
1

12D SOLUTIONS PTY LTD

 ACN 101 351 991

 PO Box 351 Narrabeen NSW Australia 2101

 Australia Telephone (02) 9970 7117 Fax (02) 9970 7118

 International Telephone 61 2 9970 7117 Fax 61 2 9970 7118

email support@12d.com web www.12d.com

12d XML File Format

Version 12
January 2018

http://www.12d.com

12d Model Reference Manual 12d XML File Format

2

12d XML File Format
This document is the 12d XML File Fromat taken from the Reference Manual for the software product

12d Model.

Disclaimer
12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in this manual and the program 12d Model is
correct, however, no warranty is expressed or implied by 12d Solutions Pty Ltd.

Copyright
This manual is copyrighted and all rights reserved.

This manual may not, in whole or part, be copied or reproduced without the prior consent in writing from
12d Solutions Pty Ltd.

Copies of 12d Model software must not be released to any party, or used for bureau applications without
the written permission of 12d Solutions Pty Ltd.

Copyright (c) 1989-2018 by 12d Solutions Pty Ltd

Sydney, New South Wales, Australia.

ACN 101 351 991

All rights reserved.
3

12d Model Reference Manual 12d XML File Format
4

Table of Contents

1 12d XML File Format ... 7

1.1 General Information about XML ... 8
1.2 General Information about a 12d XML File .. 10
1.3 Regularly Used Keyword Blocks... 11

1.3.1 Name.. 12
1.3.2 Colour .. 12
1.3.3 Line Style ... 12
1.3.4 Chainage .. 12
1.3.5 Weight.. 13
1.3.6 Interval ... 13
1.3.7 Time Created.. 13
1.3.8 Time Updated .. 14
1.3.9 Breakline .. 14
1.3.10 Null .. 14
1.3.11 Radius .. 15
1.3.12 data_2d... 15
1.3.13 data_3d... 15
1.3.14 radius_data and major_data ... 16
1.3.15 Available Transition Types.. 17

1.4 Attributes.. 19
1.5 Model ... 21
1.6 Elements Contained in Models .. 22

1.6.1 Tin.. 23
All Triangles in the Tin - Visible and Invisible 23
Visible Triangles Only 28

1.6.2 Super Tin.. 32
1.6.3 String Header Block... 35
1.6.4 Text Information .. 37

1.6.4.1 Vertex Annotation Information... 37
1.6.4.2 Segment Annotation Information.. 38

1.6.5 Arc String... 39
1.6.6 Circle String... 41
1.6.7 Drainage String .. 42
1.6.8 Feature String... 47
1.6.9 Plot Frame String ... 48
1.6.10 Super String ... 51

1.6.10.1 Defining the Coordinates of the Vertices.. 54
One Z or No Z for the String 54
Varying Z Values along the String 54

1.6.10.2 Geometry of the Horizontal Segments.. 55
Only Straights and Arcs for Segments 55
Straights, Arcs and Transitions for Segments 55

Straight 56
Arc 56
Transition and Offset Transitions 57

1.6.10.3 Colour.. 62
1.6.10.4 String, Vertex and Segment Attributes ... 63

String Attributes 63
Vertex Attributes 64
Segment Attributes 65

1.6.10.5 Vertex Id’s (Point Id’s) ... 66
1.6.10.6 Symbols at Vertices... 67
1.6.10.7 Tinability ... 69
1.6.10.8 Round or Box (Culvert) Pipes... 70

Pipe Diameters 70
Culvert Dimensions 70
Justification for Round or Culvert Pipes 71

1.6.10.9 Vertex Text and Vertex Annotation.. 72
5

12d Model Reference Manual 12d XML File Format
Vertex Text 72
Vertex Annotation 73

1.6.10.10 Segment Text and Segment Annotation ..74
Segment Text 74
Segment Annotation 75

1.6.11 Super Alignment String..76
1.6.11.1 Horizontal Data Block ...81
1.6.11.2 Horizontal_Parts When Geometry is Defined by IP Method Only83
1.6.11.3 Vertical Data Block ...88
1.6.11.4 Geometry of the Vertical Segments...90

Only Straights and Arcs for Segments 90
Straights, Arcs and Parabolas for Segments 90

Straight 91
Arc 91
Parabola 92

1.6.11.5 Vertical_parts When VG is Defined by IP Method Only............................93
1.6.12 Text String ..98
1.6.13 Trimesh...100
1.6.14 LAS Cloud String ...103
6

1 12d XML File Format
Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents in a format which is both human-readable and machine-readable. It is
defined by the World Wide Web Consortium’s (W3C) XML Specifications which are free open
standards.[

The 12d XML file format is a text file definition from 12d Solutions which is used for reading and
writing out string data from 12d Model. 12d XML files normally end in .12dxml.

The 12d XML file is a Unicode file.

This document is for the 12d XML file format used in 12d Model Version 12.

For general comments see:

1.1 General Information about XML

1.2 General Information about a 12d XML File

For the 12d XML definitions see:

1.4 Attributes

1.5 Model

1.6 Elements Contained in Models which includes

1.6.1 Tin

1.6.2 Super Tin

1.6.5 Arc String

1.6.6 Circle String

1.6.7 Drainage String

1.6.8 Feature String

1.6.9 Plot Frame String

1.6.10 Super String

1.6.11 Super Alignment String

1.6.12 Text String

1.6.13 Trimesh

For documentation on the 12d Archive (12da) file format, see 1 12d Archive File Format.
Page 7

12d Model Reference Manual
1.1 General Information about XML
(Unicode) Character

By definition, an XML document is a string of characters. Almost every legal Unicode
character may appear in an XML document.

Markup and Content

The characters making up an XML document are divided into markup and content, which
may be distinguished by the application of simple syntactic rules.

Generally, strings that constitute markup either begin with the character < and end with a >, or
they begin with the character & and end with a ;.

Strings of characters that are not markup are content.

However, in a CDATA section, the delimiters <![CDATA[and]]> are classified as markup,
while the text between them is classified as content. In addition, whitespace before and after
the outermost element is classified as markup.

Characters "<", ">" and "&"

The characters "<", ">" and "&" are key syntax markers and may never appear in content
outside a CDATA section. They need to be represented by special escape sequences:

< represents "<"

> represents ">"

& represents "&"

Tag

An XML tag is a markup construct that begins with < and ends with >.

Tags come in three flavours:

(a) start-tags - for example: <section>

(b) end-tags - for example: </section>

(c) empty-element tags - for example: <line-break />

XML Element

A logical document component which either begins with a start-tag and ends with a matching
end-tag or consists only of an empty-element tag.

The characters between the start- and end-tags, if any, are the element's content, and may
contain markup, including other elements, which are called child elements.

An example of an element is <Greeting>Hello, world.</Greeting>.

Another is <line-break />.

Note: Because elements are 12d Model items that are in a model, in the documentation of
12d XML we will refrain from using element for the element in XML. Instead we will use the
words keyword block to refer to special XML Elements in 12d XML.

Empty XML Elements <keyword/>

When an XML element has no content it is called an empty element.

For example <name> </name>

There is special shorthand for empty elements:

 <keyword/> is shorthand for <keyword></keyword>

XML Attribute
Page 8 General Information about XML

/wiki/CDATA

Chapter 1 12d XML File Format
A markup construct consisting of a name/value pair that exists within a start-tag or empty-
element tag. In the example (below) the element img has two attributes, src and alt:

Another example would be

<step number="3">Connect A to B.</step>

where the name of the attribute is "number" and the value is "3".

An XML attribute can only have a single value and each attribute can appear at most once on
each element.

Note: Because attributes are fundamental 12d Model items, in the documentation of 12d
XML the word attribute will refer to 12d Model attributes.

The words XML attribute will always be used when there is need to refer to an XML attribute.

XML declaration

XML documents may begin by declaring some information about themselves, as in the
following example:

<?xml version="1.0" encoding="UTF-8"?>

Escaping

XML provides escape facilities for including characters which are problematic to include
directly. For example:

There are five predefined entities:

< represents "<"

> represents ">"

& represents "&"

&apos represents '

" represents "

 represents a new line.

XML Comments

Comments may appear anywhere in a document outside other markup. Comments cannot
appear before the XML declaration.

Comments start with "<!--" and end with "-->".

For compatibility with SGML, the string "--" (double-hyphen) is not allowed inside comments;
this means comments cannot be nested.

The ampersand has no special significance within comments, so entity and character
references are not recognized as such, and there is no way to represent characters outside
the character set of the document encoding.

An example of a valid comment: "<!--no need to escape <code> & such in comments-->"

Continue to the next section 1.2 General Information about a 12d XML File or return to 1 12d
XML File Format.
Page 9General Information about XML

12d Model Reference Manual
1.2 General Information about a 12d XML File
Unicode

12d XML file is a Unicode file.

Blank lines

Unless they are part of a string of characters making up text, blank lines are ignored.

Names of models, tins, super tins, styles, textstyles and colours

Models, tins, styles (linestyles), textstyles and colours can include the characters a to z, A to
Z, 0 to 9 (alphanumeric characters) and space. Leading and trailing spaces are ignored. The
names can be up to 255 characters in length.

The names for models, tins, super tins, styles, textstyles or colours can not be blank.

The names for models, tins, super tins, styles, textstyles and colours can contain upper and
lower alpha characters which are stored, but for comparisons, the model names, tin names,
super tin names, style names, textstyle names or colour names are case insensitive. For
example the model name "Fred" will be stored as "Fred" but "FRED" is considered to be the
same model name as "Fred".

Within a project, each model name must be unique amongst all the model names in the
project.

Similarly within a project, each colour name must be unique amongst all the colour names,
line styles must be unique amongst all the line styles in the project and text styles must be
unique amongst all the text styles in the project.

For tins and super tins, the name of a tin or a super tin must be unique amongst the combined
list of tin names and super tin names.

String names

String names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters),
space, decimal point (.), plus (+), minus (-), comma (,), open and closed round brackets and
equals (=).

Leading and trailing spaces are ignored.

String names do not have to be unique and can be blank.

String names can contain upper and lower alpha characters which are retained but case is
ignored when selecting by string name. That is, the string name Fred will be stored as Fred
but FRED is not considered to be a different string name.

Attribute names

Attribute names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters)
and space. Leading and trailing spaces are ignored. The names can be up to 255 characters
in length. Attributes names can not be blank.

Attribute names are case sensitive. That is, the attribute name "Fred" is different to "FRED".

Keywords Blocks

There are many regularly used blocks of information in 12d XML that are identified and
documented by keywords.

The keyword and its block consist of a starting <keyword>, followed by the information in the
keyword block, and ending in </keyword>

That is

<keyword> information in the keyword block </keyword>

Continue to 1.3 Regularly Used Keyword Blocks or return to 1 12d XML File Format.
Page 10 General Information about a 12d XML File

Chapter 1 12d XML File Format
1.3 Regularly Used Keyword Blocks
In the documentation of 12d XML the term keyword block refers to a <keyword> followed by
various information then a </keyword>.

For the definition of some of the regularly used keyword blocks used in the 12d XML see:

1.3.1 Name

1.3.2 Colour

1.3.3 Line Style

1.3.4 Chainage

1.3.5 Weight

1.3.6 Interval

1.3.7 Time Created

1.3.8 Time Updated

1.3.9 Breakline

1.3.10 Null

1.3.11 Radius

1.3.12 data_2d

1.3.13 data_3d

1.3.14 radius_data and major_data

1.3.15 Available Transition Types

Or return to 1 12d XML File Format.
Page 11Regularly Used Keyword Blocks

12d Model Reference Manual
1.3.1 Name
The format of the name keyword block is:

<name>name_text</name>

where name_text is a string of characters.

What characters can be in the name depends on where the name is used. See Names of
models, tins, super tins, styles, textstyles and colours and String names.

Continue to the next section 1.3.2 Colour or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.2 Colour
The format of the colour keyword block is:

<colour>colour_name</colour>

where colour_name is a string of characters that is to be the name of a colour or the colour
number.

When reading a 12d XML file, there is a current colour, which has the default value of red, and
when a colour command is read, the current colour is set to colour_name.

When strings are read in a 12d XML file, they are given the current colour.

This can be overridden for a string by a string colour command inside the string command
defining that string. For the definition of the string commands, see 1.6.3 String Header Block.

Continue to the next section 1.3.3 Line Style or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.3 Line Style
The format of the line style keyword block is:

<style>line_style_name</style>

where line_style_name is the name of a line style. It is a string of characters.

When reading a 12d XML file, there is a current linestyle, which has the default value of 1, and
when a style command is read, the current linestyle is set to linestyle_name.

When strings are read in a 12d XML file, they are given the current linestyle.

This can be overridden for a string by a string style command inside the string command defining
that string. For the definition of the string command, see 1.6.3 String Header Block.

Continue to the next section 1.3.4 Chainage or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.4 Chainage
The format of the chainage keyword block is:

<chainage> chainage_real </chainage>

where chainage_real is a real value.
Page 12 Regularly Used Keyword Blocks

Chapter 1 12d XML File Format
Continue to the next section 1.3.5 Weight or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.5 Weight
The format of the weight keyword block is:

<weight> weight_real </weight>

where weight_real is a real value.

Continue to the next section 1.3.6 Interval or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.6 Interval
For all elements other than the super string, the format of the interval keyword block is:

<interval> interval_real </interval>

where interval_real is a real value.

For a super string, the format of the interval keyword block is:

<interval>

 <chord_arc> chord_arc_real</chord_arc>

 <distance> distance_real</chord_arc>

</interval>

where chord_arc_real and distance_real are real values.

Continue to the next section 1.3.7 Time Created or return to 1.3 Regularly Used Keyword Blocks
or 1 12d XML File Format.

1.3.7 Time Created
The format of the time_created keyword block is:

<time_created>time_text</time_created>

where time_text is a string of characters in the W3C time format.

DD-MMM-YYYYThh:mm:ssZ

and

dd in the day of the month

MMM in the first three letters of the month

YYYY in the year

hh in the hour in the 24-hour clock

mm in the number of minutes

ss in the number of seconds

For example, 28-Apr-2015T06:42:45Z

Continue to the next section 1.3.8 Time Updated or return to 1.3 Regularly Used Keyword Blocks
or 1 12d XML File Format.
Page 13Regularly Used Keyword Blocks

12d Model Reference Manual
1.3.8 Time Updated
The format of the time_updated keyword block is:

<time_updated>time_text</time_updated>

where time_text is a string of characters in the W3C time format.

DD-MMM-YYYYThh:mm:ssZ

and

dd in the day of the month

MMM in the first three letters of the month

YYYY in the year

hh in the hour in the 24-hour clock

mm in the number of minutes

ss in the number of seconds

For example, 28-Apr-2015T06:42:45Z

Continue to the next section 1.3.9 Breakline or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.9 Breakline
The format of the breakline keyword block is:

<breakline> breakline_type_text </breakline>

where breakline_type_text is text and can only have the values point or line.

When reading a 12d XML file, there is a current breakline type, which has the default value of
point, and when a breakline command is read, the current breakline type is set to
breakline_type_text.

When strings are read in a 12d XML file, they are given the current breakline type.

This can be overridden for a string by a string breakline command inside the string command
defining that string. For the definition of the string command, see 1.6.3 String Header Block.

Continue to the next section 1.3.10 Null or return to 1.3 Regularly Used Keyword Blocks or 1 12d
XML File Format.

1.3.10 Null
NOT CERTAIN ABOUT NULL ??

The format of the null command is:

null null_value

When reading a 12d XML file, there is a current null value, which has the default value of -999,
and when a null command is read, the current null value is set to null_value.

When strings are read in a 12d XML file and the string has z-values equal to null_value, then the
z-value is replaced by the 12d Model null value.

This can be overridden for a string by a null_value command inside the string command defining
that string. For the definition of the string command, see 1.6.3 String Header Block.

Continue to the next section 1.3.11 Radius or return to 1.3 Regularly Used Keyword Blocks or 1
Page 14 Regularly Used Keyword Blocks

Chapter 1 12d XML File Format
12d XML File Format.

Continue to the next section 1.4 Attributes or return to 1 12d XML File Format.

1.3.11 Radius
The format of the radius keyword block is:

<radius> radius_real </radius>

where radius_real is a real value.

Continue to the next section 1.3.12 data_2d or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.12 data_2d
For some strings, there is a constant z for the entire string, or even no z value at all. For such
strings only the (x,y) coordinates are required for each vertex and no space is taken up by
redundant z values. Vertex data with no z-values is written out in a data_2d block.

The definition of a data_2d block is:

<data_2d>

<p>x_value_1 y_value_1</p>

<p>x_value_2 y_value_2</p>

 ...
<p>x_value_n y_value_n</p>

</data_2d>

where (x_value_i, y_value_i) are the 2D coordinates of the i’th vertex.

Continue to the next section 1.3.13 data_3d or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.

1.3.13 data_3d
For most string, the z value can vary for each vertex along the string and so the (x,y,z) values are
required for each vertex. This vertex data is written out as a data_3d block.

The definition of a data_3d block is:

<data_3d>

<p>x_value_1 y_value_1 z_value_1</p>

<p>x_value_2 y_value_2 z_value_2</p>

 ...
<p>x_value_n y_value_n z_value_n</p>

</data_3d>

where (x_value_i, y_value_i, z_value_i) are the 3D coordinates of the i’th vertex.

For example, for a string of 5 vertices

<data_3d>
 <p>42578.27649249 37366.79821468 null</p>
 <p>42523.36402317 37252.26649295 null</p>
 <p>42575.1386371 37043.59910954 null</p>
Page 15Regularly Used Keyword Blocks

12d Model Reference Manual
 <p>42826.16706828 37026.34090489 null</p>
 <p>42766.49603263 37412.54781911 61.53707464</p>
</data_3d>

1.3.14 radius_data and major_data
If there are only straight and arc segments for the string, then for either data_2d or data_3d, it is
possible to add a radius and major/minor arc flag for each segment of the string using the
radius_data and major_data blocks respectively.

The order of the entries in the radius_data and major_data blocks must match the order of the
segments in the string (which is also the order in the data_2d or data_3d block).

So there is exactly one entry for each segment.

Note: If there are n vertices in the super string, then there are (n-1) segments for a open string
(not closed) and n segments for a closed string.

For each segment there are five possibilities for an arc going between the vertices and these are
specified by using positive, zero or negative values for the radius, and 1 or 0 for the major
flag.

1. Straight segment - radius = 0. Major flag can be 1 or 0.

2. Positive radius and major flag 0

The arc is above the straight line joining the two vertices but the arc is the smaller of the two
possibilities (minor arc).

3. Positive radius and major flag1

The arc is above the straight line joining the two vertices but the arc is the larger of the two
possibilities (major arc).

4. Negative radius and major flag 0

The arc is below the straight line joining the two vertices but the arc is the smaller of the two
possibilities (minor arc).

5. Negative radius and major flag1

The arc is below the straight line joining the two vertices but the arc is the larger of the two
possibilities (major arc).

,

The radius_data block is

<radius_data>

 radius_for_segment_1

 radius_for_segment_2

3. arc with major 1

2. arc with major 0 (default)

Arcs with same absolute radius but with major 1 or 0

start
vertex

end
vertex

5. arc with major 1

4. arc with major 0 (default)

Arcs with positive radius

Arcs with negative radius

1. straight
Page 16 Regularly Used Keyword Blocks

Chapter 1 12d XML File Format
 ...
 radius_for_segment_m

</radius_data>

where

radius_for_segment_i is the radius for the i’th segment and can be positive, zero or
negative, and

m = n-1 for an open string or m = n for a closed string.

If the radius_block is missing then the radius is taken to be 0 and all the segments are straight
lines.

The major_data block is

<major_data>

 major_flag_for_segment_1

 major_flag_for_segment_2

 ...
 major_flag_for_segment_m

</major_data>

where

major_flag_for_segment_i for the i’th segment is 1 or t if the arc is a major arc, and 0 or f if
it is a minor arc, and

m = n-1 for an open string or m = n for a closed string.

If the major_block is missing then the major flag is taken to be 0 and any segments with arcs are
always the minor arcs.

For example, for a closed string of five vertices

 <radius_data>
 100 -300 0 0 0
 </radius_data>
 <major_data>
 f f f f f
 </major_data>

1.3.15 Available Transition Types
The transition that are available are

where
Page 17Regularly Used Keyword Blocks

12d Model Reference Manual
clothoid, (or spiral) is the spiral approximation used by Australian road authorities and
Queensland Rail

 cubic parabola (or state wide rail nsw) is a special transition curve used by NSW
Railways. It is not a spiral.

westrail cubic spiral (or westrail-cubic) is a spiral approximation used by WA railways.

cubic spiral (or spiral) is a low level spiral approximation. Mainly only used in surveying
textbooks.

natural clothoid (or landxml spiral or clothoid landxml) is the full Euler spiral. Not used by
any Authority in Australia or New Zealand.

bloss is a Bloss curve.

sinusoidal is a sinusoidal curve.

cosinusoidal is a cosinusoidal curve.
Page 18 Regularly Used Keyword Blocks

Chapter 1 12d XML File Format
1.4 Attributes
Many 12d Model objects (models and elements such as individual strings and tins) can have an
unlimited number of named attributes of type integer (numbers), real and text. Super strings and
drainage strings can also have attributes on each vertex and segment.

The attributes for an object are given in an attributes block which consists of the keyword
attributes followed by the definitions of the individual attributes enclosed in start and end curly
braces { and }. That is, an attributes_block is

<attributes>

attribute_1

attribute_2

...

attribute_n

</attributes>

where the attribute definitions for the individual attributes attribute_i consists of

<attribute_type>

<name> attribute_name </name> <value> attribute_value </value>

</attribute_type>

where

attribute_type is integer, real or text

attribute_name is the unique attribute name for the object.

and

attribute_value is the appropriate value of the integer, real or a text.

OR

where attribute_type is group

<group>

<name> group_name </name> attributes_block

</group>

where

group_name is the unique name of the group at this level

and

attributes_block is another attributes_block.

Note that the definition of <group> includes an attribute_block which can contain another
<group> so the definition is recursive.

Hence you can have a hierarchy or tree of attributes going down to any level.

Within an object, the attribute names are case sensitive and must be unique. That is, for attribute
names, upper and lower case alphabet characters are considered to be different characters.

An example of and attribute block defining four attributes named "pole id", "street", "pole height"
and "pole wires" is:

<attributes>
 <text> <name>pole id</name> <value>QMR-37</value> </text>
 <text> <name>street</name> <value>477 Boundary St</value> </text>
Page 19Attributes

12d Model Reference Manual
 <real> <name>pole wires</name> <value>3</value> </text>
</attributes>

Continue to the next section 1.5 Model or return to 1 12d XML File Format.
Page 20 Attributes

Chapter 1 12d XML File Format
1.5 Model
Within a 12d Model project, information is collected in units called MODELS. The items that can
be stored in a model are called elements and elements include strings, tins, super tins, grid tins,
trimeshes and plot frames.

Each model has a unique user-defined text name, model_name, of up to two hundred
alphanumeric characters and spaces.

The format for the model keyword block is:

<model>

<name>model_name</name>

attribute_block

time_created_block

time_updated_block

<children>

 element_data_1

 ...
 element_data_n

</children>

</model>

where:

model_name is a string of characters for the model name. For the characters allowed, see

attribute_block is option. For attributes_block see 1.4 Attributes.

time_created_block is optional. See 1.3.7 Time Created.

time_updated_block is optional. See 1.3.8 Time Updated.

element_data_i is an element stored in the model. See1.6 Elements Contained in Models.

The children block is optional and is mainly there so that in an xml editor, the
element_data_i items can be collapsed into the children section.

An example of a model with no elements and no children block:

<model>
 <name>telegraph poles,/name>

 <attributes>
 <text> <name>pole id</name> <value>QMR-37</value> </text>
 <text> <name>street</name><value>477 Boundary St</value></text>
 <real> <name>pole wires</name> <value>3</value> </text>
 </attributes>
</model>

Continue to the next section 1.6 Elements Contained in Models or return to 1 12d XML File
Format.
Page 21Model

12d Model Reference Manual
1.6 Elements Contained in Models
See

1.6.1 Tin

1.6.2 Super Tin

1.6.5 Arc String

1.6.6 Circle String

1.6.7 Drainage String

1.6.8 Feature String

1.6.9 Plot Frame String

1.6.10 Super String

1.6.11 Super Alignment String

1.6.12 Text String
Page 22 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.1 Tin
A tin (triangulated irregular networks) is an element that may, or may not, be in a model.

Each tin has text name, tin_name, of up to two hundred alphanumeric characters and spaces
and although the tin names are stored with upper or lower case alphabet characters, for
comparisons of the tin names, the names are considered to be case insensitive.

Within a project, the name of a tin or a super tin must be unique amongst the combined list of tin
names and super tin names.

There are two formats for a tin - one that lists all the triangles, including the nulled (invisible)
triangles in the tin, and the other that only lists the visible triangles that make up the tin.

See

1.6.1.0.1 All Triangles in the Tin - Visible and Invisible

1.6.1.0.2 Visible Triangles Only

1.6.1.0.1 All Triangles in the Tin - Visible and Invisible

This format writes out all the triangles in the tin, including the invisible triangles and construction
triangles.

This format take more disk space but cannot be misinterpreted because it includes all the points,
triangles and all the neighbouring triangles for each edge of a triangle.

It is also the best method for writing out large tins as it is much faster to read in and create a tin.

The keyword for the full format for a tin element is full_tin and it is defined by:

<full_tin>

<name>tin_name</name>

attribute_block

time_created_block

time_updated_block

colour_block

points_block

triangles_block

neighbours_block

nulling_block

colours_block

input_block

</full_tin>

where

tin_name

is a string of characters for the tin name and can’t be blank. This must be unique in a project.

For the characters that can make up a tin_name, see Names of models, tins, super tins,
styles, textstyles and colours.

time_created_block

is the time the tin was originally created, This is optional. For the syntax see 1.3.7 Time
Created.

time_updated_block
Page 23Elements Contained in Models

12d Model Reference Manual
is the last time the tin was last modified, This is optional. For the syntax see 1.3.7 Time
Created.

colour_block

this colour number is the primary (base) colour for all the triangles in the tin. A triangle in the
tin will have this colour unless it is overridden by a colours_block. For the syntax of
colour_block, see 1.3.2 Colour.

attribute_block is optional: For the syntax of an attributes_block see 1.4 Attributes.

The attributes in this block and the attributes_block itself are optional.

The attributes Style, Weed, Faces, Boundary_String, null_length, null_angle,
null_combined_length and null_combined_angle are special attributes that have extra
information used by 12d Model to create the tin. These special attributes should not be
deleted.

The format of the special attributes inside the <attributes> ... </attributes> is:

<text> <name>Style</name> <value>style_name</value> </text>
<integer> <name>Weed</name> <value>weed_value</value> </integer>
<integer> <name>Faces</name> <value>faces_value</value> </integer>
<text> <name>Boundary_String</name><value>full_string_name</value></text>
<real> <name>null_length</name> <value>null_len_val</value> </real>
<real> <name>null_angle</name> <value>null_angle_rad</value> </real>
<real> <name>null_combined_length</name> <value>null_com_ln/value> <real>
<real> <name>null_combined_angle</name><value>null_com_rad</value></real>

where

style_name is the style for the tin

weed_value is 0 or 1

faces_value is 0 if the data is not from triangles, 1 if the data is from triangles

full_string_name is the name of a polygon for nulling outside. This is optional.

null_len_val is value for nulling by angle

null_angle_rad is in radians value for nulling by angle

null_com_ln is for nulling by combined angle and length

null_com_rad is in radians for nulling by combined angle and length

points_block

This gives the coordinates of the points that will be vertices of the triangles in the tin, including
the first four points that are construction points. The construction points are on the four
corners of a rectangle that totally surrounds the actual data.

The points are implicitly numbered by the order in the list (starting at point 1).

The Points Block is MANDATORY.

<points>

 <p>x_value_1 y_value_1 z_value_1</p>

 <p>x_value_2 y_value_2 z_value_2</p>

 ...
 <p>x_value_m y_value_m z_value_m</p>

</points>

where (x_value_j, y_value_j, z_value_j) are the coordinates of the j’th point.

Points 1, 2,3 and 4 are not valid data points but are construction points. These are usually
Page 24 Elements Contained in Models

Chapter 1 12d XML File Format
not displayed.

triangles_block

This gives the triangles that make up the tin.

Each triangle is given as a triplet of the point numbers in the Points block that are the triangle
vertices. The order of the triangles is unimportant but the order of the points in the triangle
is important.

The vertices of each triangle must be listed in a clockwise order when looking at the tin from
above.

p1

p2

p3

Plan View

The Triangles Block is MANDATORY

<triangles>

 <t>t1_pt_1 t1_pt_2 t1_pt_3</t>

 <t>t2_pt_1 t2_pt_2 t2_pt_3</t>

 ...
 <t>tn_pt_1 tn_pt_2 tn_pt_3</t>

</triangles>

where tk_pt_1 tk_pt_2 tk_pt_3 are point numbers from the points_block of the three
vertices of the k’th triangle.

The first edge of triangle k is from Point tk_pt_1 to Point tk_pt_2.
The second edge of triangle k is from Point tk_pt_2 to Point tk_pt_3.
The third edge of triangle k is from Point tk_pt_3 to Point tk_pt_1.

Note: Construction Triangles

Any triangle that contains any of the first four points (construction points) is a construction
triangle and is usually not displayed.

neighbours_block

For each triangle, this gives for each edge the number of the triangle that is the neighbour of
that edge of the triangle.

The order of the entries in the neighbours block must match the order of the triangles in the
Triangles Block. So there is exactly one entry for each triangle.

The Neighbours Block is MANDATORY

<neighbours>

 <t>t1_e1_nb_tr t1_e2_nb_tr t1_e3_nb_tr</t>

 <t>t2_e1_nb_tr t2_e2_nb_tr t2_e3_nb_tr</t>
Page 25Elements Contained in Models

12d Model Reference Manual
 ...
 <t>tn_e1_nb_tr tn_e2_nb_tr tn_e3_nb_tr</t>

</neighbours>

where tk_e1_nb_tr tk_e2_nb_tr tk_e3_nb_tri are the triangle numbers from the
triangles_block of the neighbouring triangle for each edge of the k’th triangle.

For each triangle, the order of the neighbouring triangles must match the order that the edges
are defined for the triangle in the triangles block.

Note: the neighbour value of 0 is used for the outside triangles that contain exactly two of the
points 1, 2, 3 or 4 and so have edges that have no neighbouring triangle.

nulling_block

Triangles can be visible or nulled (invisible).

Any triangle including points 1, 2 3 or 4 are construction triangles and must be null.

All other triangles can be visible or null (invisible).

Whether a triangle is null or visible is individually given where:

1 means the triangle is null, and

2 means the triangle is visible.

The order of the entries in the nulling block must match the order of the triangles in the
Triangles Block. So there is exactly one entry for each triangle

The Nulling Block is MANDATORY

<nulling>

 v1 v2 ... v15 v16

 v17 v18 ... v31 v32

 ...
 vn-2 vn-1 vn

</nulling>

where vk is the nulling value of the k’th triangle in the triangles_block.

colours_block

Triangles can be given colours other than the base colour by including a Colours Block. The
colour for each triangle in then individually given where -1 means use the base colour. The
order of the entries in the colours block must match the order of the triangles in the Triangles
Block. So there is exactly one entry for each triangle

If all the triangles are the base colour, then the Colours Block is omitted.

<colours>

 c1 c2 ... c15 c16

 c17 c18 ... c31 c32

 ...
 cn-2 cn-1 cn

</colours>

where ck is the colour number of the k’th triangle in the triangles_block.

ck equals -1 when there is no special colour set and the triangle is drawn in the base colour.
Page 26 Elements Contained in Models

Chapter 1 12d XML File Format
input_block

The input_block gives more information about how the tin was created by 12d Model.

None of this information is needed when reading a tin into 12d Model and the input_ block
can be omitted.

<input>

 <preserve_strings> pres_str_text_logical </preserve_strings>

 <remove_bubbles> rem_bub_text_logical </remove_bubbles>

 <weed_tin> weed_tin_text_logical </weed_tin>

 <triangle_data> triangle_data_text_logical </triangle_data>

 <sort_tin> sort_tin_text_logical </sort_tin>

 <cell_method> cell_method_text_logical </cell_method>

 <models>

 model_name_1

 model_name_2

 ...
 model_name_p

 </models>

 </input>

where

pres_str_text_logical, rem_bub_text_logical, weed_tin_text_logical,
triangle_data_text_logical, sort_tin_text_logical and cell_method_text_logical are text and
can only have the values true or false.

<models> ... </models> is the list of models in the tin where

model_name_i is the name of the i’th model making up the tin.
Page 27Elements Contained in Models

12d Model Reference Manual
1.6.1.0.2 Visible Triangles Only
The format to write out only the visible triangles in a tin is a simple format for most software
packages to write. However because the null regions are not explicitly given, more processing
time is required to read the tin back in and construct all the null regions.

The keyword denoting the format where just the visible triangles of a tin element are written out
is tin and its definition is:

<tin>

<name>tin_name</name>

attribute_block

time_created_block

time_updated_block

colour_block

points_block

triangles_block

colours_block

input_block

</tin>

where

tin_name

is a string of characters for the tin name and can’t be blank. This must be unique in a project.

For the characters that can make up a tin_name, see Names of models, tins, super tins,
styles, textstyles and colours.

time_created_block

is the time the tin was originally created, This is optional. For the syntax see 1.3.7 Time
Created.

time_updated_block

is the last time the tin was last modified, This is optional. For the syntax see 1.3.7 Time
Created.

colour_block

this colour number is the primary (base) colour for all the triangles in the tin. A triangle in the
tin will have this colour unless it is overridden by a colours_block. For the syntax of
colour_block, see 1.3.2 Colour.

attribute_block is optional: For the syntax of an attributes_block see 1.4 Attributes.

The attributes in this block and the attributes_block itself are optional.

The attributes Style, Weed, Faces, Boundary_String, null_length, null_angle,
null_combined_length and null_combined_angle are special attributes that have extra
information used by 12d Model to create the tin. These special attributes should not be
deleted.

The format of the special attributes inside the <attributes> ... </attributes> is:

<text> <name>Style</name> <value>style_name</value> </text>
<integer> <name>Weed</name> <value>weed_value</value> </integer>
<integer> <name>Faces</name> <value>faces_value</value> </integer>
<text> <name>Boundary_String</name><value>full_string_name</value></text>
<real> <name>null_length</name> <value>null_len_val</value> </real>
<real> <name>null_angle</name> <value>null_angle_rad</value> </real>
<real> <name>null_combined_length</name> <value>null_com_ln/value> <real>
Page 28 Elements Contained in Models

Chapter 1 12d XML File Format
<real> <name>null_combined_angle</name><value>null_com_rad</value></real>

where

style_name is the style for the tin

weed_value is 0 or 1

faces_value is 0 if the data is not from triangles, 1 if the data is from triangles

full_string_name is the name of a polygon for nulling outside. This is optional.

null_len_val is value for nulling by angle

null_angle_rad is in radians value for nulling by angle

null_com_ln is for nulling by combined angle and length

null_com_rad is in radians for nulling by combined angle and length

points_block

This gives the coordinates of the points that will be vertices of the triangles in the tin. The
points are implicitly numbered by the order in the list (starting at point 1). The Points Block is
MANDATORY.

<points>

 <p>x_value_1 y_value_1 z_value_1</p>

 <p>x_value_2 y_value_2 z_value_2</p>

 ...
 <p>x_value_m y_value_m z_value_m</p>

</points>

where (x_value_j, y_value_j, z_value_j) are the coordinates of the j’th point.

triangles_block

This gives the triangles that make up the tin.

Each triangle is given as a triplet of the point numbers in the Points block that are the triangle
vertices. The order of the triangles is unimportant but the order of the points in the triangle
is important.

The vertices of each triangle must be listed in a clockwise order when looking at the tin from
above.

p1

p2

p3

Plan View

.

The Triangles Block is MANDATORY

<triangles>

 <t>t1_pt_1 t1_pt_2 t1_pt_3</t>
Page 29Elements Contained in Models

12d Model Reference Manual
 <t>t2_pt_1 t2_pt_2 t2_pt_3</t>

 ...
 <t>tn_pt_1 tn_pt_2 tn_pt_3</t>

</triangles>

where tk_pt_1 tk_pt_2 tk_pt_3 are point numbers from the points_block of the three
vertices of the k’th triangle.

colours_block

Triangles can be given colours other than the base colour by including a Colours Block. The
colour for each triangle in then individually given where -1 means use the base colour. The
order of the entries in the colours block must match the order of the triangles in the Triangles
Block. So there is exactly one entry for each triangle

If all the triangles are the base colour, then the Colours Block is omitted.

<colours>

 c1 c2 ... c15 c16

 c17 c18 ... c31 c32

 ...
 cn-2 cn-1 cn

</colours>

where ck is the colour number of the k’th triangle in the triangles_block.

ck equals -1 when there is no special colour set and the triangle is drawn in the base colour.

input_block

The input_block gives more information about how the tin was created by 12d Model.

None of this information is needed when reading a tin into 12d Model and the input_ block
can be omitted.

<input>

 <preserve_strings> pres_str_text_logical </preserve_strings>

 <remove_bubbles> rem_bub_text_logical </remove_bubbles>

 <weed_tin> weed_tin_text_logical </weed_tin>

 <triangle_data> triangle_data_text_logical </triangle_data>

 <sort_tin> sort_tin_text_logical </sort_tin>

 <cell_method> cell_method_text_logical </cell_method>

 <models>

 model_name_1

 model_name_2

 ...
 model_name_p

 </models>

 </input>

where

pres_str_text_logical, rem_bub_text_logical, weed_tin_text_logical,
triangle_data_text_logical, sort_tin_text_logical and cell_method_text_logical are text and
Page 30 Elements Contained in Models

Chapter 1 12d XML File Format
can only have the values true or false.

<models> ... </models> is the list of models in the tin where

model_name_i is the name of the i’th model making up the tin.

Continue to the next section 1.6.2 Super Tin or return to 1.3 Regularly Used Keyword Blocks or 1
12d XML File Format.
Page 31Elements Contained in Models

12d Model Reference Manual
1.6.2 Super Tin
 A Super Tins consists of a number of tins (triangulated irregular networks).

Each super tin has text name, tin_name, of up to two hundred alphanumeric characters and
spaces and although the tin names are stored with upper or lower case alphabet characters, for
comparisons of the tin names, the names are considered to be case insensitive.

Within a project, the name of a tin or a super tin must be unique amongst the combined list of
tin names and super tin names.

The format for the super_tin element is:

<super_tin>

<name>tin_name</name>

attribute_block

time_created_block

time_updated_block

colour_block

exact_block

tins_block

</super_tin>

where

tin_name

is a string of characters for the super tin name and can’t be blank. This must be unique in a
project.

For the characters that can make up a tin_name, see Names of models, tins, super tins,
styles, textstyles and colours.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7 Time
Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7 Time
Created.

colour_block

this colour number is the primary (base) colour for the super tin. For the syntax of
colour_block, see 1.3.2 Colour.

attribute_block is optional: For the syntax of an attributes_block see 1.4 Attributes.

The attributes in this block and the attributes_block itself are optional.

The attribute Style is a special attribute that is used by 12d Model to create the super tin.
This special attribute should not be deleted.

The format of the Style attribute inside the <attributes> ... </attributes> is:

<text> <name>Style</name> <value>style_name</value> </text>

where

style_name is the style for the super tin

exact_block

<exact> exact_text_logical </exact>
Page 32 Elements Contained in Models

Chapter 1 12d XML File Format
where

exact_text_logical is text and can only have the value true or false.

tins_block

This gives the tins that make up the super tin within the keyword block tins.

<tins>

 tin_info_1

 tin_info_2

 ...
 tin_info_p

</tins>

where

there are p tins in the super tin and tin_info_i is information about the i’th tin. The information
about a tin is contained in a tin block.

<tin>

 <name> tin_name_i</name>

 <active> active_text_logical</active>

 <mode> mode_text_logical</mode>

</tin>

where

tin_name_i is the name of the i’th tin making up the super tin.

active_text_logical and mode_text_logical are text and can only have the value true or
false.

For example

<super_tin>
 <name>super tin</name>
 <colour>green</colour>
 <attributes>
 <text> <name>Style</name> <value>1</value> </text>
 </attributes>
 <time_created>28-Apr-2015 06:42:45</time_created>
 <time_updated>28-Apr-2015 06:42:45</time_updated>
 <exact>true</exact>
 <tins>
 <tin>
 <name>DESIGN ALL</name>
 <active>true</active>
 <mode>replace</mode>
 </tin>
 <tin>
 <name>HILL</name>
 <active>true</active>
 <mode>replace</mode>
 </tin>
 </tins>
</super_tin>

Note that the tins that make up the super tin must exist in the 12d Model project for the super tin
to be fully defined.
Page 33Elements Contained in Models

12d Model Reference Manual
Continue to the next section 1.6.3 String Header Block or return to 1.3 Regularly Used Keyword
Blocks or 1 12d XML File Format.
Page 34 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.3 String Header Block
Strings are special types of elements that reside in a model.

Strings have common header information and this will be documented in this one spot as a
string_header_block.

The format for the string_header_block is:

string_name_block

chainage_block

colour_block

style_block

weight_block

interval_block

time_created_block

time_updated_block

attribute_block

where

string_name_block

The format of the string_name_block is:

<name> string_name_text </name>

where

string_name_text is a string of allowable characters that is the name of the string.

For the characters that can make up a string_name, see String names.

Any leading and trailing spaces will be removed in the string name.

string_name can be blank.

An example of a string name is:

 <name> design 100.0 </name>

chainage_block

is the start chainage of the string. This is optional. For the syntax see 1.3.4 Chainage.

colour_block

the colour name is the primary colour for the string. For the syntax of colour_block, see 1.3.2
Colour.

style_block

is the line style of the string. This is optional. For the syntax of style_block see 1.3.3 Line
Style.

weight_block

is the weight (thickness) of the string. This is optional. For the syntax of weight_block see
1.3.5 Weight.

interval_block

the chainage interval to temporarily introduce extra vertices into the string when the string is
in a triangulation to form a tin. For the syntax of interval_block, see 1.3.6 Interval.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax of
time_created_block see 1.3.7 Time Created.
Page 35Elements Contained in Models

12d Model Reference Manual
time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax of
time_updated_block see 1.3.8 Time Updated.

attribute_block

The string attributes are in this block. For the syntax of an attributes_block see 1.4 Attributes

The attributes_block is optional.

For example

Continue to the next section 1.6.4 Text Information or return to 1.6 Elements Contained in Models
or 1 12d XML File Format.

<string_arc>
 <name>arc</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>yellow</colour>
 <style>1</style>
 <weight>2</weight>
 <time_created>28-Apr-2015 07:46:57</time_created>
 <time_updated>28-Apr-2015 07:46:57</time_updated>
 <interval>10</interval>
 <centre>1067.40263766 530.14953857 0</centre>
 <radius>226.6814323</radius>
 <chord_arc>0.1</chord_arc>
 <start>867.42825529 423.40349345 0</start>
 <end>1118.02452861 751.10631241 0</end>
</string_arc>

string_header_block
Page 36 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.4 Text Information
See

1.6.4.1 Vertex Annotation Information

1.6.4.2 Segment Annotation Information

1.6.4.1 Vertex Annotation Information
The vertex_annotation_information is

<worldsize> world_size_real </worldsize>

<textstyle> textstyle_name </textstyle>

<angle> angle_dec_deg_real </angle>

<x_factor> x_factor_real </x_factor>

<slant> slant_dec_deg_real </slant>

<offset> offset_real </offset>

<raise> raise_real </raise>

<text_colour> text_colour_name </text_colour>

<justify> text_justification_text </justify>

where

world_size_real is the size of the text in world units.

textstyle_name is the name of the textstyle for the text.

angle_dec_deg_real is the angle of the text. The value is in decimal degrees and is
measured in a counter clockwise direction from the positive x-axis.

x_factor_real is the factor to apply to the width of the text.

slant_dec_deg_real is the angle the text is slanted from the vertical. The value is in
decimal degrees and is measured in a clockwise direction from the positive y-axis.

offset_real is distance to offset the text from the text vertex.

raise_real is the perpendicular distance the text is off the direction line of the text.

text_colour_name is the colour of the text. This should be the same as the colour in the
string_header_block.For the syntax of colour_block, see 1.3.2 Colour.

text_justification_text is the text giving the justification point of the text.

Fred

.
position of
text vertex

the position of the
text justification
point for vertex text

angle

offset raise angle, offset and raise
from the vertexor super string

vertex

is defined by the

Vertex Text or String Text

line giving the direction
of the text
Page 37Elements Contained in Models

12d Model Reference Manual
1.6.4.2 Segment Annotation Information
The segment_annotation_information is

<worldsize> world_size_real </worldsize>

<textstyle> textstyle_name </textstyle>

<angle> angle_dec_deg_real </angle>

<x_factor> x_factor_real </x_factor>

<slant> slant_dec_deg_real </slant>

<offset> offset_real </offset>

<raise> raise_real </raise>

<text_colour> text_colour_name </text_colour>

<justify> text_justification_text </justify>

where

world_size_real is the size of the text in world units.

textstyle_name is the name of the textstyle for the text.

angle_dec_deg_real is the angle of the text. The value is in decimal degrees and is
measured in a counter clockwise direction from the segment.

x_factor_real is the factor to apply to the width of the text.

slant_dec_deg_real is the angle the text is slanted from the vertical. The value is in
decimal degrees and is measured in a clockwise direction from the positive y-axis.

offset_real is distance to offset the text from the centre of the segment.

raise_real is the perpendicular distance the text is off the direction line of the text.

text_colour_name is the colour of the text. This should be the same as the colour in the
string_header_block.For the syntax of colour_block, see 1.3.2 Colour.

text_justification_text is the text giving the justification point of the text.

.

super string vertices

angle

off
se

t

raise .
.

.

. the position of the
text justification
point for segment text

angle, offset and raise
from the centre of

is defined by the

the super string segment

centre of the segment

Segment Text

Fred

line giving the direction
of the text
Page 38 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.5 Arc String
The format for the string_arc element is:

<string_arc>

string_header_block

centre_block

radius_block

chord_arc_block

start_block

end_block

</string_arc>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

centre_block

The format of the centre_block is:

<centre> x_centre_real y_centre_real z_centre_real </centre>

where

(x_centre_real,y_centre_real,z_centre_real) is the centre of the arc.

radius_block

the radius of the arc. For the syntax of radius_block, see 1.3.9 Breakline.

A positive radius means that the arc goes from the start point in a clockwise direction (goes to
the right) and a negative radius means that the arc goes is in a counter clockwise direction
(goes to the left).

chord_arc_block

The format of the chord_arc_block is:

<chord_arc>chord_arc_real </chord_arc>

where

chord_arc_real is a real number and is the chord to arc tolerance to use to temporarily insert
vertices into the arc when the arc is included in a triangulation to form a tin.

start_block

The format of the start_block is:

<start> x_start_real y_start_real z_start_real </start>

where

(x_start_real,y_start_real,z_start_real) is the start coordinate of the arc.

end_block

The format of the end_block is:

<end> x_end_real y_end_real z_end_real </end>

where

(x_end_real,y_end_real,z_end_real) is the end coordinate of the arc.

For example
Page 39Elements Contained in Models

12d Model Reference Manual
<string_arc>
 <name>arc</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>yellow</colour>
 <style>1</style>
 <weight>2</weight>
 <time_created>28-Apr-2015 07:46:57</time_created>
 <time_updated>28-Apr-2015 07:46:57</time_updated>
 <interval>10</interval>
 <centre>1067.40263766 530.14953857 0</centre>
 <radius>226.6814323</radius>
 <chord_arc>0.1</chord_arc>
 <start>867.42825529 423.40349345 0</start>
 <end>1118.02452861 751.10631241 0</end>
</string_arc>

Continue to the next section 1.6.6 Circle String or return to 1.6.3 String Header Block or 1 12d
XML File Format.
Page 40 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.6 Circle String
The format for the string_circle element is:

<string_circle>

string_header_block

centre_block

radius_block

chord_arc_block

</string_arc>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

centre_block

The format of the centre_block is:

<centre> x_centre_real y_centre_real z_centre_real </centre>

where

(x_centre_real,y_centre_real,z_centre_real) is the centre of the circle.

radius_block

the radius of the circle. For the syntax of radius_block, see 1.3.9 Breakline.

A positive radius means that the circle goes in a clockwise direction (goes to the right) and a
negative radius means that the circle goes is in a counter clockwise direction (goes to the
left).

chord_arc_block

The format of the chord_arc_block is:

<chord_arc>chord_arc_real </chord_arc>

where

chord_arc_real is a real number and is the chord to arc tolerance to use to temporarily insert
vertices into the circle when the circle is included in a triangulation to form a tin.

For example

<string_circle>
 <name>circle</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>yellow</colour>
 <style>1</style>
 <weight>5</weight>
 <interval>10</interval>
 <time_created>28-Apr-2015 07:45:53</time_created>
 <time_updated>28-Apr-2015 07:46:23</time_updated>
 <centre>409.93551 548.76354 null</centre>
 <radius>100</radius>
 <chord_arc>0.1</chord_arc>
</string_circle>string circle

Continue to the next section 1.6.7 Drainage String or return to 1.6.3 String Header Block or 1 12d
XML File Format.
Page 41Elements Contained in Models

12d Model Reference Manual
1.6.7 Drainage String
The full 12dXML definition of the drainage string is:

<string_drainage>

string_header_block

outfall_block

flow_direction_block

use_pit_con_points_block

drainage_sewer_block

data_3d_block

radius_data_block

major_data_block

pit_records

pipe_records

</string_drainage>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

There are also some special attributes in the string attributes in the String Header Block that
provide extra information for the drainage string.

outfall_block

<outfall> outfall_real </outfall>

where outfall_real is the z-value of the outfall (the low end of the string.

flow_direction_block

<flow_direction> flow_direction_flag </flow_direction>

where flow_direction_flag is 1 if the flow is the same as the string direction, or 0 if the flow is
opposite to the string direction.

use_pit_con_points_block

<user_pit_con_points> use_pit_connection_points_logical_text </user_pit_con_points>

where use_pit_connection_points_logical_text is true if pit connection points are used, or
false if pit connection points are not being used and hence the pipes go to the centre of he
pits.

drainage_sewer_block

<drainage_sewer> drainage_sewer_choice_text </drainage_sewer>

where drainage_sewer_choice_text is drainage (storm water) if it is for drainage and sewer
if it is for sewer (foul water).

data_3d_block, radius_data_block and major_data_block

the drainage string has an underlying string that is used to define locations of the pits and
the geometry for the pipes. The underlying string can have straight and arc segments.

The vertex data for the underlying string is given in a data_3d block, and if there any arcs,
then these are specified in radius_data and major_data blocks. See 1.3.13 data_3d and
1.3.14 radius_data and major_data.
Page 42 Elements Contained in Models

Chapter 1 12d XML File Format
pit_records

In plan the pits sit on the underlying string and there is one pit record for each pit. The pits
do not have to be on a vertex of the underlying string.

There is one pit block for each pit in the string and they are in the order that they occur
along the string.

 The information for each pit is:

<pit>

<name> pit_name_text </name>

<type> pit_type_text </type>

<chainage> pit_chainage_real </chainage>

<ip> pit_ip_text </ip>

<ratio> pit_ratio_real </ratio>

<x> pit_x_real </x>

<y> pit_y_real </y>

<z> pit_z_real </z>

<road_chainage> pit_road_chainage_real </road_chainage>

<diameter> pit_diameter_real </diameter>

<width> pit_width_real </width>

<sump_level> pit_sump_level_real </sump_level>

<floating_sump> pit_floating_sump_flag </floating_sump>

<thickness> pit_thickness_real </thickness>

<thickness_bottom> pit_thickness_bottom_real </thickness_bottom>

<thickness_back> pit_thickness_back_real </thickness_back>

<thickness_left> pit_thickness_left_real </thickness_left>

<thickness_right> pit_thickness_right_real </thickness_right>

<con_point_mode> pit_con_points_mode_text </con_point_mode>

<floating> pit_floating_logical_text </floating>

<hgl> pit_hgl_real </hgl>

pit_attributes_block

</pit>

where

pipe_records

In plan the pipes sit on the underlying string and the plan geometry is based on the
underlying string. Each pipe goes between two adjacent pits.

There is one pipe block for each pipe in the string and they are in the order that they occur
along the string.

<pipe>

<name> pipe_name_text </name>

<type> pipe_type_text </type>

<colour> pipe_colour_text </colour>

<diameter> pipe_diameter_real </diameter>
Page 43Elements Contained in Models

12d Model Reference Manual
<nominal_diameter> pipe_nominal_diameter_real </nominal_diameter>

<width> pipe_width_real </width>

<top_width> pipe_top_width_real </top_width>

<thickness> pipe_thickness_real </thickness>

<thickness_bottom> pipe_thickness_bottom_real </thickness_bottom>

<thickness_back> pipe_thickness_back_real </thickness_back>

<thickness_left> pit_thickness_left_real </thickness_left>

<thickness_right> pipe_thickness_right_real </thickness_right>

<separation> pipe_separation_real </separation>

<number_of_pipes> pipe_number_of_pipes_integer </number_of_pipes>

<us_level> pipe_us_level_real </us_level>

<ds_level> pipe_ds_level_real </ds_level>

<us_hgl> pipe_us_hgl_real </us_hgl>

<ds_hgl> pipe_ds_hgl_real </ds_hgl>

<flow_velocity> pipe_flow_velocity_real </flow_velocity>

<flow_volume> pipe_flow_volume_real </flow_volume>

pipe_attributes_block

</pipe>

string drainage {
 chainage start_chainage
 model model_name name string_name
 colour colour_name style style_name
 breakline point or line
 attributes {
 text Tin finished_surface_tin
 text NSTin natural_surface_tin
 integer "_floating" 1|0 // 1 for floating, 0 not floating
 }
 outfall outfall_value // z-value at the outfall
 flow_direction 0|1 // 0 drainage line is defined from downstream

// to upstream

 data { // key word - geometry of the drainage string
 x-value y-value z-value radius bulge
 " " "
 " " "
 }
 pit { // pit/manhole - one pit record for each pit/manhole

// in the order along the string
 name text // pit name
 type text // pit type
 road_name text // road name
 road_chainage chainage // road chainage
 diameter value // pit diameter
 floating yes|no // is pit floating or not
 chainage pit_chainage // internal use only
Page 44 Elements Contained in Models

Chapter 1 12d XML File Format
 ip value // internal use only
 ratio value // internal use only
 x x-value // x-value of top of pit
 y y-value // y-value of top of pit
 z z-value // z-value of top of pit
 }
 pipe { // one pipe record for each pipe connecting pits/manholes

// in the order they occur along the string
 name text // pipe name
 type text // pipe type
 diameter value // pit diameter
 us_level value //
 ds_level value //
 us_hgl value //
 ds_hgl value //
 flow_velocity value //
 flow_volume value //
 }
 property_control {
 name text // lot name
 colour colour_name
 grade value // grade of pipe in units of "1v in"
 cover value // cover of the of pipe
 diameter value // diameter of the of pipe
 boundary value // boundary trap value
 chainage chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x value of where pipe connects to sewer
 y y-value // y value of where pipe connects to sewer
 z z-value // internal use only

 data { // key word - geometry of the property control
 x-value y-value z-value radius bulge
 " " "
 " " "
 }
 house_connection { // warning - house connections may change in future versions
 name text // house connection name
 hcb integer // user given integer
 colour colour_name
 grade value // grade of connection in units of "1v in"
 depth value
 diameter value
 side left or right
 length value
 type text // connection type
 material text // material type
 bush text // bush type
 level value
 adopted_level value
 chainage chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x value of where pipe connects to sewer
 y y-value // y value of where pipe connects to sewer
 z z-value // internal use only
 }
Page 45Elements Contained in Models

12d Model Reference Manual
} // end of drainage-sewer data

Continue to the next section 1.6.8 Feature String or return to 1.6.3 String Header Block or 1 12d
XML File Format.
Page 46 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.8 Feature String
The full 12dXML definition of the drainage string is:

<string_feature>

string_header_block

<radius> feature_radius_real </radius>

<centre> x_centre_real y_centre_real z_centre_real </centre>

</string_feature>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

There are also some special attributes in the string attributes in the String Header Block that
provide extra information for the drainage string.

feature_radius_real is the radius of the feature string.

(xcentre_real, y_centre_real, z_centre_real) is the centre of the feature string.

For example

<string_feature>
 <name>Line 1</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>cyan</colour>
 <style>1</style>
 <time_created>2015-05-19T08:06:01Z</time_created>
 <time_updated>2015-05-19T08:06:01Z</time_updated>
 <centre>42200.06055 37384.05873 null</centre>
 <radius>20</radius>
</string_feature>

Continue to the next section 1.6.9 Plot Frame String or return to 1.6.3 String Header Block or 1
12d XML File Format.
Page 47Elements Contained in Models

12d Model Reference Manual
1.6.9 Plot Frame String
The format for the string_plot_frame element is:

<string_plot_frame>

info_block

time_created_block

time_updated_block

sheet_details_block

title_block_block

origin_block

scale_block

rotation_block

plotter_details_block

</string_plot_frame>

where

info_block

The format of the info_block is:

<info>

<name> plot_frame_name_text</name>

<colour> plot_frame_name_colour_text</colour>

 <plot_file> plot_file_name_text</plot_file>

</info>

where

plot_frame_name_text is a string of allowable characters that is the name of the plot file
string. For the characters that can make up a string_name, see String names.

plot_frame_colour_text is the colour of the plot frame. For the syntax of colour_block, see
1.3.2 Colour.

plot_file_name_text is the name of file that the plot frame will plot to.

time_created_block

is the time the plot frame was originally created, This is optional. For the syntax of the
time_created_block see 1.3.7 Time Created.

time_updated_block

is the last time the plot frame was last modified, This is optional. For the syntax of the
time_updated_block see 1.3.8 Time Updated.

sheet_details_block

The format of the sheet_details_block is:

<sheet_details>

<sheet_code> sheet_code_text</sheet_code>

<width> sheet_width_real</width>

<height> sheet_height_real</height>

<left_margin> sheet_left_margin_real</left_margin>

<right_margin> sheet_right_margin_real</right_margin>

<top_margin> sheet_top_margin_real</top_margin>
Page 48 Elements Contained in Models

Chapter 1 12d XML File Format
<bottom_margin> sheet_bottom_margin_real</bottom_margin>

 <border> sheet_border_text_logical</border>

 <viewport> sheet_viewport_text_logical</viewport>

 </sheet_details>

where

sheet_code_text is the name of the sheet. This can be blank.

sheet_width_real, sheet_height_real, sheet_left_margin_real, sheet_right_margin_real,
sheet_top_margin_real, sheet_bottom_margin_real are all real values and give the size and
margins for he sheet that the plot frame will plot. The units for all of them is millimetres.

plot_frame_border_text_logical and plot_frame_viewport_text_logical are text and can only
have the value true or false.

origin_block

The format of the origin_block is:

<origin> x_real y_real z_real</origin>

where

(x_real,y_real,z_real) is the coordinates of the origin of the plot frame.

scale_block

The format of the scale_block is:

<scale> scale_real</scale>

where

scale_real is the 1: scale for the plots created by the plot frame.

rotation_block

The format of the rotation_block is:

<rotation> rotation_dec_deg_real</rotation>

where

rotation_dec_deg_real is rotation of the plot frame. The value is in decimal degrees and is
measured in a counter clockwise direction from the positive x-axis.

plotter_details_block

The format of the plotter_details_block is:

<plotter_details>

<title_1>title_1_text</title_1>

<title_2>title_2_text</title_2>

<use_title_file> title_file_text_logical</border>

<title_file> title_file_name_text</title_file>

<text_size> title_text_size_real_mm</text_size>

<textstyle> title_text_style</textstyle>

 </plotter_details>

where

title_1_text and title_2_text are two lines of text for the title block. They can be blank.

use_title_file_text_logical is text and can only have the value true or false.

title_file is the path name of the file to use as a title block file. This can be blank.

title_text_size_real_mm is the size of the text in the title block. The units are millimetres.
Page 49Elements Contained in Models

12d Model Reference Manual
For example

 <string_plot_frame>
 <info>
 <name>Plot frame</name>
 <colour>green</colour>
 <plot_file>plot</plot_file>
 </info>
 <sheet_details>
 <sheet_code>A0</sheet_code>
 <width>1189</width>
 <height>841</height>
 <left_margin>5</left_margin>
 <right_margin>10</right_margin>
 <bottom_margin>5</bottom_margin>
 <top_margin>10</top_margin>
 <border>true</border>
 <viewport>true</viewport>
 </sheet_details>
 <title_block>
 <title_1>Title 1</title_1>
 <title_2>Title 2</title_2>
 <use_title_file>true</use_title_file>
 <title_file>A0 title.tbf</title_file>
 <text_size>5</text_size>
 <textstyle>1</textstyle>
 </title_block>
 <origin>695.2353 1464.6248</origin>
 <scale>100</scale>
 <rotation>45</rotation>
 <plotter_details>
 <id>9</id>
 <type>model</type>
 <mode>""</mode>
 <names>""</names>
 </plotter_details>
 <time_created>29-Apr-2015 01:11:52</time_created>
 <time_updated>29-Apr-2015 01:11:52</time_updated>
 </string_plot_frame>

Continue to the next section 1.6.10 Super String or return to 1.6.3 String Header Block or 1 12d
XML File Format.
Page 50 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10 Super String
Because the super string is so versatile, its 12d XML format looks complicated but it is very
logical and actually quite simple.

In its most primitive form, the super string is simply a set of (x,y) values as in a 2d string, or (x,y,z)
values as in a 3d string.

Additional blocks of information can extend the definition of the super string and only need to be
included if they exist. For example, segment arcs or transitions, vertex ids, vertex and segment
text, round pipe diameters or box pipes widths and heights and tinability.

Some of the properties of the super string can be constant for the entire string or can vary for
each vertex and/or segment. For example, there can be one colour for the entire string or
individual colours for each segment.

For user attributes, the super string not only has the standard user attributes defined for the
entire string (string attributes), but also can have user attributes for each vertex (vertex
attributes) and for each segment (segment attributes).

Being closed or not is another property of the super string and if the super string is closed then
the super string knows there is an additional segment going from the last vertex back to the first
vertex. This means that no duplication of the first and last vertex is needed.

Thus if a super string has n vertices, then an open super string has n-1 segments joining the
vertices and a closed super string has n segments since there is an additional segment from the
last to the first vertex.

With the additional data for vertices and/or segments in the super string, the data is in vertex or
segment order.

So for a string with n vertices, there must be n bits of vertex data.

For segments, if the string is open then there only needs to be n-1 bits of segment data but for
closed strings, there must be n bits of data.

For an open string, n bits of segment data can be specified and the nth bit will be read in and
stored. If the string is then closed, the nth bit of data will be used for the extra segment.

Important Note

For a super string, the arcs, transitions and offset transitions are that shape in plan.

Hence an arc with a z-value at each end is actually a helix and NOT part of a three dimensional
circle.

Transitions and offset transitions are helixes with a constantly changing radius.
Page 51Elements Contained in Models

12d Model Reference Manual
Vertices and Segments Forming the Super String

first vertex (x1,y1,z1) second

vertex 3 (x3,y3,z3)

vertex 4

vertex 5
vertex 6 (x6,y6,z6)

vertex n-1 (xn-1,yn-1,zn-1)

vertex n (xn,yn,zn)

first segment
(a straight)

second segment
(an arc)

segment 3
(a straight)

segment 4
(a transition)

segment 5
(an arc)

segment n-1
(a straight)

vertex (x2,y2,z2)

segment n
(only if the string is closed)

(x4,y4,z)

(x5,y5,z5)

The 12dXML definition of the super string is:

<string_super>

string_header_block

closed_block

interval_block

blocks_of_info_1

blocks_of_info_2

 ...

blocks_of_info_n

</string_super>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

closed_block

 <closed> closed_text_logical </closed>

where closed_text_logical is true if the super string is closed and false if the super string is
open.

interval_block
Page 52 Elements Contained in Models

Chapter 1 12d XML File Format
The interval_block for a super string has a distance (a chainage interval) and a
chord_to_arc_real

 where

the distance to temporarily introduce extra vertices into the string at the given chainage
distance when the string is in a triangulation to form a tin.

chord_arc_real is a real number and is the chord to arc tolerance to use on any arcs in the
super string to temporarily insert vertices into the arc when the arc is included in a
triangulation to form a tin.

 For the syntax of interval_block, see 1.3.6 Interval.

blocks_of_info

The blocks of info can be broken up into four types.

(a) blocks defining the position of the vertices in z, y and z

Each vertex must have at least an (x,y) value but there may be one z-value for the entire
string and (x,y) at each vertex (data_2d), or an (x,y,z) for each vertex (data_3d).

See 1.6.10.1 Defining the Coordinates of the Vertices

(b) blocks defining the geometry of the segments

Segments can be straights, arcs, transitions or offset transitions.

 radius_data and major_data or geometry_data.

See 1.6.10.2 Geometry of the Horizontal Segments

(c) extra information for the vertices and/or segments such as colour, attributes, vertex ids,
symbols tinability etc.

The definition for the blocks of each type now follows.

1.6.10.1 Defining the Coordinates of the Vertices

1.6.10.2 Geometry of the Horizontal Segments

1.6.10.3 Colour

1.6.10.4 String, Vertex and Segment Attributes

1.6.10.5 Vertex Id’s (Point Id’s)

1.6.10.6 Symbols at Vertices

1.6.10.7 Tinability

1.6.10.8 Round or Box (Culvert) Pipes

1.6.10.9 Vertex Text and Vertex Annotation

1.6.10.10 Segment Text and Segment Annotation
Page 53Elements Contained in Models

12d Model Reference Manual
1.6.10.1 Defining the Coordinates of the Vertices
See

1.6.10.1.1 One Z or No Z for the String

1.6.10.1.2 Varying Z Values along the String

1.6.10.1.1 One Z or No Z for the String
If there is a non-null constant z value for the entire string then the z value is given by a z block:

<z> z_value </z>

where z_value is the constant z value for the entire string.

And when there is a constant z, or no z, for the string, then only the (x,y) coordinates are required
for each vertex and these are given in a data_2d block. See 1.3.12 data_2d

1.6.10.1.2 Varying Z Values along the String
If the z value can vary for different vertices along the string then the (x,y,z) values must be given
for each vertex and the data is then written out as a data_3d block. See 1.3.13 data_3d.
Page 54 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.2 Geometry of the Horizontal Segments
There are three different methods of specifying the geometry of the horizontal segments and
which one is used depends on the types of segments in the string.

The different methods are:

1. If the segments are straight lines only then that is the default and no further information is
required.

2. If the segments are only straight lines and arcs, then the radius_data and major_data
blocks are used to define a radius and bulge_flag data for each segment of the super string.
See 1.6.10.2.1 Only Straights and Arcs for Segments.

3. If any of the segments are transitions or offset transitions then geometry_data must be
used for each segment. geometry_data can represent a straight, arc, transition or offset
transition. See 1.6.10.2.2 Straights, Arcs and Transitions for Segments.

1.6.10.2.1 Only Straights and Arcs for Segments
If there are only straight and arc segments for the string, then for either data_2d or data_3d, it is
possible to add a radius and major/minor arc flag for each segment of the super string using the
radius_data and major_data blocks respectively. See 1.3.14 radius_data and major_data.

1.6.10.2.2 Straights, Arcs and Transitions for Segments
When some of the segments are transitions or offset transitions, then the geometry_data block
must be used the give the geometry for each segments.

Either a data_2d or data_3d block defines the coordinates for the vertices and the
geometry_data block defines for each segment whether the segment is a straight, an arc or a
transition or offset transition.

The definition of the geometry_data block is

<geometry_data>

 info_for_segment_1_block

 info_for_segment_2_block

 ...
 info_for_segment_m_block

</geometry_data>

where

info_for_segment_i_block is the information defining the i’th segment as either a straight, an
arc or an offset transition (offset transition or transition), and

m = n-1 for an open string or m = n for a closed string.

For the definition of info_for_segment_i_block see:

1.6.10.2.2.1 Straight

1.6.10.2.2.2 Arc

1.6.10.2.2.3 Transition and Offset Transitions
Page 55Elements Contained in Models

12d Model Reference Manual
1.6.10.2.2.1 Straight

No parameters are needed for defining a straight segment. The straight block is simply:

<straight> </straight>

or simply

<straight/>

1.6.10.2.2.2 Arc

There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to
differentiate between the four possibilities.

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with same radius but with major on or off

start
vertex

end
vertex

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with +ve radius

Arcs with -ve radius

The arc block is:

<arc>

 <radius> radius_for_segment</radius>

 <major> major_flag_for_segment</major>

</arc>

where

radius_for_segment is the radius for the segment and

major_flag_for_segment is 1 if the arc is a major arc and 0 if it is a minor arc.
Page 56 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.2.2.3 Transition and Offset Transitions

When a straight line is perpendicularly offset by a constant distance, you get another parallel
straight line. Similarly when an arc is perpendicularly offset by a constant distance, you get a
parallel arc with a radius of the existing radius plus the offset distance.

However when a transition curve is perpendicularly offset by a constant distance, you do not get
another transition curve of the same type. Instead you get what we will call an offset transition.

dire
cti

on of

incre
asin

g

ch
ainage

 transition

trailing transition

offset transition which
is offset by 20 from the
given transition

An offset transition is the curve that is a fixed perpendicular offset (offset_real) from a
transition where the transition is a Euler spiral (or a certain approximation to it) or some other
specially defined transition curve. An offset of zero is the standard transition.

To fully describe an offset transition, we will first define a base transition.

A base transition is a full transition curve which has a start point where the absolute radius of
the curve is infinity and then has a monotonically decreasing absolute radius as you continue
along the base transition. The base transition is fully determined by specifying other parameters
such as the radius at a given length along the base transition.

start of base transition
(where the radius is infinity)

base transition with negative radii

base transition with positive radii

As you go along a base transition in decreasing absolute radius, the curve curls to the right if
the radius is positive, and curls to the left if the radius is negative.

A general base transition is defined by giving
Page 57Elements Contained in Models

12d Model Reference Manual
(a) its starting point (xorigin, yorigin) where the radius is infinity

(b) the angle of the tangential line at the start point angle_decimal_degrees_real,

(c) the radius radius_real that occurs at a given curve length length_real along the base
transition.The radius radius_real can be positive or negative.

An offset transition is a fixed offset (offset_real) from a base transition and goes from a start
point that is specified by giving the length on the base transition where the start point drops
perpendicularly onto the base transition (start_length_real) and to the end point that is specified
by the length on the base transition where the end point drops perpendicularly onto the base
transition (end_length_real). The offset_real can be positive or negative.

The direction of the offset transition (increasing chainage) does not have to be the same as the
direction of the base transition. That is, the absolute radius at the start_length_real may be
greater than the absolute radius at the end_length_real.

Hence if you are travelling along the offset transition in a forward direction (increasing chainage)
then the offset transition is said to be a

(a) leading offset transition if the absolute radius of the points dropped onto the base
transition decreases as you go along the offset transition.

For a leading offset transition, if the end radius is positive then the curve curls to the
right, and for a negative end radius, the curve curls to the left.

And

(b) a trailing offset transition if the absolute radius of the points dropped onto the base
transition increases as you go along the offset transition.

For a trailing offset transition, if the end radius is positive then the curve curls to the
right, and for a negative end radius, the curve curls to the left.

The offset transition can be a partial transition. That is, none of the points dropped onto the
base transition have an infinite radius.

start of base transition

(xorigin,yorigin)

(where the radius is infinity)

end of base transition
The radius at this point

length on the base transition of the
end of the offset transition dropped
onto the base transition (end_length_real)

length on the base transition of the
start of the offset transition dropped
onto the base transition (start_length_real)

offset transition

start of offset transition

end of offset
transition

offset of offset transition
from base transition
(offset_real)straight

is radius_real (and -ve) and the
curve length is length_real.

angle_decimal_degrees_real

Leading Offset Transition
with Negative Radius
and Positive Offset

base transition

direction of
increasing
chainage of the
offset transition
Page 58 Elements Contained in Models

Chapter 1 12d XML File Format
start of base transition

(xorigin,yorigin)

(where the radius is infinity)

end of base transition
The radius at this point

length on the base transition of the
start of the offset transition dropped
onto the base transition (start_length_real)

length on the base transition of the
end of the offset transition dropped
onto the base transition (end_length_real)

offset transition

end of offset transition

start of offset
transition

offset of offset transition
from base transition
(offset_real)straight

is radius_real (and -ve) and the
curve length is length_real.

angle_decimal_degrees_real

Leading Offset Transition
with Negative Radius
and Positive Offset

base transition

direction of
increasing
chainage of the
offset transition

dire
cti

on of

inc
re

asin
g

ch
ainage

leading transition
with positive radii

trailing transition
with positive radii

leading transition
with negative radii

trailing transition
with negative radii
Page 59Elements Contained in Models

12d Model Reference Manual
The curve block covers both spiral and non-spiral transitions with a zero or non zero offsets.

The curve block is:

<curve>

 <curve_type> curve_type_text</curve_type>

 <leading> leading_logical_text</leading>

 <xorigin> xorigin_real</xorigin>

 <yorigin> yorigin_real</xorigin>

 <radius> radius_real</radius>

 <length> length_real</length>

 <start> start_length_real</start>

 <end> end_length_real</end>

 <angle> angle_decimal_degrees_real</angle>

 <offset> offset_real</offset>

 <mvalue> mvalue_real</mvalue>

</curve

where

curve_type_text is the type of base transition.

For more information on the choices, see 1.3.15 Available Transition Types.

leading_logical_text is true if it is a leading base transition or false if is a trailing base
transition.

(xorigin, yorigin) is the origin of the base transition. That is, where the radius is infinity.

radius_real is the radius at the end of the base transition. The radius is positive if the curve
goes to the right when travelling in decreasing absolute radius. This direction may be
the opposite to the string direction

length_real is the curve length to the end of the base transition and the radius is radius_real.

start_length_real is the curve length on the base transition where the start of the offset
transition drops perpendicularly onto the base transition.

end_length_real is the curve length on the base transition where the end of the offset
transition drops perpendicularly onto the base transition.

angle_decimal_degrees_real is the angle of the tangent of the base transition at the origin
of the base transition. It is measured in decimal degrees in a counter clockwise
direction from the positive x-axis.

offset_real is the perpendicular offset distance of the offset transition from the base
transition. For a leading transition, a positive value offsets from the base transition to
the right and a negative value offsets it to the left, as you travel in a forward direction.
Page 60 Elements Contained in Models

Chapter 1 12d XML File Format
mvalue_real - if the transition is a cubic parabola then mvalue_real is the mvalue for the
cubic parabola. Otherwise, mvalue_real is zero.

For example, for a string with four segments

<geometry_data>
 <arc>
 <radius>-222.77841769</radius>
 <major>0</major>
 </arc>
 <curve>
 <type>clothoid</type>
 <leading>false</leading>
 <xorigin>114.78632204</xorigin>
 <yorigin>22.22840069</yorigin>
 <radius>222.77841769</radius>
 <length>194.18990415</length>
 <start>50.95749554</start>
 <end>194.18990415</end>
 <angle>174.01773651</angle>
 <offset>0</offset>
 <mvalue>0</mvalue>
 </curve>
 <arc>
 <radius>-848.96871636</radius>
 <major>0</major>
 </arc>
 <straight/>
</geometry_data>
Page 61Elements Contained in Models

12d Model Reference Manual
1.6.10.3 Colour
There can be one colour for the entire super string which is given by the <colour> keyword block
in the string_header_block, or the colour varies for each segment of the super string and is
then specified in a <colour_data> block.

The order of the entries in the <colour_data> block must match the order of the segments in the
super string. So there is exactly one entry for each segment.

If all the segment are the string colour, then simply omit the <colour_data> block.

For a super string with n vertices

<colour_data>

 colour_text_for_segment_1

 colour_text_for_segment_2

 ...
 colour_text_segment_m

</colour_data>

where

colour_text_segment_i is the colour name or colour number for the i’th segment OR is
no_colour when no special colour has been set for the segment and the string colour
is then used for that segment. If the name includes spaces then it must be enclosed in
", and

m = n-1 for an open string or m = n for a closed string.

For example for a string with four segments

<colour_data>
 "off yellow" magenta no_colour no_colour
</colour_data> <leading>false</leading>
Page 62 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.4 String, Vertex and Segment Attributes
The super string can have attributes for the entire string (string attributes) but can also have
attributes for each vertex (vertex attributes) and attributes for each segment (segment
attributes).

See

1.6.10.4.1 String Attributes

1.6.10.4.2 Vertex Attributes

1.6.10.4.3 Segment Attributes

1.6.10.4.1 String Attributes
There can be attributes for the entire string. They are part of the String Header Block and are
described in 1.6.3 String Header Block.

For example

<string_super>
 <name>Line 1</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>cyan</colour>
 <style>1</style>
 <attributes>
 <text>
 <name>Street</name>
 <value>Weemala Road</value>
 </text>
 </attributes>
 <time_created>2015-05-11T09:08:06Z</time_created>
 <time_updated>2015-05-11T11:59:29Z</time_updated>
 ...
Page 63Elements Contained in Models

12d Model Reference Manual
1.6.10.4.2 Vertex Attributes
Each vertex can have one or more user defined attributes.

For a super string with n vertices

<vertex_attribute_data>

 vertex_attributes_for_vertex_1_block

 vertex_attributes_for_vertex_2_block

 ...
 vertex_attributes_for_vertex_n_block

</vertex_attribute_data>

where

vertex_attributes_for_vertex_j_block is the attribute_block for vertex j. The attribute_block
is defined in 1.4 Attributes.

For example, for a string with four vertices

<vertex_attribute_data>
 <attributes>
 <real>
 <name>Flow</name>
 <value>27.4</value>
 </real>
 </attributes>
 <attributes/>
 <attributes/>
 <attributes/>
</vertex_attribute_data>
Page 64 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.4.3 Segment Attributes
Each segment can have one or more user defined attributes.

For a super string with n vertices

<segment_attribute_data>

 segment_attributes_for_segment_1_block

 segment_attributes_for_segment_2_block

 ...
 segment_attributes_for_segment_m_block

</segment_attribute_data>

where

segment_attributes_for_segment_j_block is an attribute_block for segment j. The
attribute_block is defined in 1.4 Attributes, and

m = n-1 for an open string or m = n for a closed string.

For example, for an open string with four vertices

<segment_attribute_data>
 <attributes>
 <real>
 <name>Material</name>
 <value>clay</value>
 </real>
 </attributes>
 <attributes/>
 <attributes/>
 <attributes/>
</segment_attribute_data>
Page 65Elements Contained in Models

12d Model Reference Manual
1.6.10.5 Vertex Id’s (Point Id’s)
Each vertex can have a vertex id (point id).

This is not the number position of the vertex in the string but is a separate id which is usually
different for every vertex in every string.

The vertex id can be alphanumeric and include spaces.

The definition is:

For a super string with n vertices

<point_data>

 point_id_text_for_vertex_1

 point_id_text_for_vertex_2

 ...
 point_id_text_for_vertex_n

</point_data>

where

point_id_text_for_vertex_i is the point id of the i’th vertex.

m = n-1 for an open string or m = n for a closed string.

point_id_text_for_vertex_i is the actual text enclosed in ", even if the text does not include
spaces. If the point id has not been set for a vertex, the value should be included as "".

For example "Point 1" or "Point2" or "".

If the point_data block does not exist then there are no Vertex Ids.

For example, for a string with 4 vertices

<point_data>
 "Point 1" "Point2" "" ""
</point_data>
Page 66 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.6 Symbols at Vertices
There can be no symbols at all, or the same symbol for every vertex in the using the
symbol_value block or the symbol varies for each vertex of the super string using the
symbol_data block.

If a symbol does not have a colour, or there is no colour in the symbol definition, then it uses the
string colour.

The definitions are:

<symbol_value>

 symbol_properties_block

</symbol_value>

where

symbol_properties_block is the description for the symbol to be used at every vertex of the
super string, and

OR

For a super string with n vertices

<symbol_data>

 symbol_properties_for_vertex_1_block

 symbol_properties_for_vertex_2_block

 ...
 symbol_properties_for_vertex_n_block

</symbol_data>

where

symbol_properties_for_vertex_i_block is the description for the symbol at vertex i.

The format of symbol_properties_block and symbol_properties_for_vertex_i_block is:

<properties>

 <style> symbol_name_text </style>

 <colour> symbol_colour_name_text </colour>

 <size> symbol_size_real </size>

 <rotation> angle_dec_deg_real</rotation>

 <offset_x> symbol_offset_x_real </offset_y>

 <offset_y> symbol_offset_y_real </offset_y>

</properties>

where

symbol_name_text is the name of the symbol.

symbol_colour_name is the colour of the symbol is there is no colours in the symbol
definition. If the colour block is missing and there is no colours in the symbol definition
then the string colour is used. For the syntax of the colour block, see 1.3.2 Colour.

symbol_size_real is the size of the symbol in the units of the symbol.

angle_dec_deg_real is the angle of the symbol. The value is in decimal degrees and is
measured in a counter clockwise direction from the positive x-axis.

offset_x_real is x distance to offset the symbol from the super string vertex.
Page 67Elements Contained in Models

12d Model Reference Manual
offset_y_real is the y distance to offset the symbol from the super string.

.position of

the position of the
symbol justification point

angle_dec_deg_real

offset_x and offset_y
from the vertex

super string
vertex

is defined by the

Symbol at a Vertex

offset_x of
fs

e
t_

y

Page 68 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.7 Tinability
For a super string, the concept of breakline has been extended to a property called tinable which
can be set independently for each vertex and each segment of the super string.

If a vertex is tinable, then the vertex is used in triangulations. If the vertex is not tinable, then the
vertex is ignored when triangulating.

If a segment is tinable, then the segment is used as a side of a triangle during triangulation. This
may not be possible if there are crossing tinable segments.

Vertex tinability is given by the vertex_tinable_data block where for a string of n vertices,

<vertex_tinable_data>

 tinable_flag_for_vertex_1

 tinable_flag_for_vertex_2

 ...
 tinable_flag_for_vertex_n

</vertex_tinable_data>

where

tinable_flag_for_vertex_i for the i’th vertex is 1 or t if the vertex is tinable, or 0 or f if the
vertex is not tinable.

Segment tinability is given by the segment_tinable_data block where

<segment_tinable_data>

 tinable_flag_for_segment_1

 tinable_flag_for_segment_2

 ...
 tinable_flag_for_segment_m

</segment_tinable_data>

where

tinable_flag_for_segment_i for the i’th segment is 1 or t if the segment is tinable, or 0 or f if
the segment is not tinable, and

m = n-1 for an open string or m = n for a closed string.

For example, for a open string with four vertices

<vertex_tinable_data>
 t t f t
</vertex_tinable_data>
<segment_tinable_data>
 f t t
</segment_tinable_data>

Note that even if a segment is set to tinable, it can only be used in a triangulation if both its end
vertices are also tinable.
Page 69Elements Contained in Models

12d Model Reference Manual
1.6.10.8 Round or Box (Culvert) Pipes
All segments of a super string can be: round pipes; box pipes (culvert); or no pipe. This is the
property of the whole string, that is, some segments can’t be round while others be box. In
another word, one super string cannot have both pipe diameters and culvert dimensions.

There is also one justification that applies to all (segments) pipes of a super string.

See

1.6.10.8.1 Pipe Diameters

1.6.10.8.2 Culvert Dimensions

1.6.10.8.3 Justification for Round or Culvert Pipes

1.6.10.8.1 Pipe Diameters
There can be one pipe diameter value for the entire super string using the pipe_value block or
the pipe diameter varies for each segment of the super string using the pipe_data block.

The definitions are:

<pipe_value> pipe_diameter_real </pipe_value>

where pipe_diameter_real is the diameter for every segment of the string.

OR

For a super string with n vertices

<pipe_data>

 <properties>

 <diameter> pipe_diameter_for_segment_1 </diameter>

 </properties>

 <properties>

 <diameter> pipe_diameter_for_segment_2 </diameter>

 </properties>

 ...
 <properties>

 <diameter> pipe_diameter_for_segment_m </diameter>

 </properties>

</pipe_data>

where

pipe_diameter_for_segment_i is the pipe diameter for the i’th segment, and

m = n-1 for an open string or m = n for a closed string.

1.6.10.8.2 Culvert Dimensions
There can be one culvert width and height for the entire super string using the culvert_value
block or the culvert width and height vary for each segment of the super string using the
culvert_data block.

The definitions are:

<culvert_value>
Page 70 Elements Contained in Models

Chapter 1 12d XML File Format
 <width> pipe_width_real </width>

 <height> pipe_height_real </height>

</culvert_value>

where pipe_width_real is the width and pipe_height_real is the height for every segment of
the string.

 OR

For a super string with n vertices

<culvert_data>

 <properties>

 <width> pipe_width_for_segment_1 </width>

 <height> pipe_height_for_segment_1 </height>

 </properties>

 <properties>

 <width> pipe_width_for_segment_2 </width>

 <height> pipe_height_for_segment_2 </height>

 </properties>

 ...
 <properties>

 <width> pipe_width_for_segment_m </width>

 <height> pipe_height_for_segment_m </height>

 </properties>

</culvert_data>

where

pipe_width_for_segment_i is the width and pipe_height_for_segment_i is the height for the
i’th segment and

m = n-1 for an open string or m = n for a closed string.

1.6.10.8.3 Justification for Round or Culvert Pipes
There can be only one justification for all the round or culvert pipe segments in the super string.

The definition is:

<justify> pipe_justification_text </justify>

where

pipe_justification_text is the justification for the entire pipe and can have the values centre,
top, obvert, bottom or invert.

If the justify block is missing then the round pipe or culvert pipe is centre justified.
Page 71Elements Contained in Models

12d Model Reference Manual
1.6.10.9 Vertex Text and Vertex Annotation
See

1.6.10.9.1 Vertex Text

1.6.10.9.2 Vertex Annotation

1.6.10.9.1 Vertex Text

There can be not text at each vertex, the same piece of text for every vertex in the super string or
a different text for each vertex of the super string.

Note: How the vertex text is drawn is specified by the vertex annotation. See 1.6.10.9.2 Vertex
Annotation.

If there is a constant text value for each vertex in the string, then the text value is given by a
vertex_text_value block:

<vertex_text_value> text_value_text </vertex_text_value>

where text_value_text is the constant text value for each vertex in the string.

For example, for a string of 5 vertices

<vertex_text_value>Constant text</vertex_text_value>

If there is a different text value for each vertex in the string, then the value of the text for each
vertex is given in a vertex_text_data block.

<vertex_text_data>

 <p> text_value_for_vertex_1</p>

 <p> text_value_for_vertex_2</p>

 ...
 <p> text_value_for_vertex_n</p>

</vertex_text_data>

where text_value_for_vertex_i is the vertex text for the i’th vertex.

For example, for a string of four vertices

<vertex_text_data>
 <p>First vertex</p>
 <p>Second vertex</p>
 <p/>
 <p/>
 </vertex_text_data>
Page 72 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.9.2 Vertex Annotation
How the vertex text is drawn at each vertex is specified by the vertex annotation.

There can be no vertex annotations at all, or the same vertex annotation is used for every vertex
in the string using the vertex_annotation_value block, or the vertex annotation varies for each
vertex of the super string using the vertex_annotation_data block.

Note that in vertex annotations, the size of the text for all vertices must be either world size or all
paper size or all screen size. That is, world size, paper size and screen size can not be mixed.
The first one found is used for all vertices.

The definitions are:

<vertex_annotate_value>

 vertex_annotation_information

</vertex_annotate_value>

where

vertex_annotation_information is the annotation to be used for drawing the text at every
vertex of the super string. For the definition of vertex_annotation_information see 1.6.4.1
Vertex Annotation Information.

OR

For a super string with n vertices

<vertex_annotation_data>

 annotation_for_vertex_1_block

 annotation_for_vertex_2_block

 ...
 annotation_for_vertex_n_block

</vertex_annotation_data>

where

annotation_for_vertex_i_block is the description for the vertex annotation for vertex i.

The format of the annotation_for_vertex_i_block is:

<properties>

 vertex_annotation_information

<properties>

where

vertex_annotation_information is the annotation for drawing the text at the vertex. For the
definition of vertex_annotation_information see 1.6.4.1 Vertex Annotation Information.
Page 73Elements Contained in Models

12d Model Reference Manual
1.6.10.10 Segment Text and Segment Annotation
See

1.6.10.10.1 Segment Text

1.6.10.10.2 Segment Annotation

1.6.10.10.1 Segment Text

There can be no text on each segment, the same piece of text for every segment in the super
string or a different text for each segment of the super string.

Note: How the segment text is drawn is specified by the segment annotation. See 1.6.10.10.2
Segment Annotation.

If there is a constant text value for each segment in the string, then the text value is given by a
segment_text_value block:

<segment_text_value> text_value_text </segment_text_value>

where text_value_text is the constant text value for each segment in the string.

For example, for a string of 5 vertices

<segment_text_value>Constant text</segment_text_value>

If there is a different text value for each segment in the string, then the value of the text for each
segment is given in a segment_text_data block.

<segment_text_data>

 <p>text_value_for_segment_1</p>

 <p>text_value_for_segment_2</p>

 ...
 <p> text_value_for_segment_m</p>

</segment_text_data>

where

text_value_for_segment_i is the segment text for the i’th segment, and

m = n-1 for an open string or m = n for a closed string.

For example, for a string of four segments

<segment_text_data>
 <p>First segment</p>
 <p>Second Segment
Two lines</p>
 <p>seg3</p>
 <p/>
</segment_text_data>
Page 74 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.10.10.2 Segment Annotation
How the segment text is drawn at each segment is specified by the segment annotation.

There can be no segment annotations at all, or the same segment annotation is used for every
segment in the string using the segment_annotation_value block, or the segment annotation
varies for each segment of the super string using the segment_annotation_data block.

Note that in segment annotations, the size of the text for all segments must be either world size
or all paper size or all screen size. That is, world size, paper size and screen size can not be
mixed. The first one found is used for all segments.

The definitions are:

<segment_annotate_value>

 segment_annotation_information

</segment_annotate_value>

where

segment_annotation_information is the annotation to be used for drawing the text at every
segment of the super string. For the definition of segment_annotation_information see 1.6.4.2
Segment Annotation Information.

OR

For a super string with n vertices

<segment_annotation_data>

 annotation_for_segment_1_block

 annotation_for_segment_2_block

 ...
 annotation_for_segment_m_block

</vertex_annotation_data>

where

annotation_for_segment_i_block is the description for the annotation at segment i, and.

m = n-1 for an open string or m = n for a closed string.

The format of the annotation_for_segment_i_block is:

<properties>

 segment_annotation_information

<properties>

where

segment_annotation_information is the annotation for drawing the text at the segment. For
the definition of segment_annotation_information see 1.6.4.2 Segment Annotation
Information.

Continue to the next section 1.6.11 Super Alignment String or return to 1.6 Elements Contained
in Models or 1 12d XML File Format.
Page 75Elements Contained in Models

12d Model Reference Manual
1.6.11 Super Alignment String
Many software packages only allow alignment strings to be use the intersection point method
(IP’s) to construct the horizontal and vertical geometry. The IP definition is actually a constructive
definition and the tangents points and segments between the tangent points (lines, arcs,
transitions etc.) are calculated from the IP definition.

However for the 12d Model super alignment, the horizontal and vertical geometry are still
defined separately and with construction definitions but the construction definition can be much
more complex than just IP’s. For example, an arc could be defined as being tangential to two
offset elements, or constrained to go through a given point.

If the horizontal construction methods are consistent then the horizontal geometry can be solved,
and the horizontal geometry expressed in terms of consecutive segments (lines, arcs, transitions
and offset transitions) that are easily understood and drawn.

Similarly if the vertical construction methods are consistent then the vertical geometry can be
solved, and the vertical geometry expressed in terms of consecutive segments (lines, arcs,
parabolas) that are easily understood and drawn.

For the super alignment both the construction methods (the parts) and the resulting vertices
and segments (lines, arcs, transitions etc.) that make up the horizontal and vertical geometry
(the data) are written out to the 12d XML file.

For most applications such as uploading to survey data collectors or machine control devices,
only the horizontal data and the vertical data are required, not the construction methods (i.e.
not the horizontal and vertical parts). So when reading the 12d XML of a super alignment, only
the horizontal and vertical data needs to be read in and the constructive methods (the
horizontal and vertical parts) can be skipped over.

Consequently only the horizontal data and the vertical data are full documented for the super
alignment.

However to allow 12dXML to be easily written out by software packages that can only support
HIP and VIP methods, there are special flags to denote these cases and the horizontal_parts and
vertical_parts are fully defined for these special cases.

Special Cases for HIP Method Only and VIP Method Only

To allow 12dXML to be easily written out by software packages that can only support HIP and
VIP methods, there are special flags to denote these cases and the horizontal_parts and
vertical_parts are fully defined for these special cases. This also means that such a software
package can easily read in from 12dXML any super alignments that use HIP and VIP methods
only.

(a) If the horizontal geometry of the super alignment only uses the HIP method and hence
only has Horizontal IP’s with curves and transitions on them, then the HIP definition can be
easily read in from the horizontal_parts. To alert any software reading 12dXML reader of
this special case, there is a special flag horizontal_ips_only which is then set to true.
Other wise it is false.

This special case for horizontal_parts is fully documented in 1.6.11.2 Horizontal_Parts
When Geometry is Defined by IP Method Only.

(b) If the vertical geometry of the super alignment only uses the VIP method and hence only
has Vertical IP’s with parabolic curves and arcs on them, then the VIP definition can be
easily read in from the vertical_parts. To alert any software reading 12dXML reader of this
special case, there is a special flag vertical_ips_only which is then set to true. Other wise
it is false.

This special case for horizontal_parts is fully documented in 1.6.11.5 Vertical_parts When
VG is Defined by IP Method Only.
Page 76 Elements Contained in Models

Chapter 1 12d XML File Format
Notes

1. Just using the horizontal and vertical data is valid as long as the super alignment
geometry is consistent and hence solves, and the horizontal and vertical parts can then be
created.

There are the flags valid_horizonal and valid_vertical in the 12d XML of the super
alignment and they are set to true if the horizontal and vertical geometry is consistent and
solves.

2. Segments meeting at a common vertex do not have to be tangential although for most road
and rail centre lines, they should be.

3. When 12d Model reads in a 12d XML file and there is only horizontal_parts and no
horizontal_data then if possible, 12d Model generates the horizontal_data from the
horizontal parts.

This is very useful if you are creating a 12d XML file for a super alignment string that only
uses HIP methods as it is fairly simple to create the horizontal_parts for such a string and
that is fully documented in 1.6.11.2 Horizontal_Parts When Geometry is Defined by IP Method
Only. For this case the flag horizontal_ips_only should be set to true.

4. When 12d Model reads in a 12d XML file and there is only vertical_parts and no
vertical_data then if possible, 12d Model generates the vertical_data from the vertical
parts.

This is very useful if you are creating a 12d XML file for a super alignment string that only
uses VIP methods as it is fairly simple to create the vertical_parts for such a string and that
is fully documented in 1.6.11.5 Vertical_parts When VG is Defined by IP Method Only. For this
case the flag vertical_ips_only should be set to true.
Page 77Elements Contained in Models

12d Model Reference Manual
 The 12d XML definition of the super alignment string is:

<string_super_alignment>

string_header_block

drawables_block

spiral_type_block

closed_block

valid_horizontal_block

valid_vertical_block

synch_vertical_block

label_style_block

horizontal_ips_only_block

vertical_ips_only_block

horizontal_parts_block

horizontal_data_block

vertical_parts_block

vertical_data_block

geometry_modifiers_block

</string_super_alignment>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

drawables_block

the drawables block contains information on how the super alignment is labelled.

This block is not documented.

spiral_type_block

 <spiral_type> transition_type_text </spiral_type>

where transition_type_text is the default transition type use in the super alignment and is
one of

For more information on the choices, see 1.3.15 Available Transition Types.

closed_block

 <closed> closed_text_logical </closed>

where closed_text_logical is true if the super alignment string is closed and false if the
Page 78 Elements Contained in Models

Chapter 1 12d XML File Format
super alignment string is open.

valid_horizontal_block

 <valid_horizontal> valid_horizontal_text_logical </valid_horizontal>

where valid_horizontal_text_logical is true if the super alignment string horizontal
geometry solves and false if the horizontal geometry does not solve.

If the horizontal geometry does not solve then the horizontal_data may be rubbish.

valid_vertical_block

 <valid_vertical> valid_vertical_text_logical </valid_vertical>

where valid_vertical_text_logical is true if the super alignment string vertical geometry
solves and false if the vertical geometry does not solve.

If the vertical geometry does not solve then the vertical_data may be rubbish.

synch_vertical_block

 <synch_vertical> synch_vertical_text_logical </synch_vertical>

where synch_vertical_text_logical is true if the super alignment vertical geometry is to be
synchronized to the horizontal geometry whenever the horizontal geometry is modified.

This is an internal 12d Model flag.

label_style_block

 <label_style> label_style_text </label_style>

where label_style_text is the name of the super alignment label style used for drawing the
super alignment.

horizontal_ips_only_block

 <horizontal_ips_only> horizontal_ips_only_text_logical </horizontal_ips_only>

where horizontal_ips_only_text_logical is true if the horizontal geometry of the super
alignment consists of HIP methods only, and false if the horizontal geometry does not
consist of HIP methods only.

vertical_ips_only_block

 <vertical_ips_only> horizontal_ips_only_text_logical </vertical_ips_only>

where vertical_ips_only_text_logical is true if the vertical geometry of the super alignment
consists of VIP methods only, and false if the vertical geometry does not consist of HIP
methods only.

horizontal_parts_block

the horizontal_parts block contains the methods to construct the super alignment horizontal
geometry. For example float (fillet) an arc of a certain radius between two given lines or
create a transition (spiral or non-spiral transition) between a line and an arc.

The parts that make up the horizontal geometry are defined in chainage order from the start
to the end of the super alignment.

If the horizontal construction methods are consistent, then they can be solved to form a plan
string made up of lines, arcs and transitions and this is given in the horizontal_data block.

Because the construction methods can be very complex, the horizontal_parts block will only
be documented for the case where all the horizontal parts are horizontal intersection points
(HIPs) with an arc and leading and trailing transitions. See 1.6.11.2 Horizontal_Parts When
Geometry is Defined by IP Method Only.

horizontal_data_block

the horizontal_data block contains the segments that define the horizontal geometry.

The horizontal_data block needs to be read in.
Page 79Elements Contained in Models

12d Model Reference Manual
For the description of the horizontal_data block, see 1.6.11.1 Horizontal Data Block.

vertical_parts_block

the vertical_parts block contains the methods to construct the super alignment vertical
geometry. For example float (fillet) an arc of a certain radius between two given lines.

The parts that make up the vertical geometry are defined in chainage order from the start to
the end of the super alignment.

If the vertical construction methods are consistent, then they can be solved to form a string
in (chainage, offset) space made up of lines, arcs and parabolas and this is given in the
vertical_data block.

Because the construction methods can be very complex, the vertical_parts block will only be
documented for the case where all the vertical parts are vertical intersection points (VIPs)
with an arc or a parabola on the VIP. See 1.6.11.5 Vertical_parts When VG is Defined by IP
Method Only.

vertical_data_block

the vertical_data block contains the segments that define the vertical geometry.

The vertical_data block needs to be read in.

For the description of the vertical_data block, see 1.6.11.3 Vertical Data Block.

geometry_modifiers_block

the geometry_modifiers_parts block contains extra construction information for the super
alignment.

This block is not documented.
Page 80 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.11.1 Horizontal Data Block
The horizontal_data block contains the solved horizontal geometry of the super alignment.

The solved horizontal geometry is made up of a series of (x,y) vertices given in a data_2d block
followed by a geometry_data block specifying the geometry of the segments between adjacent
vertices. Each segment can be a straight line, an arc, a transition or an offset transition.

If the solved horizontal geometry has n vertices, then there will be n-1 segments for an open
super alignment or n segments if the super alignment is closed.

Vertices and Segments Forming the Horizontal Data for the Super Alignment

first vertex (x1,y1) second

vertex 3 (x3,y3)

vertex 4

vertex 5
vertex 6 (x6,y6)

vertex n-1 (xn-1,yn-1)

vertex n (xn,yn)

first segment
(a straight)

second segment
(an arc)

segment 3
(a straight)

segment 4
(a transition)

segment 5
(an arc)

segment n-1
(a straight)

vertex (x2,y2)

segment n
(only if the string is closed)

(x4,y4)

(x5,y5)

The format of the horizontal_data block is the same as for the segments of a super string except
that the data is only in 2D. Unlike a super string where there is just a z-value at each vertex, the
third dimension of the super alignment is given by the vertical_data block (see 1.6.11.3 Vertical
Data Block).

The definition of the horizontal_data block is:

<horizontal_data>

string_header_block

closed_block

interval_block

data_2d_block

geometry_data_block

blocks_of_info_1

blocks_of_info_2

 ...
Page 81Elements Contained in Models

12d Model Reference Manual
blocks_of_info_n

</horizontal_data>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block. This provides information such as colour for the horizontal data.

interval_block

The interval_block for a super string has a distance (a chainage interval) and a
chord_to_arc_real

 where

the distance to temporarily introduce extra vertices into the string at the given chainage
distance when the string is in a triangulation to form a tin.

chord_arc_real is a real number and is the chord to arc tolerance to use on any arcs in the
horizontal data to temporarily insert vertices into the arc when the arc is included in a
triangulation to form a tin.

 For the syntax of interval_block, see 1.3.6 Interval.

data_2d_block

the data_2d block defines the (x,y) value of the vertices that makes up the horizontal data.

For the definition of the data_2d block, see 1.3.12 data_2d.

geometry_data_block

the segments of the horizontal data can be straights, arcs, transitions or offset transitions and
they are identical to the definitions of the horizontal segments for super strings.

So for the definition of the geometry_data block, see the section for super strings1.6.10.2
Geometry of the Horizontal Segments

blocks_of_info

extra information for the vertices and/or segments such as colour, attributes, vertex text,
vertex uids etc are defined in the same way as for super strings.
Page 82 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.11.2 Horizontal_Parts When Geometry is Defined by IP Method Only
When the horizontal geometry is defined by IP methods only, then the horizontal_parts is fairly
straight forward.

When 12d Model reads in a 12d XML file and there is no horizontal_data section, then
12d Model will calculate the horizontal_parts. So you are writing a 12d XML with only IP
methods for the horizontal geometry then simply leave out the horizontal_data section and
12d Model will calculate it for you.

For a horizontal geometry is defined by IP methods only, the horizontal_parts definition is:

<horizontal_data>

info_for_HIP_1_block

info_for_HIP_2_block

 ...
info_for_HIP_n_block

</horizontal_data>

where info_for_HIP_i_block is the information about the successive HIPs in the super
alignment and is one of:

(a) A horizontal intersection point (HIP) with no arc.

This is defined by:

<ip>

<id> part_id_integer </id>

time_created_block

time_updated_block

<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</ip>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

x_ip_coordinate_real is the x coordinates of the HIP.

y_ip_coordinate_real is the y coordinates of the HIP.

(b) A horizontal intersection point (HIP) with an arc of a given radius at the HIP.

This is defined by:

<arc>

<id> part_id_integer </id>

time_created_block

time_updated_block

<r> arc_radius_real </r>
Page 83Elements Contained in Models

12d Model Reference Manual
<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</arc>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

arc_radius_real is the radius of the arc on the HIP.

x_ip_coordinate_real is the x coordinate of the HIP.

y_ip_coordinate_real is the y coordinate of the HIP.

(c) A horizontal intersection point (HIP) with an arc of a given length at the HIP

This is defined by:

<length>

<id> part_id_integer </id>

time_created_block

time_updated_block

<l> arc_length_real </l>

<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</length>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

arc_length_real is the length of the arc on the HIP.

x_ip_coordinate_real is the x coordinate of the HIP.

y_ip_coordinate_real is the y coordinate of the HIP.

(d) A horizontal intersection point (HIP) with an arc and transitions

This is defined by:

<spiral>

<id> part_id_integer </id>
Page 84 Elements Contained in Models

Chapter 1 12d XML File Format
time_created_block

time_updated_block

transition_type_block

<r> arc_radius_real </r>

<l1> leading_transition_length_real </l1>

<l2> trailing_transition_length_real </l2>

<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</spiral>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

transition_type_block

<transition_type> transition_type_text </transition_type>

where transition_type_text is the default transition type use in the super alignment and is
one of

This block is optional and if it is missing then the default transition type for the super
alignment is used.

For more information on the choices, see 1.3.15 Available Transition Types.

arc_radius_real is the radius of the arc on the HIP.

leading_transition_length_real is the length of the leading transition on the HIP.

trailing_transition_length_real is the length of the trailing transition on the HIP.

x_ip_coordinate_real is the x coordinate of the HIP.

y_ip_coordinate_real is the y coordinate of the HIP.

Notes

1. A <length> block with arc_length_real equal to zero, or a <spiral> block with the
arc_radius_real, leading_transition_length_real and trailing_transition_length_real all zero,
Page 85Elements Contained in Models

12d Model Reference Manual
will also represent a HIP with no arcs or transitions on it.:

<length>

<id> part_id_integer </id>

time_created_block

time_updated_block

<l> 0 </l>

<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</length>

OR

<spiral>

<id> part_id_integer </id>

time_created_block

time_updated_block

transition_type_block

<r> 0 </r>

<l1> 0 </l1>

<l2> 0 </l2>

<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</spiral>

2. If the HIP is the first HIP or the last HIP then no arc or transitions will be drawn even if the
relevant parameters are non zero.

As an example of horizontal_parts with only HIP methods:
Page 86 Elements Contained in Models

Chapter 1 12d XML File Format
<horizontal_parts>
 <ip>
 <id> 100 </id>
 <x> 42606.66161172 </x>
 <y> 37239.28824481 </y>
 </ip>

 <ip>
 <id> 200 </id>
 <x> 43134.36832349 </x>
 <y > 37330.26705997</y>
 </ip>

 <spiral>
 <id> 300 </id>
 <r> 50 </r>
 <l1> 30 </l1>
 <l2> 40 </l2>
 <x> 43336.6595 </x>
 <y> 37469.2563 </y>
 </spiral>

 <arc>
 <id> 400 </id>
 <r> 75 </r>
 <x> 43481.15324268 </x>
 <y> 37331.6431906 </y>
 </arc>

 <ip>
 <id> 500 </id>
 <x> 43627.02308964 </x>
 <y> 37544.94343852 </y>
 </ip>
</horizontal_parts>

1st HIP
HIP only

4th HIP
HIP with arc only

Horizontal Parts with IP Methods Only

Plan View of Super Alignment

Super Alignment Being Edited

Unique Part id
incrementing by 100

5th HIP
HIP only

2nd HIP
HIP only

HIP with arc and
leading and trailing
transitions

3rd HIP
Page 87Elements Contained in Models

12d Model Reference Manual
1.6.11.3 Vertical Data Block
The vertical_data block contains the solved vertical geometry of the super alignment.

The solved vertical geometry is made up of a series of (chainage,height) vertices given in a
data_2d block followed by a geometry_data block specifying the geometry of the segments
between adjacent vertices. The segment can be a straight line, a parabola or an arc.

Note that the chainage is the chainage of the horizontal geometry defined in the horizontal_data
block (see 1.6.11.1 Horizontal Data Block).

If the vertical geometry has n vertices, then there will be n-1 segments for an open super
alignment or n segments if the super alignment is closed.

The format of the vertical_data block is the same as for the segments in a horizontal_data block
except that the data is (chainage, height) rather than (x,y) and there is no transitions but a
parabola instead.

The definition of the vertical_data block is:

<vertical_data>

string_header_block

closed_block

interval_block

data_2d_block

geometry_data_block

blocks_of_info_1

blocks_of_info_2

blocks_of_info_n

</vertical_data>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block. This provides information such as colour for the vertical data.

interval_block

The interval_block for a super string has a distance (a chainage interval) and a
chord_to_arc_real

 where

the distance to temporarily introduce extra vertices into the string at the given chainage
distance when the string is in a triangulation to form a tin.

chord_arc_real is a real number and is the chord to arc tolerance to use on any arcs in the
vertical data to temporarily insert vertices into the arc when the arc is included in a
triangulation to form a tin.

 For the syntax of interval_block, see 1.3.6 Interval.

data_2d_block

the data_2d block defines the (chainage,height) value of the vertices that makes up the
vertical data.

For the definition of the data_2d block, see 1.3.12 data_2d where x is chainage and y is
height.

geometry_data_block
Page 88 Elements Contained in Models

Chapter 1 12d XML File Format
the segments of the vertical data can be straights, arcs or parabolas.

For the definition of the geometry_data block, see 1.6.11.4 Geometry of the Vertical
Segments

blocks_of_info

extra information for the vertices and/or segments such as colour, attributes, vertex text,
vertex uids etc are defined in the same way as for super strings.
Page 89Elements Contained in Models

12d Model Reference Manual
1.6.11.4 Geometry of the Vertical Segments
If the segments are straight lines only then that is the default and no further information is
required.

If the segments are only straight lines and arcs, then the radius_data and major_data blocks
are used to define a radius and bulge_flag data for each segment of the super string. See
1.6.11.4.1 Only Straights and Arcs for Segments.

If any of the segments are parabolas then geometry_data must be used for each segment.
geometry_data can represent a straight, arc, transition or offset transition. See 1.6.11.4.2
Straights, Arcs and Parabolas for Segments.

1.6.11.4.1 Only Straights and Arcs for Segments
If there are only straight and arc segments for the string, then for the data_2d it is possible to add
a radius and major/minor arc flag for each segment of the super string using the radius_data
and major_data blocks respectively. See 1.3.14 radius_data and major_data.

1.6.11.4.2 Straights, Arcs and Parabolas for Segments
When some of the segments are parabolas then the geometry_data block must be used the
give the geometry for each segments.

When the vertical_data has n vertices, then the definition of the geometry_data block is

<geometry_data>

 info_for_segment_1_block

 info_for_segment_2_block

 ...
 info_for_segment_m_block

</geometry_data>

where

info_for_segment_i_block is the information defining the i’th segment as either a straight, an
arc or an parabola and m = n-1 for an open string or m = n for a closed string.

For the definition of info_for_segment_i_block see:

1.6.11.4.2.1 Straight

1.6.11.4.2.2 Arc

1.6.11.4.2.3 Parabola
Page 90 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.11.4.2.1 Straight

No parameters are needed for defining a straight segment. The straight block is simply:

<straight> </straight>

or simply

<straight/>

1.6.11.4.2.2 Arc

Since vertical geometry can’t go backwards in chainage value, the majors arcs can not be
used and hence there are only possibilities for an arc of a given radius placed between two
vertices.

We use positive and negative radius to differentiate between the four possibilities.

only arc with major 0 (off) is allowed

Arcs with same absolute radius

start
vertex

end
vertex

only the arc with major 0 (off) is allowed

Arc with +ve radius

Arc with -ve radius

The arc block is:

<arc>

 <radius> radius_for_segment</radius>

 <major> major_flag_for_segment</major>

</arc>

where

radius_for_segment is the radius for the segment where positive is above the line connecting
the vertices.

major_flag_for_segment is ignored because only minor arcs are allowed.
Page 91Elements Contained in Models

12d Model Reference Manual
1.6.11.4.2.3 Parabola

There can be a parabola between adjacent vertices. The parabola is defined by giving the
coordinates of the vertical intersection point for the parabola

chainage chainage of the VIP of the parabola

height height of the VIP of the parabola

(chainage,height)

start
vertex

end
vertex

Vertical intersection point given by

Example of a Parabola

The parabola block is:

<parabola>

<chainage> vip_chainage_real </chainage>

<height> vip_height_real </height>

</parabola

where

vip_chainage_real is the chainage of the VIP of the parabola

vip_height_real is the height of the VIP of the parabola
Page 92 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.11.5 Vertical_parts When VG is Defined by IP Method Only
When the vertical geometry is defined by IP methods only, then the vertical_parts is fairly
straight forward.

When 12d Model reads in a 12d XML file and there is no vertical_data section, then 12d Model
will calculate the vertical_parts. So if you are writing a 12d XML with only VIP methods for the
vertical geometry then simply leave out the vertical_data section and 12d Model will calculate it
for you.

For a vertical geometry is defined by VIP methods only, the vertical_parts definition is:

<vertical_data>

info_for_VIP_1_block

info_for_VIP_2_block

 ...
info_for_VIP_n_block

</vertical_data>

where info_for_VIP_i_block is the information about the successive VIPs in the super
alignment and is one of:

(a) A vertical intersection point (VIP) with no arc or parabola.

This is defined by:

<ip>

<id> part_id_integer </id>

time_created_block

time_updated_block

<x> chainage_ip_coordinate_real </x>

<y> height_ip_coordinate_real </y>

</ip>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

chainage_ip_coordinate_real is the chainage of the VIP.

height_ip_coordinate_real is the height of the VIP.

(b) A vertical intersection point (VIP) with an parabola of a given chainage length at the VIP

This is defined by:

<length>

<id> part_id_integer </id>

time_created_block

time_updated_block

<l> parabola_chainage_length_real </l>
Page 93Elements Contained in Models

12d Model Reference Manual
<x> chainage_ip_coordinate_real </x>

<y> height_ip_coordinate_real </y>

</length>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

parabola_chainage_length_real is the chainage length of the parabola on the VIP.

chainage_ip_coordinate_real is the chainage of the VIP.

height_ip_coordinate_real is the height of the VIP.

(c) A vertical intersection point (VIP) with an parabola of a given k value at the VIP

This is defined by:

<kvalue>

<id> part_id_integer </id>

time_created_block

time_updated_block

<k> parabola_k_value_real </k>

<x> chainage_ip_coordinate_real </x>

<y> height_ip_coordinate_real </y>

</kvalue>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

parabola_k_value_real is the k value of the parabola on the VIP.

chainage_ip_coordinate_real is the chainage of the VIP.

height_ip_coordinate_real is the height of the VIP.

(d) A vertical intersection point (VIP) with an parabola of a given effective radius value at the
VIP

This is defined by:

<radius>

<id> part_id_integer </id>
Page 94 Elements Contained in Models

Chapter 1 12d XML File Format
time_created_block

time_updated_block

<r> parabola_effective_radius_value_real </r>

<x> chainage_ip_coordinate_real </x>

<y> height_ip_coordinate_real </y>

</kvalue>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

parabola_effective_radius_value_real is the effective radius of the parabola on the VIP.

chainage_ip_coordinate_real is the chainage of the VIP.

height_ip_coordinate_real is the height of the VIP.

(e) A vertical intersection point (VIP) with an arc of a given radius at the VIP.

This is defined by:

<arc>

<id> part_id_integer </id>

time_created_block

time_updated_block

<r> arc_radius_real </r>

<x> chainage_ip_coordinate_real </x>

<y> height_ip_coordinate_real </y>

</arc>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

arc_radius_real is the radius of the arc on the VIP.

chainage_ip_coordinate_real is the chainage of the VIP.

height_ip_coordinate_real is the height of the VIP.

(f) A vertical intersection point (VIP) with an asymmetric parabola defined by the start and end
Page 95Elements Contained in Models

12d Model Reference Manual
chainage lengths at that VIP

This is defined by:

<asymmetric>

<id> part_id_integer </id>

time_created_block

time_updated_block

<l1> parabola_start_chainage_length_real </l1>

<l2> parabola_end_chainage_length_real </l2>

<x> chainage_ip_coordinate_real </x>

<y> height_ip_coordinate_real </y>

</asymmetric>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the
value is a multiple of 100.

time_created_block

is the time the super tin was originally created, This is optional. For the syntax see 1.3.7
Time Created.

time_updated_block

is the last time the super tin was last modified, This is optional. For the syntax see 1.3.7
Time Created.

parabola_start_chainage_length_real is the start chainage length of the asymmetric
parabola on the VIP.

parabola_end_chainage_length_real is the end chainage length of the asymmetric
parabola on the VIP.

chainage_ip_coordinate_real is the chainage of the VIP.

height_ip_coordinate_real is the height of the VIP.

Notes

1. A <length> block with arc_length_real equal to zero, or a <spiral> block with the
arc_radius_real, leading_transition_length_real and trailing_transition_length_real all zero,
will also represent a HIP with no arcs or transitions on it.:

<length>

<id> part_id_integer </id>

time_created_block

time_updated_block

<l> 0 </l>

<x> x_ip_coordinate_real </x>

<y> y_ip_coordinate_real </y>

</length>

OR

2. If the VIP is the first VIP or the last VIP then no parabola or arc will be drawn even if the
relevant parameters are non zero.
Page 96 Elements Contained in Models

Chapter 1 12d XML File Format
As an example of vertical_parts with only VIP methods:

<vertical_parts>
 <ip>
 <id> 600 </id>
 <x>-50.8459652 <x>
 ,<y> 59.79764161 <y>
 </ip>
 <kvalue>
 <id> 700 </id>
 <k> 1.25 </k>
 <x> 38.4627 </x>
 <y> 179.2126 </y>
 </kvalue>
 <length>
 <id> 800 </id>
 <l> 50 </l>
 <x> 172.61694837 </x>
 <y> 154.72967932 <x>
 </length>
 <asymmetric>
 <id> 900 </id>
 <l1> 25 </l1>
 <l2> 75 </l2>
 <x> 270.0182 </x>
 <y> 208.1493 </y>
 </asymmetric>
 <arc>
 <id> 1000 </id>
 <r> 1000 </r>
 <x> 424.2402 </x>
 <y>196.5637 </y>
 </arc>
 <radius>
 <id> 1100 </id>
 <r> 200 </r>
 <x> 526.7263 </x>
 <y> 201.5302 </y>
 </radius>
 <ip>
 <id> 1200 </id>
 <x> 637.69216273 </x>
 <y> 198.71894484 </y>
 </ip>
</vertical_parts>

1st VIP
VIP only

2nd VIP
Parabola defined

5th VIP
Arc with radius

Vertical Parts with IP Methods Only

Section View of Super Alignment

Vertical Geometry Being Edited

by k value

4th VIP
Asymmetric parabola defined
by two lengths

7th VIP
VIP only

6th VIP
Parabola defined
by effective radius

Unique Part id
incrementing by 100

3rd VIP
Parabola defined
by length

Continue to the next section 1.6.12 Text String or return to 1.6 Elements Contained in Models or
1 12d XML File Format.
Page 97Elements Contained in Models

12d Model Reference Manual
1.6.12 Text String
The format for the string_text element is:

<string_text>

string_header_block

point_block

vertex_text_value_block

vertex_annotate_value_block

</string_arc>

where

string_header_block

the common header block for each string. for the contents and the syntax, see 1.6.3 String
Header Block.

point_block

The format of the point_block is:

<point> x_real y_real z_real </point>

where

(x_real,y_real,z_real) is the vertex of the text.

vertex_text_value_block

The text for the text string.

The format of the vertex_text_value_block is:

<vertex_text_value> characters_of_the_text </vertex_text_value>

where

characters_of_the_text is the characters of the text with the except of some character that
are special characters and are replace by something else.

For example & in the text is replaced & and a new line is given by
. See
Characters "<", ">" and "&" and Escaping.

vertex_annotate_block

These are the setting for displaying text at a vertex.

The format of the vertex_annotate_block is:

<vertex_text_value>

 vertex_annotation_information

</vertex_text_value>

where

vertex_annotation_information is the annotation to be used for drawing the text. For the
definition of vertex_annotation_information see 1.6.4.1 Vertex Annotation Information.

For example

<string_text>
 <name>text</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>yellow</colour>
 <style>1</style>
 <time_created>28-Apr-2015 07:48:35</time_created>
 <time_updated>28-Apr-2015 07:49:33</time_updated>
Page 98 Elements Contained in Models

Chapter 1 12d XML File Format
 <point>1230.93054186 517.0328703 null</point>
 <vertex_text_value>First line
Second line</vertex_text_value>
 <vertex_annotate_value>
 <worldsize>20</worldsize>
 <textstyle>Arial</textstyle>
 <angle>45</angle>
 <x_factor>1</x_factor>
 <slant>0</slant>
 <offset>0</offset>
 <raise>0</raise>
 <text_colour>yellow</text_colour>
 <justify>middle-centre</justify>
 </vertex_annotate_value>
</string_text>

Continue to the next section 1.6.13 Trimesh or return to 1.6 Elements Contained in Models or 1
12d XML File Format.
Page 99Elements Contained in Models

12d Model Reference Manual
1.6.13 Trimesh
A trimesh is a type of primitive_3d object.

A trimesh is made up of 3D triangles and can be described by giving the list of m vertices in the
trimesh and the three vertices that make up each of the n triangular faces. The normal to each
triangle face points to the "outside" of the trimesh.

So the trimesh element contains a list of 3d points and a list of triangle faces where each triangle
face is given as a triple of indices of points from the point list.

The order of the points in the triangle triple is important and must be such that the direction of the
normal to each triangle points away from the inside of the trimesh.

That is, looking down the normal towards the triangle, the three points (p1, p2 and p3) in the
triple of the triangle face are in a counter clockwise order around the triangle.

p1

p3

p2 normal to the triangle which points away
from the inside of the trimesh

The 12d XML definition of a trimesh is:

<primitive_3d>

string_header_block

trimesh_3d_block

</primitive_3d>

where

string_header_block

the header block for a trimesh is the same as the common header block for a string. For the
contents and the syntax, see 1.6.3 String Header Block.

The colour in the string_header_block is the default colour for the triangles in the trimesh.

trimesh_block

The trimesh block gives the vertices of the trimesh and then the faces of the trimesh in terms
of the vertex numbers.

<trimesh_3d>

<vertices>

 <v> x_value_1 y_value_1 z_value_1 </v>

 <v> x_value_2 y_value_2 z_value_2 </v>

 ...
 <v> x_value_n y_value_n z_value_n </v>

</vertices>

<faces>

 <f> face_1_vertex_1 face_1_vertex_2 face_1_vertex_3 </f>

 <f> face_2_vertex_1 face_2_vertex_2 face_2_vertex_3 </f>
Page 100 Elements Contained in Models

Chapter 1 12d XML File Format
 ...
 <f> face_m_vertex_1 face_m_vertex_2 face_m_vertex_3 </f>

</faces>

<edges>

 <e> edge_1_vertex_1 edge_1_vertex_2 </e>

 <e> edge_2_vertex_1 edge_2_vertex_2 </e>

 ...
 <e> edge_p_vertex_1 edge_p_vertex_2 </e>

</edges>

</trimesh_3d>

where

n is the number of vertices and (x_value_i, y_value_i, z_value_i) are the 3D coordinates of
the i’th vertex. The vertices are implicitly numbered by the order in the list (starting at
vertex 1)

m is the number of faces in the trimesh and face_j_vertex_1, face_j_vertex_2,
face_j_vertex_3 are the vertex numbers of the vertices (in the vertices block) for the j’th
face.

p is the number of edges in the trimesh and edge_j_vertex_1, edge_j_vertex_2 are the
vertex numbers of the vertices (in the vertices block) for the j’th edge.

The order of the faces in the faces block is important for many calculations, mesh
properties, geometric structures.The correct order for edge in the edges block can only be
formed inside 12D. For manual construction of the 12da file for trimesh, the user should
leave out the edges block.

The vertices block and faces block are compulsory part of trimesh_3d; all other blocks
(including edges block) in trimesh_3d are optional.

<trimesh_3d>

<vertices> </vertices>

<faces> </faces>

<edges> </edges>

<info> info_block_contents </info>

<blend> blend_value_real </blend>

<vertex_infos> array_infos </vertex_infos>

<vertex_flags> index_array_integers </vertex_flags>

<edge_infos> array_infos</edge_infos>

<edge_flags> index_array_integers </edge_flags>

<face_infos> array_infos </face_infos>

<face_flags> index_array_integers </face_flags>

</trimesh_3d>

Information block

<info>

 <flag> flag_value_integer </flag>
Page 101Elements Contained in Models

12d Model Reference Manual
 <key> key_value_short_integer </key>

 <colour> value_colour </colour>

 <name> value_string_name </name>

</info>

In a info block, flag and key are reserved for future development usage, the value for a
key is between 0 and 255.

Note that the colour and name in the info of trimesh_3d block is distinct from ones of the
string header block.

The value for blend should be a real number between 0 and 1; 0 means total transparent
and; 1 (which is the default value) means total opaque.

The contents of vertex_infos edge_infos face_infos blocks are a sequences of info
block (array_infos).

vertex_flags is a sequence (array) of n index integer which can refer to either: an index in
the vertex_infos block (start from 1); or 0 which means there is no information on the
vertex.

For example, n = 5

There are two kinds of information for a vertex.

<vertex_infos> info1 info2 </vertex_infos>

info1 <info> ... <colour> blue </colour> ... </info>

info2 <info> ... <colour> green </colour> ... </info>

Each of the 5 vertex has a flag number in

<vertex_flags> 2 0 1 2 0 </vertex_flags>

The example indicates that vertices number 1 and 4 have colour green; vertex number 3
has colour blue; vertices number 2 and 5 have no information.

face_flags is a sequence (array) of m index integer which can refer to either: an index in
the face_infos block (start from 1); or 0 which means there is no information on the face.

edge_flags is a sequence (array) of index integer which can refer to either: an index in the
edge_infos block (start from 1); or 0 which means there is no information on the edge.
Page 102 Elements Contained in Models

Chapter 1 12d XML File Format
1.6.14 LAS Cloud String
The 12d XML format for a LAS cloud string without reference data:

<string_las_cloud_data>

string_header_block

data_block

</string_las_cloud_data>

And for a LAS cloud string with reference data:

<string_las_cloud_data>

string_header_block

ref_data_block

</string_las_cloud_data>

where

string_header_block

the header block for a trimesh is the same as the common header block for a string. For the
contents and the syntax, see 1.6.3 String Header Block.

The data block contains:

<data>

category_block

format_block

range_block

points_block

</data>

The category block contains categories tag and a list of boolean value (true or false).

<categories>

boolean_value boolean_value ... boolean_value

</categories>

The range block contains four integer values.

<range>

<xmin> xmin_value </xmin>

<xmax> xmax_value </xmax>

<ymin> ymin_value </ymin>

<ymax> ymax_value </ymax>

</range>

The format block is.

<format>

format_name

</format>

Where format_name must come from the list

v10_p0 v10_p1

v11_p0 v11_p1
Page 103Elements Contained in Models

12d Model Reference Manual
v12_p0 v12_p1 v12_p2 v12_p3

v13_p0 v13_p1 v13_p2 v13_p3

v14_p0 v14_p1 v14_p2 v14_p3 v14_p4 v14_p5 v14_p6 v14_p7 v14_p8 v14_p9 v14_p10

The points block must match the format given in the format block. For each format type vX_pY
where X comes from the set: 10 11 12 13 14 and Y comes from the set 0 1 2 3 4 5 6 7 8 9 10;
there are two choice of points data: points_vX_pY and compact_points_vX_pY.

<points_vX_pY>

point_pY

point_pY

...

...

point_yY

</points_vX_pY>

<compact_points_vX_pY>

compact_point_pY

compact_point_pY

...

...

compact_point_yY

</compact_points_vX_pY>

The point_p0 block is.

<p>

<x> x_coordinate <\x>

<y> y_coordinate <\y>

<z> z_coordinate <\z>

<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 7

<rc> return_count <\rc> \\ integer between 0 and 7

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<ud> user_data <\ud> \\ integer between 0 and 255

<id> point_source_id <\id> \\ integer between 0 and 65535

</p>

The compact_point_p0 block is the same as point_p0 but without any inner tag.

<p>

x_coordinate

y_coordinate
Page 104 Elements Contained in Models

Chapter 1 12d XML File Format
z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 7

return_count \\ integer between 0 and 7

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127

user_data \\ integer between 0 and 255

point_source_id \\ integer between 0 and 65535

</p>

The point_p1 block is the same as point_p0 but with a time at the end.

<p>

<x> x_coordinate <\x>

<y> y_coordinate <\y>

<z> z_coordinate <\z>

<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 7

<rc> return_count <\rc> \\ integer between 0 and 7

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<ud> user_data <\ud> \\ integer between 0 and 255

<id> point_source_id <\id> \\ integer between 0 and 65535

<t> gps_time <\t> \\ real number

</p>

The compact_point_p1 block is the same as point_p1 but without any inner tag.

<p>

x_coordinate

y_coordinate

z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 7

return_count \\ integer between 0 and 7

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127
Page 105Elements Contained in Models

12d Model Reference Manual
user_data \\ integer between 0 and 255

point_source_id \\ integer between 0 and 65535

gps_time \\ real number

</p>

The point_p2 block is the same as point_p0 but with a colour (64bit integer) at the end.

<p>

<x> x_coordinate <\x>

<y> y_coordinate <\y>

<z> z_coordinate <\z>

<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 7

<rc> return_count <\rc> \\ integer between 0 and 7

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<ud> user_data <\ud> \\ integer between 0 and 255

<id> point_source_id <\id> \\ integer between 0 and 65535

<c> las_colour <\c> \\ 64 bit integer

</p>

The compact_point_p2 block is the same as point_p2 but without any inner tag.

<p>

x_coordinate

y_coordinate

z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 7

return_count \\ integer between 0 and 7

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127

user_data \\ integer between 0 and 255

point_source_id \\ integer between 0 and 65535

las_colour \\ 64 bit integer

</p>

The point_p3 block is the same as point_p1 but with a colour (64bit integer) at the end.

<p>
Page 106 Elements Contained in Models

Chapter 1 12d XML File Format
<x> x_coordinate <\x>

<y> y_coordinate <\y>

<z> z_coordinate <\z>

<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 7

<rc> return_count <\rc> \\ integer between 0 and 7

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<ud> user_data <\ud> \\ integer between 0 and 255

<id> point_source_id <\id> \\ integer between 0 and 65535

<t> gps_time <\t> \\ real number

<c> las_colour <\c> \\ 64 bit integer

</p>

The compact_point_p3 block is the same as point_p3 but without any inner tag.

<p>

x_coordinate

y_coordinate

z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 7

return_count \\ integer between 0 and 7

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127

user_data \\ integer between 0 and 255

point_source_id \\ integer between 0 and 65535

gps_time \\ real number

las_colour \\ 64 bit integer

</p>

The point_p4 block is the same as point_p1 but with a wave data at the end (not yet
implemented).

The compact_point_p4 block is the same as point_p4 but without any inner tag.

The point_p5 block is the same as point_p3 but with a wave data at the end (not yet
implemented).

The compact_point_p5 block is the same as point_p5 but without any inner tag.

The point_p6 block is.
Page 107Elements Contained in Models

12d Model Reference Manual
<p>

<x> x_coordinate <\x>

<y> y_coordinate <\y>

<z> z_coordinate <\z>

<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 15

<rc> return_count <\rc> \\ integer between 0 and 15

<cf> classification_flags <\cf> \\ integer between 0 and 15

<sc> scanner_channel <\sc> \\ integer between 0 and 3

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<ud> user_data <\ud> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<id> point_source_id <\id> \\ integer between 0 and 65535

<t> gps_time <\t> \\ real number

</p>

The compact_point_p6 block is the same as point_p6 but without any inner tag.

<p>

x_coordinate

y_coordinate

z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 15

return_count \\ integer between 0 and 15

classification_flags \\ integer between 0 and 15

scanner_channel \\ integer between 0 and 3

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

user_data \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127

point_source_id \\ integer between 0 and 65535

gps_time \\ real number

</p>

The point_p7 block is the same with point_p6 with a las colour (64bit integer) at the end.

<p>

<x> x_coordinate <\x>

<y> y_coordinate <\y>
Page 108 Elements Contained in Models

Chapter 1 12d XML File Format
<z> z_coordinate <\z>

<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 15

<rc> return_count <\rc> \\ integer between 0 and 15

<cf> classification_flags <\cf> \\ integer between 0 and 15

<sc> scanner_channel <\sc> \\ integer between 0 and 3

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<ud> user_data <\ud> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<id> point_source_id <\id> \\ integer between 0 and 65535

<t> gps_time <\t> \\ real number

<c> las_colour <\c> \\ 64bit integer

</p>

The compact_point_p7 block is the same as point_p7 but without any inner tag.

<p>

x_coordinate

y_coordinate

z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 15

return_count \\ integer between 0 and 15

classification_flags \\ integer between 0 and 15

scanner_channel \\ integer between 0 and 3

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

user_data \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127

point_source_id \\ integer between 0 and 65535

gps_time \\ real number

las_colour \\ 64bit integer

</p>

The point_p8 block is the same with point_p7 with a near infrared (integer between 0 and 255) at
the end.

<p>

<x> x_coordinate <\x>

<y> y_coordinate <\y>

<z> z_coordinate <\z>
Page 109Elements Contained in Models

12d Model Reference Manual
<i> intensity <\i> \\ integer between 0 and 65535

<rn> return_number <\rn> \\ integer between 0 and 15

<rc> return_count <\rc> \\ integer between 0 and 15

<cf> classification_flags <\cf> \\ integer between 0 and 15

<sc> scanner_channel <\sc> \\ integer between 0 and 3

<sd> scan_direction <\sd> \\ integer between 0 and 1

<fe> flight_line_edge <\fe> \\ integer between 0 and 1

<cl> classification <\cl> \\ integer between 0 and 255

<ud> user_data <\ud> \\ integer between 0 and 255

<sr> scan_rank_angle <\sr> \\ integer between -128 and 127

<id> point_source_id <\id> \\ integer between 0 and 65535

<t> gps_time <\t> \\ real number

<c> las_colour <\c> \\ 64bit integer

<ir> near_infrared <\ir> \\ integer between 0 and 255

</p>

The compact_point_p8 block is the same as point_p8 but without any inner tag.

<p>

x_coordinate

y_coordinate

z_coordinate

intensity \\ integer between 0 and 65535

return_number \\ integer between 0 and 15

return_count \\ integer between 0 and 15

classification_flags \\ integer between 0 and 15

scanner_channel \\ integer between 0 and 3

scan_direction \\ integer between 0 and 1

flight_line_edge \\ integer between 0 and 1

classification \\ integer between 0 and 255

user_data \\ integer between 0 and 255

scan_rank_angle \\ integer between -128 and 127

point_source_id \\ integer between 0 and 65535

gps_time \\ real number

las_colour \\ 64bit integer

near_infrared \\ integer between 0 and 255

</p>

The point_p9 block is the same as point_p6 but with a wave data at the end (not yet
implemented).

The compact_point_p9 block is the same as point_p9 but without any inner tag.

The point_p10 block is the same as point_p8 but with a wave data at the end (not yet
implemented).
Page 110 Elements Contained in Models

Chapter 1 12d XML File Format
The compact_point_p10 block is the same as point_p10 but without any inner tag.

The ref_data block contains:

<ref_data>

category_block // same as category in data block

<file_name> las_ref_file_name </file_name>

range_block // same as range in data block

</ref_data>

Return to 1.6 Elements Contained in Models or 1 12d XML File Format
Page 111Elements Contained in Models

12d Model Reference Manual
Page 112 Elements Contained in Models

	1 12d XML File Format
	1.1 General Information about XML
	1.2 General Information about a 12d XML File
	1.3 Regularly Used Keyword Blocks
	1.3.1 Name
	1.3.2 Colour
	1.3.3 Line Style
	1.3.4 Chainage
	1.3.5 Weight
	1.3.6 Interval
	1.3.7 Time Created
	1.3.8 Time Updated
	1.3.9 Breakline
	1.3.10 Null
	1.3.11 Radius
	1.3.12 data_2d
	1.3.13 data_3d
	1.3.14 radius_data and major_data
	1.3.15 Available Transition Types

	1.4 Attributes
	1.5 Model
	1.6 Elements Contained in Models
	1.6.1 Tin
	1.6.1.0.1 All Triangles in the Tin - Visible and Invisible
	1.6.1.0.2 Visible Triangles Only

	1.6.2 Super Tin
	1.6.3 String Header Block
	1.6.4 Text Information
	1.6.4.1 Vertex Annotation Information
	1.6.4.2 Segment Annotation Information

	1.6.5 Arc String
	1.6.6 Circle String
	1.6.7 Drainage String
	1.6.8 Feature String
	1.6.9 Plot Frame String
	1.6.10 Super String
	1.6.10.1 Defining the Coordinates of the Vertices
	1.6.10.1.1 One Z or No Z for the String
	1.6.10.1.2 Varying Z Values along the String

	1.6.10.2 Geometry of the Horizontal Segments
	1.6.10.2.1 Only Straights and Arcs for Segments
	1.6.10.2.2 Straights, Arcs and Transitions for Segments
	1.6.10.2.2.1 Straight
	1.6.10.2.2.2 Arc
	1.6.10.2.2.3 Transition and Offset Transitions

	1.6.10.3 Colour
	1.6.10.4 String, Vertex and Segment Attributes
	1.6.10.4.1 String Attributes
	1.6.10.4.2 Vertex Attributes
	1.6.10.4.3 Segment Attributes

	1.6.10.5 Vertex Id’s (Point Id’s)
	1.6.10.6 Symbols at Vertices
	1.6.10.7 Tinability
	1.6.10.8 Round or Box (Culvert) Pipes
	1.6.10.8.1 Pipe Diameters
	1.6.10.8.2 Culvert Dimensions
	1.6.10.8.3 Justification for Round or Culvert Pipes

	1.6.10.9 Vertex Text and Vertex Annotation
	1.6.10.9.1 Vertex Text
	1.6.10.9.2 Vertex Annotation

	1.6.10.10 Segment Text and Segment Annotation
	1.6.10.10.1 Segment Text
	1.6.10.10.2 Segment Annotation

	1.6.11 Super Alignment String
	1.6.11.1 Horizontal Data Block
	1.6.11.2 Horizontal_Parts When Geometry is Defined by IP Method Only
	1.6.11.3 Vertical Data Block
	1.6.11.4 Geometry of the Vertical Segments
	1.6.11.4.1 Only Straights and Arcs for Segments
	1.6.11.4.2 Straights, Arcs and Parabolas for Segments
	1.6.11.4.2.1 Straight
	1.6.11.4.2.2 Arc
	1.6.11.4.2.3 Parabola

	1.6.11.5 Vertical_parts When VG is Defined by IP Method Only

	1.6.12 Text String
	1.6.13 Trimesh
	1.6.14 LAS Cloud String

