &error)
	Trimesh_edit_move_vertices(Element e,Real dx,Real dy,Real dz,Text &error)
	Trimesh_edit_hide_vertex(Element e,Integer i,Text &error)
	Trimesh_edit_hide_edge(Element e,Integer i,Text &error)
	Trimesh_edit_hide_face(Element e,Integer i,Text &error)
	Trimesh_edit_hide_vertices(Element e,Dynamic_Integer is,Text &error)
	Trimesh_edit_hide_edges(Element e,Dynamic_Integer is,Text &error)
	Trimesh_edit_hide_faces(Element e,Dynamic_Integer is,Text &error)
	Trimesh_edit_remove_vertex(Element e,Integer i,Text &error)
	Trimesh_edit_remove_edge(Element e,Integer i,Text &error)
	Trimesh_edit_remove_face(Element e,Integer i,Text &error)
	Trimesh_edit_remove_vertices(Element e,Dynamic_Integer is,Text &error)
	Trimesh_edit_remove_edges(Element e,Dynamic_Integer is,Text &error)
	Trimesh_edit_remove_faces(Element e,Dynamic_Integer is,Text &error)
	Trimesh_edit_add_vertex(Element e,Real x,Real y,Real z,Text &error)
	Trimesh_edit_add_face(Element e,Integer i,Integer j,Integer k,Text &error)
	Trimesh_edit_split_edge(Element e,Integer i,Real x,Real y,Real z,Text &error)
	Trimesh_boolean_union(Element trimesh1,Element trimesh2,Integer keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text output_trimesh_name,Integer output_trimesh_colour,Element &trimesh_out,Text &error)
	Trimesh_boolean_difference(Element trimesh1,Element trimesh2,Integer keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text output_trimesh_name,Integer output_trimesh_colour,Element &trimesh_out,Text &error)
	Trimesh_boolean_intersection(Element trimesh1,Element trimesh2,Integer keep_vertex_info,Integer keep_edge_info,Integer keep_face_info,Text output_trimesh_name,Integer output_trimesh_colour,Element &trimesh_out,Text &error)
	Get_trimesh_areas(Element trimesh,Integer &has_top_area,Real has_surrounding_area,Real &surrounding_area,Integer &has_surface_area,Real &surface_area,Integer &has_top_plan_area,Real &top_plan_area,Integer &&top_area,Integer &has_bottom_area,Real &bot...
	Get_trimesh_top_faces(Element trimesh,Integer faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_bottom_faces(Element trimesh,Integer faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_surrounding_faces(Element trimesh,Integer faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_collapsing_faces(Element trimesh,Integer faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_areas(Element trimesh,Real tolerance,Integer &has_top_area,Real has_surrounding_area,Real &surrounding_area,Integer &has_surface_area,Real &surface_area,Integer &has_top_plan_area,Real &top_plan_area,Integer &&top_area,Integer &has_bottom...
	Get_trimesh_top_faces(Element trimesh,Real tolerance,Integer &patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_bottom_faces(Element trimesh,Real tolerance,Integer &patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_collapsing_faces(Element trimesh,Real tolerance,Integer &patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_trimesh_surrounding_faces(Element trimesh,Real tolerance,Integer &patches_count,Dynamic_Integer &patch_sizes,Integer &faces_count,Dynamic_Integer &face_indices,Text &error)
	Get_sub_trimesh(Element trimesh,Dynamic_Integer &sub_faces_ix,Element &sub_mesh)

	5.51 Plot Frame Element
	Create_plot_frame(Text name)
	Get_plot_frame_name(Element elt,Text &name)
	Get_plot_frame_scale(Element elt,Real &scale)
	Get_plot_frame_rotation(Element elt,Real &rotation)
	Get_plot_frame_origin(Element elt,Real &x,Real &y)
	Get_plot_frame_sheet_size(Element elt,Real &w,Real &h)
	Get_plot_frame_sheet_size(Element elt,Text &size)
	Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t)
	Get_plot_frame_text_size(Element elt,Real &text_size)
	Get_plot_frame_draw_border(Element elt,Integer &draw_border)
	Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport)
	Get_plot_frame_draw_title_file(Element elt,Integer &draw_title)
	Get_plot_frame_colour(Element elt,Integer &colour)
	Get_plot_frame_textstyle(Element elt,Text &textstyle)
	Get_plot_frame_plotter(Element elt,Integer &plotter)
	Get_plot_frame_plotter_name(Element elt,Text &plotter_name)
	Get_plot_frame_plot_file(Element elt,Text &plot_file)
	Get_plot_frame_title_1(Element elt,Text &title)
	Get_plot_frame_title_2(Element elt,Text &title)
	Get_plot_frame_title_file(Element elt,Text &title_file)
	Set_plot_frame_name(Element elt,Text name)
	Set_plot_frame_scale(Element elt,Real scale)
	Set_plot_frame_rotation(Element elt,Real rotation)
	Set_plot_frame_origin(Element elt,Real x,Real y)
	Set_plot_frame_sheet_size(Element elt,Real w,Real h)
	Set_plot_frame_sheet_size(Element elt,Text size)
	Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t)
	Set_plot_frame_text_size(Element elt,Real text_size)
	Set_plot_frame_draw_border(Element elt,Integer draw_border)
	Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport)
	Set_plot_frame_draw_title_file(Element elt,Integer draw_title)
	Set_plot_frame_colour(Element elt,Integer colour)
	Set_plot_frame_textstyle(Element elt,Text textstyle)
	Set_plot_frame_plotter(Element elt,Integer plotter)
	Set_plot_frame_plotter_name(Element elt,Text plotter_name)
	Set_plot_frame_plot_file(Element elt,Text plot_file)
	Set_plot_frame_title_1(Element elt,Text title_1)
	Set_plot_frame_title_2(Element elt,Text title_2)
	Set_plot_frame_title_file(Element elt,Text title_file)

	5.52 Strings Replaced by Super Strings
	5.52.1 2d Strings
	Create_2d(Real x[],Real y[],Real zvalue,Integer num_pts)
	Create_2d(Integer num_pts)
	Create_2d(Integer num_pts,Element seed)
	Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pts,Integer &num_pts)
	Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pt,Integer &num_pts,Integer start_pt)
	Get_2d_data(Element elt,Integer i,Real &x,Real &y)
	Get_2d_data(Element elt,Real &z)
	Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts)
	Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts,Integer start_pt)
	Set_2d_data(Element elt,Integer i,Real x,Real y)
	Set_2d_data(Element elt,Real z)

	5.52.2 3d Strings
	Create_3d(Line line)
	Create_3d(Real x[],Real y[],Real z[],Integer num_pts)
	Create_3d(Integer num_pts)
	Create_3d(Integer num_pts,Element seed)
	Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)
	Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z)
	Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
	Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)
	Set_3d_data(Element elt,Integer i,Real x,Real y,Real z)

	5.52.3 4d Strings
	Create_4d(Real x[],Real y[],Real z[],Text t[],Integer num_pts)
	Create_4d(Integer num_pts)
	Create_4d(Integer num_pts,Element seed)
	Set_4d_data(Element elt,Real x[],Real y[],Real z[], Text t[],Integer num_pts)
	Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts,Integer start_pt)
	Set_4d_data(Element elt,Integer i,Real x,Real y,Real z,Text t)
	Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer &num_pts)
	Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_4d_data(Element elt,Integer i,Real &x,Real &y,Real &z,Text &t)
	Set_4d_textstyle_data(Element elt,Textstyle_Data d)
	Get_4d_textstyle_data(Element elt,Textstyle_Data &d)
	Set_4d_units(Element elt,Integer units_mode)
	Get_4d_units(Element elt,Integer &units_mode)
	Set_4d_size(Element elt,Real size)
	Get_4d_size(Element elt,Real &size)
	Set_4d_justify(Element elt,Integer justify)
	Get_4d_justify(Element elt,Integer &justify)
	Set_4d_angle(Element elt,Real angle)
	Get_4d_angle(Element elt,Real &angle)
	Set_4d_angle2(Element elt,Real angle2)
	Get_4d_angle2(Element elt,Real &angle2)
	Set_4d_angle3(Element elt,Real angle3)
	Get_4d_angle3(Element elt,Real &angle3)
	Set_4d_offset(Element elt,Real offset)
	Get_4d_offset(Element elt,Real &offset)
	Set_4d_rise(Element elt,Real rise)
	Get_4d_rise(Element elt,Real &rise)
	Set_4d_height(Element elt,Real height)
	Get_4d_height(Element elt,Real &height)
	Set_4d_slant(Element elt,Real slant)
	Get_4d_slant(Element elt,Real &slant)
	Set_4d_x_factor(Element elt,Real xfact)
	Get_4d_x_factor(Element elt,Real &xfact)
	Set_4d_style(Element elt,Text style)
	Get_4d_style(Element elt,Text &style)
	Set_4d_ttf_underline(Element elt,Integer underline)
	Get_4d_ttf_underline(Element elt,Integer &underline)
	Set_4d_ttf_strikeout(Element elt,Integer strikeout)
	Get_4d_ttf_strikeout(Element elt,Integer &strikeout)
	Set_4d_ttf_weight(Element elt,Integer weight)
	Get_4d_ttf_weight(Element elt,Integer &weight)
	Set_4d_ttf_italic(Element elt,Integer italic)
	Get_4d_ttf_italic(Element elt,Integer &italic)
	Set_4d_ttf_outline(Element elt,Integer outline)
	Get_4d_ttf_outline(Element elt,Integer &outline)
	Set_4d_whiteout(Element element,Integer colour)
	Get_4d_whiteout(Element element,Integer &colour)
	Set_4d_border(Element element,Integer colour)
	Get_4d_border(Element element,Integer &colour)
	Set_4d_border_style(Element element,Integer style)
	Get_4d_border_style(Element element,Integer &style)

	5.52.4 Pipe Strings
	Create_pipe(Real x[],Real y[],Real z[],Integer num_pts)
	Create_pipe(Integer num_pts)
	Create_pipe(Integer num_pts,Element seed)
	Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)
	Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
	Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)
	Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z)
	Set_pipe_data(Element elt,Integer i,Real x,Real y,Real z)
	Get_pipe_diameter(Element elt,Real &diameter)
	Set_pipe_diameter(Element elt,Real diameter)
	Get_pipe_justify(Element elt,Integer &justify)
	Set_pipe_justify(Element elt,Integer justify)

	5.52.5 Polyline Strings
	Create_polyline(Real x[],Real y[],Real z[],Real r[],Integer bulge[],Integer num_pts)
	Create_polyline(Integer num_pts)
	Create_polyline(Integer num_pts,Element seed)
	Create_polyline(Segment seg)
	Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer b[],Integer max_pts,Integer &num_pts)
	Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)
	Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
	Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts,Integer start_pt)
	Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

	5.53 Alignment String Element
	Element Create_align()
	Create_align(Element seed)
	Append_hip(Element elt,Real x,Real y)
	Append_hip(Element elt,Real x,Real y,Real rad)
	Append_hip(Element elt,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
	Get_hip_points(Element elt,Integer &num_pts)
	Get_hip_data(Element elt,Integer i,Real &x,Real &y)
	Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad)
	Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad,Real &left_spiral,Real &right_spiral)
	Set_hip_data(Element elt,Integer i,Real x,Real y)
	Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad)
	Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
	Insert_hip(Element elt,Integer i,Real x,Real y)
	Insert_hip(Element elt,Integer i,Real x,Real y,Real rad)
	Insert_hip(Element elt,Integer i, Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
	Delete_hip(Element elt,Integer i)
	Get_hip_type(Element elt,Integer hip_no,Text &type)
	Get_hip_geom(Element elt,Integer hip_no,Integer mode, Real &x,Real &y)
	Append_vip(Element elt,Real ch,Real ht)
	Append_vip(Element elt,Real ch,Real ht,Real parabolic)
	Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode)
	Get_vip_points(Element elt,Integer &num_pts)
	Get_vip_data(Element elt,Integer i,Real &ch,Real &ht)
	Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real ¶bolic)
	Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer &mode)
	Set_vip_data(Element elt,Integer i,Real ch,Real ht)
	Set_vip_data(Element elt,Integer i, Real ch,Real ht,Real parabolic)
	Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)
	Insert_vip(Element elt,Integer i,Real ch,Real ht)
	Insert_vip(Element elt,Integer i,Real ch,Real ht,Real parabolic)
	Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)
	Delete_vip(Element elt,Integer i)
	Calc_alignment(Element elt)
	Get_vip_type(Element elt,Integer vip_no,Text &type)
	Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real &height)
	Get_hip_id(Element elt,Integer position,Integer &id)
	Get_vip_id(Element elt,Integer position,Integer &id)

	5.54 General Element Operations
	5.54.1 Selecting Strings
	Select_string(Text msg,Element &string)
	Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht)
	Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht,Integer &dir)

	5.54.2 Drawing Elements
	Element_draw(Element elt,Integer col_num)
	Element_draw(Element elt)

	5.54.3 Open and Closing Strings
	String_closed(Element elt,Integer &closed)
	String_open(Element elt)
	String_close(Element elt)

	5.54.4 Length and Area of Strings
	Get_length(Element string,Real &length)
	Get_length_3d(Element string,Real &length)
	Get_length_3d(Element string,Real ch,Real &length)
	Plan_area(Element string, Real &plan_area)
	Plan_area_signed(Element string,Real &plan_area)
	Surface_area_tin_polygon(Tin tin,Element polygon,Real &slope_area,Real &plan_area)

	5.54.5 Position and Drop Point on Strings
	Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir)
	Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real &rad, Real &inst_grade)
	Get_position(Element string,Real ch,Real &x,Real &y,Real &z,Real &dir,Integer &vertex,Real &distance)
	Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real &off)
	Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real &off,Segment &segment)

	5.54.6 Parallel Strings
	Parallel(Element elt,Real distance,Element ¶llelled)

	5.54.7 Self Intersection of String
	String_self_intersects(Element elt,Integer &intersects)

	5.54.8 Loop Clean Up for String
	Loop_clean(Element elt,Point ok_pt,Element &new_elt)

	5.54.9 Check Element Locks
	Get_read_locks(Element elt,Integer &num_locks)
	Get_write_locks(Element elt,Integer &num_locks)

	5.54.10 Miscellaneous Element Functions
	String_replace(Element from,Element &to)

	5.55 Creating Valid Names
	Valid_string_name(Text old_name,Text &valid_name)
	Valid_model_name(Text old_name,Text &valid_name)
	Valid_tin_name(Text old_name,Text &valid_name)
	Valid_attribute_name(Text old_name,Text &valid_name)
	Valid_attribute_path(Text old_path,Text &valid_path)
	Valid_attribute_xpath(Text old_path,Text &valid_path)
	Valid_linestyle_name(Text old_name,Text &valid_name)
	Valid_symbol_name(Text old_name,Text &valid_name)

	5.56 XML
	Create_XML_document()
	Read_XML_document(XML_Document doc,Text file)
	Write_XML_document(XML_Document doc,Text file)
	Get_XML_declaration(XML_Document doc,Text &version,Text &encoding, Integer &standalone)
	Set_XML_declaration(XML_Document doc,Text version,Text encoding, Integer standalone)
	Create_node(Text name)
	Get_root_node(XML_Document doc,XML_Node &node)
	Set_root_node(XML_Document,XML_Node &node)
	Get_number_of_nodes(XML_Node node)
	Get_child_node(XML_Node node,Integer index,XML_Node &child_node)
	Get_child_node(XML_Node node,Text name,XML_Node &child_node)
	Append_node(XML_Node parent,XML_Node new_node)
	Remove_node(XML_Node parent,Integer index)
	Get_parent_node(XML_Node child,XML_Node &parent)
	Get_next_sibling_node(XML_Node node,XML_Node &sibling)
	Get_prev_sibling_node(XML_Node node,XML_Node &sibling)
	Get_node_name(XML_Node node,Text &name)
	Get_node_attribute(XML_Node node,Text name,Text &value)
	Set_node_attribute(XML_Node node,Text name,Text value)
	Remove_node_attribute(XML_Node node,Text name)
	Is_text_node(XML_node &node)
	Get_node_text(XML_Node &node,Text &text)
	Set_node_text(XML_Node &node,Text value)
	Create_text_node(Text name,Text value)
	Get_node_attributes(XML_Node node, Integer &attributes_count)
	Get_node_attributes(XML_Node node, Integer &attributes_count, Dynamic_Text &names, Dynamic_Text &values)
	Get_node_attribute (XML_Node node, Integer attribute_index, Text &name, Text &value)
	Write_XML_Document(XML_Document doc,File &file)
	Write_XML(Model model,Text filename,Integer precision,Integer output_model_name,Integer bool_flags,Real null_value)
	XML_to_12da(Text xml_filename,Text tda_filename)
	Translate_XML_file(Text xml_filename,Text xslt_filename,Integer output_type,Integer decimal,Text output_filename)
	ADAC_get_xsd_path(Text version,Text &path)
	XSD_get_type_enumerations(Text xsd,Text schema,Text frag_path,Dynamic_Text &enums,Text &elem_type)

	5.57 Map File
	Map_file_create(Map_File &file)
	Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file)
	Map_file_close(Map_File file)
	Map_file_number_of_keys(Map_File file,Integer &number)
	Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer colour,Integer ptln,Text style)
	Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model, Integer &colour,Integer &ptln,Text &style)
	Map_file_find_key(Map_File file,Text key, Integer &number)

	5.58 Project Setting
	Read_project_settings_file(Text project_settings_filename)
	Get_active_project_settings_profile(Text &active_profile_name)
	Set_active_project_settings_profile(Text active_profile_name)
	Get_project_settings_profiles_count()
	Get_project_settings_profile_name(Integer profile_index,Text &profile_name)
	Remove_project_setting(Text name)
	Project_setting_exists(Text name)
	Get_project_setting_integer(Text name)
	Get_project_setting_real(Text name)
	Get_project_setting_text(Text name)
	Get_project_setting_colour(Text name)
	Set_project_setting_integer(Text name,Integer value)
	Set_project_setting_integer(Text name,Integer value)
	Set_project_setting_real(Text name,Real value)
	Set_project_setting_text(Text name,Text value)
	Set_project_setting_colour(Text name,Integer value)
	Set_project_setting_attributes(Text name,Attributes value)

	5.59 Macro Console
	Set_message_mode(Integer mode)
	Set_message_text(Text msg)
	Prompt(Text msg)
	Prompt(Text msg,Text &ret)
	Prompt(Text msg,Integer &ret)
	Prompt(Text msg,Real &ret)
	Colour_prompt(Text msg,Text &ret)
	Error_prompt(Text msg)
	Choice_prompt(Text msg,Integer no_choices,Text choices[],Text &ret)
	File_prompt(Text msg,Text wild_card_key,Text &ret)
	Model_prompt(Text msg,Text &ret)
	Template_prompt(Text msg,Text &ret)
	Tin_prompt(Text msg,Text &ret)
	Tin_prompt(Text msg,Integer mode,Text &ret)
	View_prompt(Text msg,Text &ret)
	Yes_no_prompt(Text msg,Text &ret)
	Plotter_prompt(Text msg,Text &ret)
	Sheet_size_prompt(Text msg,Text &ret)
	Linestyle_prompt(Text msg,Text &ret)
	Textstyle_prompt(Text msg,Text &ret)
	Justify_prompt(Text msg,Text &ret)
	Angle_prompt(Text msg,Text &ret)
	Function_prompt(Text msg,Text &ret)
	Project_prompt(Text msg,Text &ret)
	Directory_prompt(Text msg,Text &ret)
	Text_units_prompt(Text msg,Text &ret)
	XYZ_prompt(Text msg,Real &x,Real &y,Real &z)
	Name_prompt(Text msg,Text &ret)
	Panel_prompt(Text panel_name, Integer interactive, Integer no_field,Text field_name[], Text field_value[])
	Panel_prompt(Text panel_name, Integer interactive, Text data)

	5.60 Panels and Widgets
	5.60.1 Cursor Controls
	Get_cursor_position(Integer &x,Integer &y)
	Set_cursor_position(Integer x,Integer y)

	5.60.2 Panel Functions
	Create_panel(Text title_text)
	Create_panel(Text title_text, Integer sizing_enable)
	Append(Widget widget,Panel panel)
	Write_SLX(Panel panel,Text filename)
	Read_SLX(Panel panel,Text filename)

	5.60.3 Horizontal Group
	Horizontal_Group Create_horizontal_group(Integer mode)
	Horizontal_Group Create_button_group()
	Append(Widget widget,Horizontal_Group group)
	Set_border(Horizontal_Group group,Text text)
	Set_border(Horizontal_Group group,Integer bx,Integer by)
	Set_gap(Horizontal_Group group,Integer gap)

	5.60.4 Vertical Group
	Vertical_Group Create_vertical_group(Integer mode)
	Append(Widget widget,Vertical_Group group)
	Set_border(Vertical_Group group,Text text)
	Set_border(Vertical_Group group,Integer bx,Integer by)
	Set_gap(Vertical_Group group,Integer gap)
	Get_sizing_constraints(Widget widget,Integer &horizontal_mode,Integer &vertical_mode)
	Set_sizing_constraints(Widget widget,Integer horizontal_mode,Integer vertical_mode)

	5.60.5 Widget Controls
	Wait_on_widgets(Integer &id,Text &cmd,Text &msg)
	Use_browse_button(Widget widget,Integer mode)
	Show_browse_button(Widget widget,Integer mode)
	Set_enable(Widget widget,Integer mode)
	Get_enable(Widget widget,Integer &mode)
	Set_optional(Widget widget,Integer mode)
	Get_optional(Widget widget,Integer &mode)
	Set_visible(Widget widget,Integer mode)
	Get_visible(Widget widget,Integer &mode)
	Set_name(Widget widget,Text text)
	Get_name(Widget widget,Text &text)
	Set_dump_name(Widget widget,Text text)
	Get_dump_name(Widget widget,Text &text)
	Get_dump_name(Widget widget,Text &text,Integer effective)
	Set_error_message(Widget widget,Text text)
	Set_width_in_chars(Widget widget,Integer num_char)
	Show_widget(Widget widget)
	Show_widget(Widget widget,Integer x,Integer y)
	Hide_widget(Widget widget)
	Set_size(Widget widget,Integer x,Integer y)
	Get_size(Widget widget,Integer &x,Integer &y)
	Get_widget_size(Widget widget,Integer &w,Integer &h)
	Set_cursor_position(Widget widget)
	Get_widget_position(Widget widget,Integer &x,Integer &y)
	Get_position(Widget widget,Integer &x,Integer &y)
	Get_id(Widget widget)
	Set_focus(Widget widget)

	5.60.6 General Widget Commands and Messages
	5.60.7 Widget Information Area Menu
	5.60.8 Widget Tooltip and Help Calls
	Set_tooltip(Widget widget,Text tip)
	Get_tooltip(Widget widget,Text &tip)
	Set_help(Widget widget,Integer help_num)
	Get_help(Widget widget,Integer &help_num)
	Set_help(Widget widget,Text help_message)
	Get_help(Widget widget,Text &help_message)
	Winhelp(Widget widget,Text help_file,Text key)
	Winhelp(Widget widget,Text help_file,Integer table,Text key)
	Winhelp(Widget widget,Text help_file,Integer help_id)
	Winhelp(Widget widget,Text help_file,Integer help_id,Integer popup)

	5.60.9 Panel Page
	Widget_Pages Create_widget_pages()
	Append(Widget widget,Widget_Pages pages)
	Set_page(Widget_Pages pages,Integer n)
	Set_page(Widget_Pages pages,Widget widget)
	Get_page(Widget_Pages pages,Widget widget,Integer &page_no)

	5.60.10 Input Widgets
	5.60.10.1 Angle_Box
	Create_angle_box(Text title_text,Message_Box message)
	Set_data(Angle_Box box,Real angle)
	Set_data(Angle_Box box,Text text_data)
	Get_data(Angle_Box box,Text &text_data)
	Validate(Angle_Box box,Real &angle)

	5.60.10.2 Attributes_Box
	Attributes_Box Create_attributes_box(Text title_text,Message_Box message)
	Set_data(Attributes_Box box,Attributes &data)
	Set_data(Attributes_Box box,Text text_data)
	Get_data(Attributes_Box box,Text &text_data)
	Validate(Attributes_Box box,Attributes &result)

	5.60.10.3 Billboard_Box
	Billboard_Box Create_billboard_box(Text title_text,Message_Box message)
	Set_data(Billboard_Box box,Text text_data)
	Get_data(Billboard_Box box,Text &text_data)
	Validate(Billboard_Box box,Text &result)
	Get_billboard_size(Text name,Real &w,Real &h)

	5.60.10.4 Bitmap_Fill_Box
	Create_bitmap_fill_box(Text title_text,Message_Box message)
	Validate(Bitmap_Fill_Box box,Text &result)
	Set_data(Bitmap_Fill_Box box,Text text_data)
	Get_data(Bitmap_Fill_Box box,Text &text_data)

	5.60.10.5 Chainage_Box
	Chainage_Box Create_chainage_box(Text title_text,Message_Box message)
	Validate(Chainage_Box box,Real &result)
	Get_data(Chainage_Box box,Text &text_data)
	Set_data(Chainage_Box box,Real real_data)
	Set_data(Chainage_Box box,Text text_data)

	5.60.10.6 Choice_Box
	Create_choice_box(Text title_text,Message_Box message)
	Validate(Choice_Box box,Text &result)
	Get_data(Choice_Box box,Text &text_data)
	Set_data(Choice_Box box,Text text_data)
	Set_data(Choice_Box box,Integer nc,Text choices[])

	5.60.10.7 Colour_Box
	Create_colour_box(Text title_text,Message_Box message)
	Validate(Colour_Box box,Integer &col_num)
	Set_data(Colour_Box box,Integer colour_num)
	Set_data(Colour_Box box,Text text_data)
	Get_data(Colour_Box box,Text &text_data)

	5.60.10.8 Date_Time_Box
	Date_Time_Box Create_date_time_box(Text title_text,Message_Box message)
	Validate(Date_Time_Box box,Text &data)
	Set_data(Date_Time_Box box,Text text_data)
	Get_data(Date_Time_Box box,Text &text_data)
	Get_data(Date_Time_Box box,Integer &integer_data)
	Get_data(Date_Time_Box box,Real &real_data)

	5.60.10.9 Directory_Box
	Create_directory_box(Text title_text,Message_Box message,Integer mode)
	Validate(Directory_Box box,Integer mode,Text &result)
	Get_data(Directory_Box box,Text &text_data)
	Set_data(Directory_Box box,Text text_data)

	5.60.10.10 Draw_Box
	Create_draw_box(Integer box_width,Integer box_height,Integer border)
	Get_size(Draw_Box,Integer &actual_width,Integer &actual_height)
	Set_origin(Draw_Box box,Real x,Real y)
	Set_scale(Draw_Box box,Real xs,Real ys)
	Start_batch_draw(Draw_Box box)
	End_batch_draw(Draw_Box box)
	Clear(Draw_Box box,Integer r,Integer g,Integer b)
	Set_colour(Draw_Box box,Integer colour_num)
	Set_colour(Draw_Box box,Integer r,Integer g,Integer b)
	Move_to(Draw_Box box,Real x,Real y)
	Draw_to(Draw_Box box,Real x,Real y)
	Draw_polyline(Draw_Box box,Integer num_pts,Real x[],Real y[])
	Set_text_colour(Draw_Box box,Integer r,Integer g,Integer b)
	Set_text_font(Draw_Box box,Text font)
	Set_text_weight(Draw_Box box,Integer weight)
	Set_text_align(Draw_Box box,Integer mode)
	Draw_text(Draw_Box box,Real x,Real y,Real size,Real angle,Text txt)

	5.60.10.11 File_Box
	Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)
	Validate(File_Box box,Integer mode,Text &result)
	Get_data(File_Box box,Text &text_data)
	Set_data(File_Box box,Text text_data)
	Get_wildcard(File_Box box,Text &data)
	Set_wildcard(File_Box box,Text text_data)
	Get_directory(File_Box box,Text &data)
	Set_directory(File_Box box,Text text_data)
	Set_many(File_Box box,Integer mode)
	Get_many(File_Box box,Integer &mode)
	Set_encoding(File_Box box,Integer encoding)
	Get_encoding(File_Box box,Integer &encoding)
	Set_show_encodings(File_Box box,Integer show)
	Get_show_encodings(File_Box box,Integer &show)
	Set_libraries(File_Box box,Integer data)
	Get_libraries(File_Box box,Integer &data)
	Set_setups(File_Box box,Integer data)
	Get_setups(File_Box box,Integer &data)

	5.60.10.12 Function_Box
	Function_Box Create_function_box(Text title_text,Message_Box message,Integer mode,Integer type)
	Validate(Function_Box box,Integer mode,Function &result)
	Get_data(Function_Box box,Text &text_data)
	Set_data(Function_Box box,Text text_data)
	Get_type(Function_Box box,Integer &type)
	Set_type(Function_Box box,Integer type)
	Get_type(Function_Box box,Text &type)
	Set_type(Function_Box box,Text type)

	5.60.10.13 HyperLink_Box
	HyperLink_Box Create_hyperlink_box(Text hyperlink,Message_Box message)
	Validate(HyperLink_Box box,Text &result)
	Set_data(HyperLink_Box box,Text text_data)
	Get_data(HyperLink_Box box,Text &text_data)

	5.60.10.14 Input_Box
	Create_input_box(Text title_text,Message_Box message)
	Validate(Input_Box box,Text &result)
	Get_data(Input_Box box,Text &text_data)
	Set_data(Input_Box box,Text text_data)
	Set_multi_line(Input_Box box,Integer no_lines)
	Get_multi_line(Input_Box box,Integer &no_lines)

	5.60.10.15 Integer_Box
	Create_integer_box(Text title_text,Message_Box message)
	Validate(Integer_Box box,Integer &result)
	Get_data(Integer_Box box,Text &text_data)
	Set_data(Integer_Box box,Integer integer_data)
	Set_data(Integer_Box box,Text text_data)

	5.60.10.16 Justify_Box
	Create_justify_box(Text title_text,Message_Box message)
	Validate(Justify_Box box,Integer &result)
	Get_data(Justify_Box box,Text &text_data)
	Set_data(Justify_Box box,Integer integer_data)
	Set_data(Justify_Box box,Text text_data)

	5.60.10.17 Linestyle_Box
	Create_linestyle_box(Text title_text,Message_Box message,Integer mode)
	Validate(Linestyle_Box box,Integer mode,Text &result)
	Get_data(Linestyle_Box box,Text &text_data)
	Set_data(Linestyle_Box box,Text text_data)

	5.60.10.18 List_Box
	Create_list_box(Text title_text,Message_Box message,Integer nlines)
	Get_number_of_items(List_Box box,Integer &count)
	Set_sort(List_Box box,Integer mode)
	Get_sort(List_Box box,Integer &mode)
	Set_auto_cut_paste(List_Box box,Integer mode)
	Get_auto_cut_paste(List_Box box,Integer &mode)
	Set_selections(List_Box box,Integer mode)
	Get_selections(List_Box box,Integer &mode)
	Set_caret(List_Box box,Integer pos,Integer scroll)
	Get_caret(List_Box box,Integer &pos)
	Delete_item(List_Box box,Integer pos)
	Insert_item(List_Box box,Integer pos,Text text)
	Add_item(List_Box box,Text text)
	Get_item(List_Box box,Integer pos,Text &text)
	Set_selection(List_Box box,Integer pos)
	Get_selection(List_Box box,Integer &pos)
	Get_selection_count(List_Box box,Integer &count)
	Set_selection_list(List_Box box,Integer maxc,Integer list[],Integer do_select)
	Get_selection_list(List_Box box,Integer maxc,Integer list[])

	5.60.10.19 Map_File_Box
	Create_map_file_box(Text title_text,Message_Box message,Integer mode)
	Validate(Map_File_Box box,Integer mode,Text &result)
	Get_data(Map_File_Box box,Text &text_data)
	Set_data(Map_File_Box box,Text text_data)

	5.60.10.20 Model_Box
	Create_model_box(Text title_text,Message_Box message,Integer mode)
	Validate(Model_Box box,Integer mode,Model &result)
	Get_data(Model_Box box,Text &text_data)
	Set_data(Model_Box box,Text text_data)

	5.60.10.21 Name_Box
	Create_name_box(Text title_text,Message_Box message)
	Validate(Name_Box box,Text &result)
	Get_data(Name_Box box,Text &text_data)
	Set_data(Name_Box box,Text text_data)

	5.60.10.22 Named_Tick_Box
	Create_named_tick_box(Text title_text,Integer state,Text response)
	Validate(Named_Tick_Box box,Integer &result)
	Set_data(Named_Tick_Box box,Integer state)
	Get_data(Named_Tick_Box box,Text &text_data)
	Set_data(Named_Tick_Box box,Text text_data)

	5.60.10.23 New_Select_Box
	Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Validate(New_Select_Box select,Element &string)
	Validate(New_Select_Box select,Element &string,Integer silent)
	Set_data(New_Select_Box select,Element string)
	Set_data(New_Select_Box select,Text model_string)
	Get_data(New_Select_Box select,Text &model_string)
	Select_start(New_Select_Box select)
	Select_end(New_Select_Box select)
	Set_select_type(New_Select_Box select,Text type)
	Set_select_snap_mode(New_Select_Box select,Integer snap_control)
	Set_select_snap_mode(New_Select_Box select,Integer snap_mode,Integer snap_control,Text snap_text)
	Set_select_direction(New_Select_Box select,Integer dir)
	Get_select_direction(New_Select_Box select,Integer &dir)
	Set_select_coordinate(New_Select_Box select,Real x,Real y,Real z,Real ch,Real ht)
	Get_select_coordinate(New_Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	5.60.10.24 New_XYZ_Box
	Create_new_xyz_box(Text title_text,Message_Box message)
	Validate(New_XYZ_Box box,Real &x,Real &y,Real &z)
	Get_data(New_XYZ_Box box,Text &text_data)
	Set_data(New_XYZ_Box box,Real x,Real y,Real z)
	Set_data(New_XYZ_Box box,Text text_data)

	5.60.10.25 Plotter_Box
	Create_plotter_box(Text title_text,Message_Box message)
	Validate(Plotter_Box box,Text &result)
	Get_data(Plotter_Box box,Text &text_data)
	Set_data(Plotter_Box box,Text text_data)
	Validate(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)
	Set_data(Plotter_Box box,Text plotter_mode,Text plotter_names,Text plotter_type)
	Get_data(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)

	5.60.10.26 Polygon_Box
	Polygon_Box Create_polygon_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Validate(Polygon_Box select,Element &string)
	Validate(Polygon_Box select,Element &string,Integer silent)
	Set_data(Polygon_Box select,Element string)
	Set_data(Polygon_Box select,Text string_name)
	Get_data(Polygon_Box select,Text &string)
	Set_allow_holes(Polygon_Box select,Integer allow)
	Get_allow_holes(Polygon_Box select,Integer &allow)

	5.60.10.27 Real_Box
	Create_real_box(Text title_text,Message_Box message)
	Validate(Real_Box box,Real &result)
	Get_data(Real_Box box,Text &text_data)
	Set_data(Real_Box box,Real real_data)
	Set_data(Real_Box box,Text text_data)

	5.60.10.28 Report_Box
	Create_report_box(Text title_text,Message_Box message,Integer mode)
	Validate(Report_Box box,Integer mode,Text &result)
	Get_data(Report_Box box,Text &text_data)
	Set_data(Report_Box box,Text text_data)

	5.60.10.29 Screen_Text
	Create_screen_text(Text text)
	Set_data(Screen_Text widget,Text text_data)
	Get_data(Screen_Text widget,Text &text_data)

	5.60.10.30 Select_Box
	Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Validate(Select_Box select,Element &string)
	Validate(Select_Box select,Element &string,Integer silent)
	Set_data(Select_Box select,Text model_string)
	Set_data(Select_Box select,Element string)
	Get_data(Select_Box select,Text &string)
	Select_start(Select_Box select)
	Select_end(Select_Box select)
	Set_select_type(Select_Box select,Text type)
	Set_select_snap_mode(Select_Box select,Integer snap_control)
	Set_select_snap_mode(Select_Box select,Integer snap_mode,Integer snap_control,Text snap_text)
	Set_select_direction(Select_Box select,Integer dir)
	Get_select_direction(Select_Box select,Integer &dir)
	Set_select_coordinate(Select_Box select,Real x,Real y,Real z,Real ch,Real ht)
	Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	5.60.10.31 Select_Boxes
	Create_select_boxes(Integer no_boxes,Text title_text[],Text select_title[],Integer mode[],Message_Box message)
	Validate(Select_Boxes select,Integer n,Element &string)
	Validate(Select_Boxes select,Integer n,Element &string,Integer silent)
	Set_data(Select_Boxes select,Integer n,Text model_string)
	Set_data(Select_Boxes select,Integer n,Element string)
	Get_data(Select_Boxes select,Integer n,Text &model_string)
	Select_start(Select_Boxes select,Integer n)
	Select_end(Select_Boxes select,Integer n)
	Set_select_type(Select_Boxes select,Integer n,Text type)
	Set_select_snap_mode(Select_Boxes select,Integer n,Integer control)
	Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer snap_control,Text snap_text)
	Set_select_direction(Select_Boxes select,Integer n,Integer dir)
	Get_select_direction(Select_Boxes select,Integer n,Integer &dir)
	Set_select_coordinate(Select_Boxes select,Integer n,Real x,Real y,Real z,Real ch,Real ht)
	Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	5.60.10.32 Sheet_Size_Box
	Create_sheet_size_box(Text title_text,Message_Box message)
	Validate(Sheet_Size_Box box,Real &w,Real &h,Text &sheet)
	Get_data(Sheet_Size_Box box,Text &text_data)
	Set_data(Sheet_Size_Box box,Text text_data)

	5.60.10.33 Slider_Box
	Create_slider_box(Text name,Integer width,Integer height,Integer min_value,Integer max_value,Integer tick_interval,Integer horizontal)
	Set_slider_position(Slider_Box box,Integer value)
	Get_slider_position(Slider_Box box,Integer &value)

	5.60.10.34 Source_Box
	Source_Box Create_source_box(Text title_text,Message_Box box,Integer flags)
	Source_Box Create_source_box(Text text,Message_Box box,Integer flags, Integer start_flag)
	Validate(Source_Box box,Dynamic_Element &de_results)
	Set_data(Source_Box box,Text text_data)
	Get_data(Source_Box box,Text &text_data)
	Read_favorite(Source_Box box,Text filename)
	Write_favorite(Source_Box box,Text filename)

	5.60.10.35 Symbol_Box
	Symbol_Box Create_symbol_box(Text title_text,Message_Box message,Integer mode)
	Validate(Symbol_Box box,Integer mode,Text &result)
	Get_data(Symbol_Box box,Text &text_data)
	Set_data(Symbol_Box box,Text text_data)

	5.60.10.36 Target_Box
	Target_Box Create_target_box(Text title_text,Message_Box box,Integer flags)
	Target_Box Create_target_box(Text title,Message_Box message,Integer flags,Integer default_flag)
	Validate(Target_Box box)
	Validate(Target_Box box,Integer &mode,Text &text_data)

	5.60.10.37 Template_Box
	Create_template_box(Text title_text,Message_Box message,Integer mode)
	Validate(Template_Box box,Integer mode,Text &result)
	Get_data(Template_Box box,Text &text_data)
	Set_data(Template_Box box,Text text_data)

	5.60.10.38 Text_Style_Box
	Create_text_style_box(Text title_text,Message_Box message)
	Validate(Text_Style_Box box,Text &result)
	Get_data(Text_Style_Box box,Text &text_data)
	Set_data(Text_Style_Box box,Text text_data)

	5.60.10.39 Text_Units_Box
	Create_text_units_box(Text title_text,Message_Box message)
	Validate(Text_Units_Box box,Integer &result)
	Get_data(Text_Units_Box box,Text &text_data)
	Set_data(Text_Units_Box box,Integer integer_data)
	Set_data(Text_Units_Box box,Text text_data)

	5.60.10.40 Textstyle_Data_Box
	Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags)
	Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags,Integer optionals)
	Validate(Textstyle_Data_Box box,Textstyle_Data &data)
	Set_data(Textstyle_Data_Box box,Textstyle_Data data)
	Set_data(Textstyle_Data_Box box,Text text_data)
	Get_data(Textstyle_Data_Box box,Textstyle_Data &data)
	Get_data(Textstyle_Data_Box box,Text &text_data)

	5.60.10.41 Text_Edit_Box
	Create_text_edit_box(Text title_text,Message_Box box,Integer no_lines)
	Set_data(Text_Edit_Box box,Text text_data)
	Set_data(Text_Edit_Box widget,Dynamic_Text dt_data)
	Get_data(Text_Edit_Box widget,Text &text_data)
	Get_data(Text_Edit_Box widget,Dynamic_Text &dt_data)
	Set_word_wrap(Text_Edit_Box box,Integer mode)
	Get_word_wrap(Text_Edit_Box box,Integer &mode)
	Set_read_only(Text_Edit_Box widget,Integer mode)
	Get_read_only(Text_Edit_Box widget,Integer &mode)
	Set_vertical_scroll_bar(Text_Edit_Box widget,Integer mode)
	Get_vertical_scroll_bar(Text_Edit_Box box,Integer &mode)
	Set_horizontal_scroll_bar(Text_Edit_Box widget,Integer mode)
	Get_horizontal_scroll_bar(Text_Edit_Box widget,Integer &mode)

	5.60.10.42 Texture_Box
	Texture_Box Create_texture_box(Text title_text,Message_Box message)
	Validate(Texture_Box box,Text &result)
	Set_data(Texture_Box box,Text text_data)
	Get_data(Texture_Box box,Text &text_data)

	5.60.10.43 Tick_Box
	Create_tick_box(Message_Box message)
	Validate(Tick_Box box,Integer &result)
	Get_data(Tick_Box box,Text &text_data)
	Set_data(Tick_Box box,Text text_data)

	5.60.10.44 Tin_Box
	Create_tin_box(Text title_text,Message_Box message,Integer mode)
	Validate(Tin_Box box,Integer mode,Tin &result)
	Get_data(Tin_Box box,Text &text_data)
	Set_data(Tin_Box box,Text text_data)
	Set_supertin(Tin_Box box,Integer mode)
	Set_tin_type(Tin_Box box,Integer type)
	Set_tin_type(Tin_Box box,Integer type,Integer type2)
	Set_tin_type(Tin_Box box,Integer type,Integer type2,Integer type3)
	Set_all_tin_types(Tin_Box box)
	Set_tin_mode(Tin_Box box,Integer mode)
	Set_tin_mode(Tin_Box box,Integer mode,Integer mode2)
	Set_all_tin_modes(Tin_Box box)
	Set_tin_access(Tin_Box box,Integer access)
	Set_tin_access(Tin_Box box,Integer access,Integer access2)

	5.60.10.45 View_Box
	Create_view_box(Text title_text,Message_Box message,Integer mode)
	Validate(View_Box box,Integer mode,View &result)
	Get_data(View_Box box,Text &text_data)
	Set_data(View_Box box,Text text_data)
	Set_view_type(View_Box box,Integer type)
	Set_view_type(View_Box box,Integer type,Integer type2)
	Set_view_type(View_Box box,Integer type,Integer type2,Integer type3)
	Set_all_view_types(View_Box box)
	Set_view_engine(View_Box box,Integer mode)

	5.60.10.46 XYZ_Box
	Create_xyz_box(Text title_text,Message_Box message)
	Validate(XYZ_Box box,Real &x,Real &y,Real &z)
	Get_data(XYZ_Box box,Text &text_data)
	Set_data(XYZ_Box box,Real x,Real y,Real z)
	Set_data(XYZ_Box box,Text text_data)

	5.60.11 Message Boxes
	5.60.11.1 Colour_Message_Box
	Create_colour_message_box(Text message_text)
	Set_data(Colour_Message_Box box,Text text_data,Integer level)
	Set_data(Colour_Message_Box box,Text text_data)
	Set_level(Colour_Message_Box box,Integer level)

	5.60.11.2 Message_Box
	Create_message_box(Text message_text)
	Get_data(Message_Box box,Text &text_data)
	Set_data(Message_Box box,Text text_data)

	5.60.12 Log_Box and Log_Lines
	Create_log_box(Text name,Integer box_width,Integer box_height)
	Create_text_log_line(Text message,Integer log_level)
	Create_highlight_string_log_line(Text message,Integer log_level,Uid model_id,Uid string_id)
	Create_highlight_string_log_line(Text message,Integer log_level,Uid model_id,Uid string_id,Real x,Real y,Real z)
	Create_highlight_point_log_line(Text message,Integer log_level,Real x,Real y,Real z)
	Create_edit_string_log_line(Text message,Integer log_level,Uid model_id,Uid string_id)
	Create_macro_log_line(Text message,Integer log_level,Text macro,Text select_cmd_line)
	Create_macro_log_line(Text message,Integer log_level,Text macro,Text select_cmd_line,Dynamic_Text menu_names,Dynamic_Text menu_command_lines)
	Add_log_line(Log_Box box,Log_Line line)
	Clear(Log_Box box)
	Print_log_line(Log_Line line,Integer is_error)
	Create_group_log_line(Text message,Integer log_level)
	Get_type(Log_Line line,Integer &type)
	Get_type(Log_Line line,Text &type)
	Get_id(Log_Line line,Integer &id)
	Get_parent_id(Log_Line line,Integer &parent)
	Get_parent(Log_Line line,Log_Line &parent)
	Append_log_line(Log_Line line,Log_Line parent)

	5.60.13 Buttons
	5.60.13.1 Button
	Create_button(Text title_text,Text reply)
	Set_raised_button(Button button,Integer mode)
	Create_child_button(Text title_text)

	5.60.13.2 Finish Button
	Create_finish_button(Text title_text,Text reply)
	Set_finish_button(Widget panel,Integer move_cursor)

	5.60.13.3 Select_Button
	Create_select_button(Text title_text,Integer mode,Message_Box box)
	Validate(Select_Button select,Element &string)
	Validate(Select_Button select,Element &string,Integer silent)
	Set_data(Select_Button select,Element string)
	Set_data(Select_Button select,Text string)
	Get_data(Select_Button select,Text &string)
	Select_start(Select_Button select)
	Select_end(Select_Button select)
	Set_select_type(Select_Button select,Text type)
	Set_select_snap_mode(Select_Button select,Integer snap_control)
	Get_select_direction(Select_Button select,Integer &dir)
	Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text)
	Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	5.60.13.4 Help Button
	Create_help_button(Panel panel,Text title_txt)

	5.60.14 GridCtrl_Box
	Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer height)
	Create_gridctrl_box(Text name,Integer num_rows, Integer num_columns,Widget column_widgets[],Integer column_readonly[], Integer show_nav,Message_Box messages,Integer width,Integer height) For V10 only
	Load_widgets_from_row(GridCtrl_Box grid,Integer row_num)
	Load_row_from_widgets(GridCtrl_Box grid,Integer row_num)
	Insert_row(GridCtrl_Box grid)
	Insert_row(GridCtrl_Box grid,Integer row_num,Integer is_before)
	Delete_row(GridCtrl_Box grid,Integer row_num)
	Delete_all_rows(GridCtrl_Box grid)
	Get_row_count(GridCtrl_Box grid)
	Format_grid(GridCtrl_Box grid)
	Set_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text value)
	Get_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text &value)
	Set_column_width(GridCtrl_Box grid,Integer col,Integer width)
	Set_modified(GridCtrl_Box grid,Integer modified)
	Set_warn_on_modified(GridCtrl_Box grid,Integer warn_on_modified)
	Get_selected_cells(GridCtrl_Box grid,Integer &start_row,Integer &start_col,Integer &end_row,Integer &end_col)
	Set_fixed_row_count(GridCtrl_Box grid,Integer num_fixed_rows)
	Get_fixed_row_count(GridCtrl_Box grid)
	Set_cell_read_only(GridCtrl_Box grid,Integer row,Integer col,Integer read_only)
	Get_cell_read_only(GridCtrl_Box grid,Integer row,Integer col)

	5.60.15 Tree Box Calls
	Create_tree_box(Text name,Text root_item_text,Integer tree_width,Integer tree_height)
	Get_root_page(Tree_Box tree_box)
	Create_tree_page(Tree_Page parent_page,Text name,Integer show_border, Integer use_name_for_border)
	Append(Widget widget,Tree_Page page)
	Get_number_of_pages(Tree_Page page)
	Get_page(Tree_Page parent,Integer n,Tree_Page &child_page)
	Integer Has_child_page(Tree_Page child,Tree_Page parent)
	Has_widget(Tree_Page page,Widget w)
	Get_page_name(Tree_Page page)
	Set_page(Tree_Box tree_box,Widget w)
	Set_page(Tree_Box tree_box,Tree_Page page)
	Set_page(Tree_box tree_box,Text name)
	Get_current_page(Tree_Box tree_box,Tree_Page ¤t_page)

	5.61 General
	5.61.1 Quick Sort
	Quick_sort(Integer count,Integer index[],Integer val_array[])
	Quick_sort(Integer count,Integer index[],Read val_array[])
	Quick_sort(Integer count,Integer index[],Text val_array[])

	5.61.2 Name Matching
	Match_name(Text name,Text reg_exp)
	Match_name(Dynamic_Element de,Text reg_exp,Dynamic_Element &matched)

	5.61.3 Null Data
	Is_null(Real value)
	Null(Real &value)
	Null_ht(Dynamic_Element elements,Real height)
	Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max)
	Reset_null_ht(Dynamic_Element elements,Real height)

	5.61.4 Contour
	Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer cont_col,Dynamic_Element &cont_de,Real bold_inc,Integer bold_col,Dynamic_Element &bold_de)
	Tin_tin_depth_contours(Tin original,Tin new,Integer cut_colour,Integer zero_colour,Integer fill_colour,Real interval,Real start_level,Real end_level,Integer mode,Dynamic_Element &de)
	Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de)
	Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de,Integer mode)

	5.61.5 Drape
	Drape(Tin tin,Model model,Dynamic_Element &draped_elts)
	Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts)
	Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts, Integer create_supers)
	Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts)
	Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element &face_draped_strings)

	5.61.6 Drainage
	Get_drainage_intensity(Text rainfall_filename,Integer rainfall_method,Real frequency,Real duration,Real &intensity)
	Get_rainfall_temporal_patterns_enabled(Text file,Real min_freq,Real max_freq,Dynamic_Integer &storms,Integer &ret_num)
	Get_rainfall_temporal_pattern(Text rainfall_filename,Integer storm_num,Integer &run,Text &zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval,Real pattern[],Integer max_num,Integer &ret_num)
	Get_rainfall_temporal_pattern(Text rainfall_filename,Text storm_name,Integer &run,Text &zone_filter,Real &duration,Real &from_ari,Real &to_ari,Real &interval, Real pattern[],Integer max_num,Integer &ret_num)

	5.61.7 Volumes
	5.61.7.1 End Area
	Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)
	Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)

	5.61.7.2 Exact Volumes
	Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill,Real &balance)
	Volume_exact(Tin tin_1,Tin tin_2,Element poly,Real &cut,Real &fill,Real &balance)

	5.61.8 Interface
	Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side,Element &interface_string)
	Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side, Element &interface_string,Dynamic_Element &tadpoles)

	5.61.9 Templates
	Template_exists(Text template_name)
	Get_project_templates(Dynamic_Text &template_names)
	Template_rename(Text original_name,Text new_name)

	5.61.10 Applying Templates
	Apply(Real xpos,Real ypos,Real zpos,Real ang,Tin tin,Text template,Element &xsect)
	Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real &cut,Real &fill,Real &balance)
	Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text report)
	Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer do_sections,Dynamic_Element §ions,Integer se...
	Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &balance)
	Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut_volume,Real &fill_volume,Real &balance_volume,Text report)
	Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer do_sections,Dynamic_Element §ions,Integer section_colour,Integer do_polyg...

	5.61.11 Strings Edits
	String_reverse(Element in,Element &out)
	Extend_string(Element elt,Real before,Real after,Element &newelt)
	Clip_string(Element string,Real chainage1,Real chainage2, Element &left_string,Element &mid_string,Element &right_string)
	Clip_string(Element string,Integer direction,Real chainage1,Real chainage2,Element &left_string,Element &mid_string,Element &right_string)
	Polygons_clip(Integer npts_clip,Real xclip[],Real yclip[],Integer npts_in,Real xarray_in[],Real yarray_in [],Real zarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[],Real yarray_out[])
	Split_string(Element string,Real chainage,Element &string1,Element &string2)
	Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real y2,Real z2,Element &joined_string)
	Rectangle_clip(Real x1,Real y1,Real x2,Real y2,Integer npts_in,Real xarray_in [],Real yarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[])
	Super_offset(Element super,Real offset,Integer mode,Element &super_offset)

	5.61.12 Place Meshes
	Place_mesh(Real x,Real y,Real z,Integer source_type,Text source_name,Vector3 offset,Vector3 rotate,Vector3 scale,Element &mesh_string)
	Place_mesh(Real x,Real y,Real z,Text mesh_name,Vector3 offset,Vector3 rotate,Vector3 scale,Tin anchor_tin,Element &mesh_string)

	5.61.13 Image
	Get_image_size(Text filename,Integer &width,Integer &height)

	5.61.14 Boundary polygon
	Boundary_polygon(Dynamic_Element list,Real seed_x,Real seed_y,Real distance, Element &result)

	5.61.15 Stack trace
	Print_stack_trace()
	Get_stack_trace(Dynamic_Integer &stack)
	Print_stack_trace(Text msg)

	5.62 Utilities
	5.62.1 3D Chainage
	Enable_3d(Element super_alignment)
	Get_start_chainage_3d(Element super_alignment,Real &ch_3d)
	Get_end_chainage_3d(Element super_alignment,Real &ch_3d)
	Get_3d_length(Element super_alignment,Real &length_3d)
	Chainage_2d_to_3d(Element super_alignment,Real ch_2d,Real &length_3d)
	Chainage_3d_to_2d(Element super_alignment,Real length_3d,Real &ch_2d)
	Get_position_ex_3d(Element super_alignment,Real length_3d,Real offset,Real dz,Real &x,Real &y,Real &z,Real &dir,Real &radius,Real &grade)
	Get_position_3d(Element string,Real ch_3d,Real offset,Real dz,Real &x,Real &y,Real &z,Real &dir,Real &radius,Real &grade)
	Drop_point_3d(Element super_alignment,Real xd,Real yd,Real zd,Real &x,Real &y,Real &z,Real &l,Real &o,Real &dir,Real &radius,Real &grade)
	Tunnel_profile_3d(Element ref_str,Text tunnel_def,Dynamic_Real point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real &e_tun_ele_per,Dynamic_Real &e_tun_...
	Tunnel_profile_3d(Element ref_str,Text tunnel_def,Dynamic_Real point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real &e_tun_ele_dist,Dynamic_Real &e_tun_ele_per,Dynamic_Real &e_tun_...
	Tunnel_profile_3d(Element ref_str,Text tunnel_def,Element trimesh,Real inner_extent,Real outer_extent,Dynamic_Real point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real &e_tun_ele_d...
	Tunnel_profile_3d(Element ref_str,Text tunnel_def,Element trimesh,Real inner_extent,Real outer_extent,Dynamic_Real point_x,Dynamic_Real point_y,Dynamic_Real point_z,Dynamic_Text &e_tun_ele_name,Dynamic_Integer &e_tun_ele_idx,Dynamic_Real &e_tun_ele_d...

	5.62.2 Transformation
	Affine(Dynamic_Element elements, Real rotate_x,Real rotate_y,Real scale_x,Real scale_y,Real dx,Real dy)
	Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real oy,Real oz,Integer call_inverse,Element &ele)
	Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real oy,Real oz,Integer call_inverse,Dynamic_Element &elements)
	Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real oy,Real oz,Integer call_inverse,Real &x,Real &y,Real &z)
	Helmert_3d_Transform(Real rx,Real ry,Real rz,Real scale,Real tx,Real ty,Real tz,Real ox,Real oy,Real oz,Integer call_inverse,Dynamic_Real &x,Dynamic_Real &y,Dynamic_Real &z)
	Get_carto_projection_datum_data(Text datum_name,Text carto_file_name,Text &datum_data)
	Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer from_long_lat,Element &ele)
	Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer from_long_lat,Dynamic_Element &ele_list)
	Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer from_long_lat,Real &x,Real &y)
	Convert_long_lat(Text datum_data,Integer longlat_angle_mode,Integer from_long_lat,Dynamic_Real &x,Dynamic_Real &y)

	5.62.3 Chains
	Run_chain(Text chain)

	5.62.4 Convert
	Convert(Dynamic_Element in_de,Integer mode,Integer pass_others, Dynamic_Element &out_de)
	Convert(Element elt,Text type,Element &newelt)

	5.62.5 Cuts Through Strings
	Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result)
	Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result,Integer create_supers)
	Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result)
	Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result,Integer create_supers)

	5.62.6 Factor
	Factor(Dynamic_Element elements,Real xf,Real yf,Real zf)

	5.62.7 Fence
	Fence(Dynamic_Element data_to_fence,Integer mode,Element user_poly,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)
	Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element polygon_list,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)
	Check_polygon_fence(Element polygon,Integer &good_polygon,Integer &good_fence)
	Check_polygon(Element polygon_in,Integer &good_polygon,Element &polygon_out)

	5.62.8 Filter
	Filter(Dynamic_Element in_de,Integer mode,Integer pass_others,Real tolerance,Dynamic_Element &out_de)

	5.62.9 Head to Tail
	Head_to_tail(Dynamic_Element in_list,Dynamic_Element &out_list)

	5.62.10 Helmert Transformation
	Helmert(Dynamic_Element elements,Real rotate,Real scale,Real dx,Real dy)

	5.62.11 Polygon Centroid and Medial axis
	Medial_axis_polygon(Element polygon,Real &cx,Real &cy,Real &radius)
	Medial_axis_polygon(Element polygon,Real &cx,Real &cy,Real &radius,Real radius_tolerance)
	Get_polygon_centroid(Element polygon,Real &cx,Real &cy)

	5.62.12 Rotate
	Rotate(Dynamic_Element elements,Real xorg,Real yorg,Real ang)

	5.62.13 Share Status
	Share_status(Model model,Integer &is_share_out,Integer &is_share_in)
	Share_status(Tin tin,Integer &is_share_out,Integer &is_share_in)
	Share_status(Model model,Integer &is_share_out,Integer &is_share_in,Text &share_in_location)
	Share_status(Tin tin,Integer &is_share_out,Integer &is_share_in,Text &share_in_location)

	5.62.14 Swap XY
	Swap_xy(Dynamic_Element elements)

	5.62.15 Translate
	Translate(Dynamic_Element elements,Real dx,Real dy,Real dz)

	5.62.16 Miscellaneous
	Set_inquire_style(Text inquire_style)

	5.63 12d Model Macro_Functions
	5.63.1 Processing Command Line Arguments in a Macro_Function
	5.63.2 Creating and Populating the Macro_Function Panel
	5.63.3 Storing the Panel Information for Processing
	5.63.4 Recalcing
	5.63.5 Storing Calculated Information
	5.63.6 Macro_Function Functions
	Create_macro_function(Text function_name,Macro_Function &func)
	Function_recalc(Function func)
	Function_exists(Text function_name)
	Function_rename(Text original_name,Text new_name)
	Get_name(Function func,Text &name)
	Get_type(Function func,Integer &func_type)
	Get_function(Text function_name)
	Get_macro_function(Text function_name,Macro_Function &func)
	Get_all_functions(Dynamic_Text &functions)
	Function_delete(Text function_name)
	Get_time_created(Function func,Integer &time)
	Get_time_updated(Function func,Integer &time)
	Set_time_updated(Function func,Integer time)
	Add_dependancy_file(Macro_Function func,Text name,Text file)
	Add_dependancy_model(Macro_Function func,Text name,Model model)
	Add_dependancy_tin(Macro_Function func,Text name,Tin tin)
	Integer Add_dependancy_template(Macro_Function func,Text name,Text template)
	Add_dependancy_element(Macro_Function func,Text name,Element elt)
	Get_number_of_dependancies(Macro_Function func,Integer &count)
	Get_dependancy_name(Macro_Function func,Integer i,Text &name)
	Get_dependancy_type(Macro_Function func,Integer i,Text &type)
	Get_dependancy_file(Macro_Function func,Integer i,Text &file)
	Get_dependancy_model(Macro_Function func,Integer i,Model &model)
	Get_dependancy_tin(Macro_Function func,Integer i,Tin &tin)
	Get_dependancy_template(Macro_Function func,Integer i,Text &template)
	Get_dependancy_element(Macro_Function func,Integer i,Element &element)
	Get_dependancy_data(Macro_Function func,Integer i,Text &text)
	Get_dependancy_type(Macro_Function func,Text name,Text &type)
	Get_dependancy_file(Macro_Function func,Text name,Text &file)
	Get_dependancy_model(Macro_Function func,Text name,Model &model)
	Get_dependancy_tin(Macro_Function func,Text name,Tin &tin)
	Get_dependancy_template(Macro_Function func,Text name,Text &template)
	Get_dependancy_element(Macro_Function func,Text name,Element &elt)
	Get_dependancy_data(Macro_Function func,Text name,Text &text)
	Delete_dependancy(Macro_Function func,Text name)
	Delete_all_dependancies(Macro_Function func)
	Get_id(Function func,Uid &id)
	Get_id(Function func,Integer &id)
	Get_function_id(Element elt,Uid &id)
	Get_function_id(Element elt,Integer &id)
	Set_function_id(Element elt,Uid id)
	Set_function_id(Element elt,Integer id)
	Get_function(Uid function_id)
	Get_function(Integer function_id)
	Function_exists(Uid function_id)
	Function_attribute_exists(Macro_Function fcn,Text att_name)
	Function_attribute_exists(Function fcn,Text att_name)
	Function_attribute_exists(Function fcn,Text name,Integer &no)
	Function_attribute_exists(Macro_Function fcn,Text name,Integer &no)
	Function_attribute_delete(Macro_Function fcn,Text att_name)
	Function_attribute_delete(Function fcn,Text att_name)
	Function_attribute_delete(Macro_Function fcn,Integer att_no)
	Function_attribute_delete(Function fcn,Integer att_no)
	Function_attribute_delete_all(Function fcn)
	Function_attribute_delete_all(Macro_Function fcn)
	Function_attribute_dump(Function fcn)
	Function_attribute_dump(Macro_Function fcn)
	Function_attribute_debug(Macro_Function fcn)
	Function_attribute_debug(Function fcn)
	Get_function_number_of_attributes(Function fcn,Integer &no_atts)
	Get_function_number_of_attributes(Macro_Function fcn,Integer &no_atts)
	Get_function_attribute(Macro_Function fcn,Text att_name,Text &txt)
	Get_function_attribute(Function fcn,Text att_name,Text &txt)
	Get_function_attribute(Macro_Function fcn,Text att_name,Integer &int)
	Get_function_attribute(Function fcn,Text att_name,Integer &int)
	Get_function_attribute(Function fcn,Text att_name,Real &real)
	Get_function_attribute(Macro_Function fcn,Text att_name,Real &real)
	Get_function_attribute(Function fcn,Integer att_no,Text &txt)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Text &txt)
	Get_function_attribute(Function fcn,Integer att_no,Integer &int)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Integer &int)
	Get_function_attribute(Function fcn,Integer att_no,Real real)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Real real)
	Get_function_attribute_name(Macro_Function fcn,Integer att_no,Text &txt)
	Get_function_attribute_name(Function fcn,Integer att_no,Text &txt)
	Get_function_attribute_type(Macro_Function fcn,Text att_name,Integer &att_type)
	Get_function_attribute_type(Function fcn,Text att_name,Integer &att_type)
	Get_function_attribute_type(Function fcn,Integer att_no,Integer &att_type)
	Get_function_attribute_type(Macro_Function fcn,Integer att_no,Integer &att_type)
	Get_function_attribute_length(Function fcn,Text att_name,Integer &att_len)
	Get_function_attribute_length(Macro_Function fcn,Text att_name,Integer &att_len)
	Get_function_attribute_length(Function fcn,Integer att_no,Integer &att_len)
	Get_function_attribute_length(Macro_Function fcn,Integer att_no,Integer &att_len)
	Set_function_attribute(Function fcn,Text att_name,Text txt)
	Set_function_attribute(Macro_Function fcn,Text att_name,Text txt)
	Set_function_attribute(Function fcn,Text att_name,Integer int)
	Set_function_attribute(Macro_Function fcn,Text att_name,Integer int)
	Set_function_attribute(Macro_Function fcn,Text att_name,Real real)
	Set_function_attribute(Function fcn,Text att_name,Real real)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Text txt)
	Set_function_attribute(Function fcn,Integer att_no,Text txt)
	Set_function_attribute(Function fcn,Integer att_no,Integer int)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Integer int)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Real real)
	Set_function_attribute(Function fcn,Integer att_no,Real real)
	Get_function_attributes(Function fcn,Attributes &att)
	Get_function_attributes(Macro_Function fcn,Attributes &att)
	Set_function_attributes(Function fcn,Attributes att)
	Set_function_attributes(Macro_Function fcn,Attributes att)
	Get_function_attribute(Function fcn,Text att_name,Uid &uid)
	Get_function_attribute(Macro_Function fcn,Text att_name,Uid &uid)
	Get_function_attribute(Macro_Function fcn,Text att_name,Attributes &att)
	Get_function_attribute(Function fcn,Text att_name,Attributes &att)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Uid &uid)
	Get_function_attribute(Function fcn,Integer att_no,Uid &uid)
	Get_function_attribute(Function fcn,Integer att_no,Attributes &att)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Attributes &att)
	Set_function_attribute(Function fcn,Text att_name,Uid uid)
	Set_function_attribute(Macro_Function fcn,Text att_name,Uid uid)
	Set_function_attribute(Macro_Function fcn,Text att_name,Attributes att)
	Set_function_attribute(Function fcn,Text att_name,Attributes att)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Uid uid)
	Set_function_attribute(Function fcn,Integer att_no,Uid uid)
	Set_function_attribute(Function fcn,Integer att_no,Attributes att)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Attributes att)

	5.63.7 Function Property Collections
	Create_function_property_collection()
	Set_property(Function_Property_Collection collection,Text name,Integer int_val)
	Set_property(Function_Property_Collection collection,Text name,Real real_val)
	Set_property(Function_Property_Collection collection,Text name,Text txt_val)
	Set_property_colour(Function_Property_Collection collection,Text name,Text colour_name)
	Set_property(Function_Property_Collection collection,Text name,Element element)
	Set_property(Function_Property_Collection collection,Text name,Tin tin)
	Set_property(Function_Property_Collection collection,Text name,Model model)
	Get_property(Function_Property_Collection collection,Text name,Integer &int_val)
	Get_property(Function_Property_Collection collection,Text name,Real &real_val)
	Get_property(Function_Property_Collection collection,Text name,Text &txt_val)
	Get_property(Function_Property_Collection collection,Text name,Tin &tin)
	Get_property(Function_Property_Collection collection,Text name,Element &element)
	Get_property(Function_Property_Collection collection,Text name,Model &model)
	Get_property_colour(Function_Property_Collection collection,Text name,Text &colour_name)
	Create_apply_many_function(Text function_name,Function_Property_Collection properties,Apply_Many_Function &function,Text &msg)
	Set_apply_many_function_properties(Apply_Many_Function function,Function_Property_Collection properties,Text &msg)
	Get_apply_many_function_properties(Apply_Many_Function function,Function_Property_Collection &properties)
	Get_apply_many_function(Text name, Apply_Many_Function &function)
	Function Properties

	5.64 Plot Parameters
	Create_parameter_file(Plot_Parameter_File ppf,Text ppf_type)
	Create_section_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_section_x_plot_parameter_file(Plot_Parameter_File ppf)
	Create_melb_water_sewer_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_pipeline_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_drainage_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_drainage_plan_plot_parameter_file(Plot_Parameter_File ppf)
	Create_plot_frame_plot_parameter_file(Plot_Parameter_File ppf)
	Create_rainfall_methods_parameter_file(Plot_Parameter_File ppf)
	Create_design_parameters_parameter_file(Plot_Parameter_File ppf)
	Create_perspective_plot_parameter_file(Plot_Parameter_File file)
	Create_section_plot_parameter_file(Plot_Parameter_File file)
	Create_water_node_diagram_plot_parameter_file(Plot_Parameter_File file)
	Read_parameter_file(Plot_Parameter_File ppf,Text filename,Integer expand_includes)
	Write_parameter_file(Plot_Parameter_File ppf,Text filename)
	Set_parameter(Plot_Parameter_File ppf,Text parameter_name, Element parameter_value)
	Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Element ¶meter_value)
	Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Text parameter_value)
	Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Text ¶meter_value)
	Parameter_exists(Plot_Parameter_File ppf,Text parameter_name)
	Remove_parameter(Plot_Parameter_File ppf,Text parameter_name)
	Plot_parameter_file(Plot_Parameter_File ppf)
	Plot_parameter_file(Text file)
	Plot_ppf_file(Text name)

	5.65 Undos
	5.65.1 Functions to Create Undos
	Add_undo_add(Text name,Element elt)
	Add_undo_add(Text name,Dynamic_Element de)
	Add_undo_change(Text name,Element original,Element changed)
	Add_undo_delete(Text name,Element original,Integer make_copy)
	Add_undo_range(Text name,Integer id1,Integer id2)
	Add_undo_range(Text name,Uid id1,Uid id2)

	5.65.2 Functions for a 12dPL Undo_List
	Get_number_of_items(Undo_List &undo_list,Integer &count)
	Get_item(Undo_List &undo_list,Integer n,Undo &undo)
	Set_item(Undo_List &undo_list,Integer n,Undo undo)
	Append(Undo undo,Undo_List &undo_list)
	Append(Undo_List list,Undo_List &to_list)
	Null(Undo_List &undo_list)
	Add_undo_list(Text name,Undo_List list)

	5.66 ODBC Macro Calls
	5.66.1 Connecting to an external data source
	Create_ODBC_connection()
	Connect(Connection connection,Text connection_string,Text user,Text password)
	Connect(Connection connection,Text connection_string)
	Close(Connection connection)
	Has_error(Connection connection)
	Get_last_error(Connection connection,Text &status,Text &message)

	5.66.2 Querying against a data source
	Create_select_query()
	Add_table(Select_Query query,Text table_name)
	Add_result_column(Select_Query query,Text table,Text column_name)
	Add_result_column(Select_Query query,Text table,Text column_name,Text return_as)
	Add_order_by(Select_Query query,Text table_name,Text column_name,Integer sort_ascending)
	Set_limit(Select_Query query,Integer start,Integer number_to_retrieve)
	Add_group_by(Select_Query query,Text table_name,Text column_name)
	Add_condition(Select_Query query,Query_Condition condition)
	Execute(Connection connection,Select_Query query)
	Execute(Connection connection,Select_Query query,Database_Result &result)

	5.66.3 Navigating results with Database_Result
	Move_next(Database_Result result)
	Close(Database_Result result)
	Get_result_column(Database_Result result,Integer column,Text &res)
	Get_result_column(Database_Result result,Integer column,Integer &res)
	Get_result_column(Database_Result result,Integer column,Real &res)
	Get_time_result_column(Database_Result result,Integer column,Integer &time)
	Get_result_column(Database_Result result,Text column,Text &res)
	Get_result_column(Database_Result result,Database_Result result,Text column, Integer &res)
	Get_result_column(Database_Result result,Text column,Real &res)
	Get_time_result_column(Database_Result result,Text column,Integer &time)

	5.66.4 Insert Query
	Create_insert_query(Text table)
	Add_data(Insert_Query query,Text column_name,Integer value)
	Add_data(Insert_Query query,Text column_name,Text value)
	Add_data(Insert_Query query,Text column_name,Real value)
	Add_time_data(Insert_Query query,Text column_name,Integer time)
	Execute(Connection connection,Insert_Query query)

	5.66.5 Update Query
	Create_update_query(Text table)
	Add_data(Update_Query query,Text column_name,Integer value)
	Add_data(Update_Query query,Text column_name,Text value)
	Add_data(Update_Query query,Text column_name,Real value)
	Add_time_data(Update_Query query,Text column_name,Integer time)
	Add_condition(Update_Query query,Query_Condition condition)
	Execute(Connection connection,Update_Query query)

	5.66.6 Delete Query
	Create_delete_query(Text table)
	Add_condition(Delete_Query query,Query_Condition condition)
	Execute(Connection connection,Delete_Query query)

	5.66.7 Manual Query
	Create_manual_query(Text query_text)
	Get_parameters(Manual_Query query,Parameter_Collection parameters)
	Execute(Connection connection,Manual_Query query)
	Execute(Connection connection,Manual_Query query,Database_Result &result)

	5.66.8 Query Conditions
	Create_value_condition(Text table_name,Text column_name,Integer operator,Text value)
	Create_value_condition(Text table_name,Text column_name,Integer operator, Integer value)
	Create_value_condition(Text table_name,Text column_name,Integer operator, Real value)
	Create_time_value_condition(Text table_name,Text column_name,Integer operator,Integer value)
	Create_column_match_condition(Text left_table,Text left_column,Integer operator,Text right_table,Text right_column)
	Create_value_in_sub_query_condition(Text table_name,Text column_name, Integer not_in,Select_Query sub_query)
	Create_value_in_list_condition(Text table_name,Text column_name,Integer not_in,Dynamic_Integer values)
	Create_value_in_list_condition(Text table_name,Text column_name,Integer not_in,Dynamic_Text values)
	Create_value_in_list_condition(Text table_name,Text column_name,Integer not_in,Dynamic_Real values)
	Create_manual_condition(Text sql)
	Add_table(Manual_Condition manual,Text table)
	Get_parameters(Manual_Condition manual,Parameter_Collection ¶m)

	5.66.9 Transactions
	Create_transaction(Connection connection)
	Begin_transaction(Transaction transaction)
	Commit_transaction(Transaction transaction)
	Rollback_transaction(Transaction transaction)

	5.66.10 Parameters
	Add_parameter(Parameter_Collection parameters,Integer value)
	Add_parameter(Parameter_Collection parameters,Text value)
	Add_parameter(Parameter_Collection parameters,Real value)
	Add_time_parameter(Parameter_Collection parameters,Integer value)

	5.67 12D Synergy Intergation Macro Calls
	Synergy_connect(Text server, Text &error)
	Synergy_connect(Text server, Text user, Text password, Text &error)
	Synergy_check_out(Text job,Text path_to_file,Integer perform_download,Text &error)
	Synergy_cancel_checkout(Text job,Text path_to_file,Text &error)
	Synergy_get(Text job,Text path_to_file,Text &error)
	Synergy_get(Text job,Text path_to_file,Integer version,Text &error)
	Synergy_build_attribute_string(Text attrib_name,Text attrib_value,Text &serialized_string,Text &error)
	Synergy_check_in_entity(Text job,Text path_to_entity,Text description,Dynamic_Text &file_attribs,Dynamic_Text &change_attribs,Text &error)
	Synergy_get_workspace_path(Text job,Text entity_path,Text &path,Text &error)

	6 Examples
	6.1 Example 1
	6.2 Example 1a
	6.3 Example 1b
	6.4 Example 2
	6.5 Example 2a
	6.6 Example 3
	6.7 Example 4
	6.8 Example 5
	6.9 Example 5a
	6.10 Example 5b
	6.11 Example 6
	6.12 Example 7
	6.13 Example 8
	6.14 Example 9
	6.15 Example 10
	6.16 Example 11
	6.17 Example 12
	6.18 Example 13
	6.19 Example 14
	6.20 Example 15

	A Appendix - Set_ups.h File
	General Constants
	Model Mode
	File Mode
	View Mode
	Tin Mode
	Template Mode
	Project Mode
	Directory Mode
	Function Mode
	Function Type
	Linestyle Mode
	Symbol Mode
	Snap Mode
	Super String Use Modes
	Select Mode
	Target Box Flags
	Widgets Mode
	Text Alignment Modes for Draw_Box
	Set Ups.h

	B Appendix - Ascii, Ansi and Unicode
	ASCII Character Set
	ANSI Character Set
	Unicode Character Set
	Unicode Encoding: UTF-8
	Unicode Encoding: UTF-16
	Endian and BOM

	12d Model Programming Language Course
	1.0 Course Introduction
	2.0 Getting Started
	2.1 Names and Reserved Names
	2.2 White Space and Comments
	2.3 Variables, Assignments and Operators
	2.3.1 Variables
	2.3.2 Assignment Operator
	2.3.3 Operators

	2.4 Statements and Blocks

	3.0 Functions
	3.1 General Information About Functions

	4.0 Your First Program
	4.1 Print(Text msg).... your first 12dPL function
	Print(Text msg)

	4.2 Creating Your First Program
	4.3 Compiling and Running the Program

	5.0 Common Compile Error Messages
	6.0 Overloaded Functions
	7.0 Using Input and Output Functions
	7.1 Output to the Macro Console
	7.2 Input via the Macro Console (quick and easy)

	8.0 Using Flow Control
	8.1 Logical Expressions
	8.2 12dPL Flow Controls
	8.3 .“goto” and “label” Statements
	8.4 .“if” and “else” Statements
	8.5 .Error Checking Using “goto”, “label”, “if” and “else” Statements
	8.6 “for” loops
	8.7 “while” loops
	8.8 “switch” Statement
	8.9 “continue” Statement
	8.10 “break” Statement

	9.0 Running Existing 12dPL Programs
	10.0 Unleashing the Power - 12d Database Handles
	10.1 Locks
	10.2 Read In Some Data to use 12dPL Programs On
	10.3 Elements, Models and Uids
	Get_points(Element elt,Integer &num_verts)

	10.4 Accessing Elements
	Select_string(Text msg,Element &string)

	10.5 Exercises 1 and 2
	10.5.1 Exercise 1
	10.5.2 Exercise 2

	10.6 Accessing Models
	Model_prompt(Text msg,Text &ret)
	Get_model(Text model_name)

	10.7 Dynamic_Elements
	Get_elements(Model model,Dynamic_Element &de,Integer &total_no)

	10.8 Accessing Element in Models
	10.9 Getting Information about an Element
	Get_id(Element elt,Uid &uid)

	10.10 Putting it All Together
	10.11 Exercises 3and 4
	10.11.1 Exercise 3
	10.11.2 Exercise 4

	11.0 Infinite Loops
	11.1 Killing a 12dPL Program
	11.2 Ending the Process 12d.exe

	12.0 Writing to a Text File (Reports)
	12.1 Writing a Simple Unicode and ANSI (Ascii) Files
	12.2 Writing 12d Model Data to a Text File
	12.3 Checking if a File Exists
	12.3.1 Exercise 5

	13.0 Reading a Text File
	13.1 What to Do with the Line Read from a File
	13.2 Reading a Text File
	13.2.1 Exercise 6

	13.3 Using a Clipboard
	13.4 Binary Files

	14.0 Creating User Defined Functions
	14.1 A Simple User Defined Function Example
	14.1.1 Exercise 7
	14.1.2 Exercise 8

	15.0 User Menus, User Defined Function Keys and Toolbars
	16.0 Panel Basics
	16.1 Creating and Displaying a Panel
	16.2 Adding Widgets to the Panel
	16.3 Monitoring Events in the Panel
	16.4 Events Produced by a Panel
	16.5 Processing Events from a Panel
	16.6 Set_Ups.h and #include
	16.6.1 Creating a Model_Box
	Create_model_box(Text title_text,Message_Box message,Integer mode)

	16.6.2 Creating a File_Box
	Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)

	16.6.3 More Events from Wait_on_widgets
	16.6.4 Exercise 9

	16.7 Horizontal and Vertical Groups
	16.7.1 Exercise 10

	16.8 Validating Boxes and Buttons
	16.8.1 Model_Box Events
	16.8.2 File_Box Events
	16.8.3 Write Button
	16.8.4 Exercise 11

	16.9 CHECK and GET Modes
	16.10 Ignored Events

	17.0 Working with 12d Model Strings
	Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	17.0.1 Exercise 12
	17.1 Types of Elements
	17.2 Dimensions of a Super String
	Get_super_use_2d_level(Element super,Integer &use)
	Get_super_use_3d_level(Element super,Integer &use)
	17.2.1 Exercise 13

	17.3 Accessing (x,y,z) Data for a Super String
	Get_super_vertex_coord(Element super,Integer i,Real &x,Real &y,Real &z)
	17.3.1 Exercise 14

	17.4 Changing Element Header Properties
	Set_name(Element elt,Text elt_name)
	Set_optional(Widget widget,Integer mode)
	Validate(Name_Box box,Text &result)
	17.4.1 Exercise 15
	Element_draw(Element elt)

	18.0 Some Examples
	18.1 Exercise_8.4dm
	18.2 Eleven_1.4dm
	18.3 Eleven_2.4dm
	18.4 Eleven_3.4dm
	18.5 Twelve_1.4dm
	18.6 Thirteen.4dm
	18.7 Fourteen.4dm
	18.8 Fifteen.4dm

	19.0 Not Used

